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Compression of gaseous hydrogen into warm dense states up to 95 GPa using multishock
compression technique

Guo-Jun Li ,1,2,3 Yun-Jun Gu,2,* Yang-Shun Lan ,1,2 Qi-Feng Chen ,1,2,4,† Zhi-Guo Li ,2 Lei Liu ,4

Zhao-Qi Wang ,5 Zhi-Jun Shen,6 and Xiang-Rong Chen 1,‡

1College of Physics, Sichuan University, Chengdu 610065, China
2National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics,

Chinese Academy of Engineering Physics, Mianyang 621900, China
3School of Physics, Henan Normal University, Xinxiang 453007, China

4School of Science, Southwest University of Science and Technology, Mianyang 621010, China
5College of Science, Xi’an University of Science and Technology, Xi’an 710054, China

6Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China

(Received 5 October 2022; revised 27 December 2022; accepted 9 January 2023; published 24 January 2023)

The thermodynamic properties of warm dense hydrogen, such as the equation of state (EOS) and sound
velocity, affect our understanding of the evolution and interior structures of gas giant planets. However,
for this low-Z gas, obtaining the EOS and sound velocity experimentally under relevant planetary condi-
tions is challenging because the extremely warm states are difficult to reach, characterize, and interrogate.
Here, the multishock compression technique is used to generate the thermodynamic states of warm dense
hydrogen. This provides a dynamic loading from shock adiabatic to quasi-isentropic compressions, covering
wide pressure and density ranges of 0.02–95 GPa and 0.01–0.64 g/cm3, which enables us to determine the
EOS and infer the high-pressure sound velocities of warm dense hydrogen relevant to planetary interiors.
The data obtained in this way are comprehensively compared with several important theoretical models for
astrophysics applications. The present experiments provide desirable principal- and off-Hugoniot states for
revisiting the thermodynamic space of existing experimental data. These observations and thermodynamic states
may be important in guiding future theoretical developments and constructing interior structure models for gas
giant planets.
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I. INTRODUCTION

Hydrogen is the dominant component of gas giant plan-
ets. Thus, accurate knowledge about the equation of state
(EOS) and sound velocity of hydrogen is vital in astrophysics
applications, as this could provide a bridge between astronom-
ical observations and planetary interiors [1–4]. In addition,
hydrogen serves as an excellent prototype for establishing
theoretical models due to its simple atomic structure [2].
Various shock-loading experiments for hydrogen and its
isotope deuterium, using two-stage light-gas guns [5–8], mag-
netically launched flyers [9–12], laser-driven shocks [13–20],
or convergent explosives [21–25], have motivated the devel-
opment of numerous theoretical methods, including chemical
models [26–28] and first-principles methods [29–35]. The
majority of these dynamic experimental measurements have
been performed under single- or double-shock compres-
sion, and have focused on comparing the measured results
for cryogenic liquid deuterium on the principal-Hugoniot
curve with those predicted by various theoretical models
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[9–13,15–18,20,21]. The maximum shock pressure of deu-
terium has reached 550 GPa in experiments [20]. Recent
high-precision measurements of deuterium loaded by magnet-
ically launched flyers show that most of the theoretical models
give unsatisfactory results regarding the onset of dissociation
and the maximum compression along the principal-Hugoniot
curve [12], presenting a tremendous challenge to construct
more accurate theoretical models. Compared to deuterium,
shock compression experiments for hydrogen are relatively
rare [17,19]. To date, the highest experimental pressure for
hydrogen along the principal-Hugoniot curve is much lower
than that for deuterium because hydrogen has a lower shock
impedance and its high-pressure and high-temperature states
are more difficult to reach at the same loading conditions.

Compared with single- or double-shock compression, the
multishock compression produced by the reverberating-shock
technique can probe a broader range of thermodynamic paths
[7,8,23–25,36,37] and is an efficient method for investigat-
ing the insulator-metal (IM) transition at high pressures and
high temperatures [7,8,36,37]. The conductivity of hydrogen
measured by Nellis, Weir, and Mitchell (NWM) in multishock
compression experiments shows that the IM transition occurs
at ∼140 GPa and ∼3000 K [7,8]. The theoretically predicted
plasma phase transition (PPT) [38,39] of deuterium was ob-
served in a multishock compression generated by convergent
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explosives [23]. However, the observed signature of the PPT—
a density jump—is still to be confirmed theoretically and
in further experiments [24,40–42]. Recently, multishock ex-
periments driven by magnetically launched flyers [36] and
lasers [37] have been used to probe the IM transition of deu-
terium, based on changes in the measured optical properties.
However, the experimental results for the IM transition from
these two approaches have relatively obvious differences, and
thus, the experiments provide no definite conclusion [43–45].
Despite the PPT and IM transition having been investigated
using the reverberating-shock technique, the determination of
multishock compression paths is not entirely clear from the
experimental measurements and requires theoretical simula-
tions [7,8,23,24,36,37]. For example, in two-stage light-gas
gun experiments [7,8], NWM simply measured the final
state of the reverberating-shock compressions, whereas in
convergent-explosive experiments [23,24], the recorded pres-
sures stem from the gas-dynamic calculations. Therefore, it
is necessary to determine the multishock paths of hydrogen
directly from measurements without the help of theoretical
simulations. In addition, experimental multishock paths pro-
vide a good opportunity to determine the sound velocity of
hydrogen, for which experimental results [46] are deficient
under high-pressure and high-temperature conditions.

In this study, multishock compression experiments on
gaseous H2 were performed to explore its dynamic response
properties. Its electrical conductivity was calculated via the
first-principles method to analyze the electrical properties cor-
responding to the multishock states. The shock reverberation
process was clearly observed, which ensures a completely ex-
perimental determination of the multishock states (except for
the temperature) up to 95 GPa. The sound velocity was also
derived from the experimental multishock states of hydrogen
at ∼65–95 GPa.

II. EXPERIMENTAL METHODS

The inset of Fig. 1 is a schematic diagram of the
experimental configuration for performing the multishock
compression. It follows similar successful experiments con-
ducted on He [47] and the D2–He mixture [48]. In the
current experiment, ∼6.4–7.2-mm-thick gaseous H2 samples
were prepressurized to 20 or 40 MPa at room temperature
through the external pressurizing device and sealed in a sam-
ple cell, which has a front 304 steel (S304) baseplate and
a rear composite window. The composite window consists of
a ∼0.13-mm-thick aluminum (Al) film with an aperture with
a diameter of ∼4 mm at the center as well as ∼4.0-mm-thick
LiF and ∼2.0-mm-thick sapphire (Al2O3). The specially de-
signed window allows us to simultaneously monitor the light
radiation from the compressed gaseous hydrogen and the par-
ticle velocity at the hydrogen-window interface. A two-stage
light-gas gun with a bore diameter of ∼30 mm was used to
accelerate a tantalum (Ta) flyer with a diameter of ∼28 mm
and thickness of ∼3.2 mm to a velocity of 4.9–5.6 km/s,
as measured by a magnetic velocity induction system with
uncertainties 0.5%. A strong shock wave was generated when
the Ta flyer impacted the S304 baseplate. The shock wave was
transmitted into the hydrogen sample from the baseplate, then
propagated and reflected between the baseplate and window

FIG. 1. Representative signals from the MCOP and DLHV in-
struments for shot no. H18704. The light radiation histories of H2

recorded by the 504-nm-wavelength channel of MCOP-I and 672-
nm-wavelength channel of MCOP-II are represented as green and
blue lines, respectively. The intensity is indicated by the voltage
signal. For clarity, the MCOP-I signal amplitude has been shifted
downward by 0.55 V. The red line is the velocity history at the
H2-window interface recorded by DLHV-II. Note that the values
directly observed by DLHV-II are apparent velocities and have been
corrected using the refractive index of lithium fluoride (LiF) [51–53].
t0, t1, t2, . . . are the shock arrival times at the baseplate-H2 and
H2-window interfaces. Inset: Schematic diagram of a target designed
for the multishock compression (dimensions are not to scale).

since the shock dependence of the baseplate and window were
higher than that of hydrogen. During the multishock compres-
sions, the density, pressure, and temperature in the sample
increased, so that it changed from a dense gaseous to a warm
dense state. The emissions from the H2 under these shock
compressions were recorded using two sets of multichannel
optical pyrometers (MCOPs) [49] with different sensitivities,
while the velocity history of the H2-window interface was
measured via two sets of dual laser heterodyne velocimetries
(DLHVs) through the Doppler shift interference fringes of the
reflected light [50] (see the inset of Fig. 1).

Typical MCOP and DLHV measurements are shown in
Fig. 1 and in Figs. S1 and S7 of the Supplemental Material
(SM) [54] for shot no. H18704. The multishock compression
process can be distinctly distinguished from these signals. The
high-sensitivity MCOP-I signals indicate that the first shock
wave entered the hydrogen sample from the baseplate at t0.
Note that an intense rise in the signal amplitude occurred
at t0, then a peak of narrow time width in the starting stage
was formed, and, finally, a stable plateau lasted until t1. Here,
the signal amplitudes in the stable plateau were used to deter-
mine the first-shock temperature; detailed discussions about
the physical meaning of the peak and the first-shock temper-
ature determination can be found in Sec. I of the SM [54].
At t1, the first-shock wave in the sample arrived at the H2-
window interface. And a reflected shock wave was generated
and compressed the H2 to the second-shock state with a higher
temperature, which induced the MCOP signal amplitude to
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rise. At the same time, the transmitted shock wave entered
the window and compressed the window to the first-shock
state, resulting in the first step rise in the DLHV-II signals.
At t2, the second-shock wave in the sample arrived at the
H2-baseplate interface and was then reflected. The reflected
shock wave entered the H2, causing the third shock and the
signal amplitude of MCOP-II increased again, implying that
the light radiated from the shock wave front of the third shock
could still partially penetrate the compressed layer of the H2

under the second-shock state. Note that the light radiated
from the third-shock sample is beyond the measurement range
of MCOP-I. Similarly, at t3, the third-shock wave arrived at
the H2-window interface. The window was shocked to the
second-shock state, and the DLHV signals rose again quickly
to a higher plateau. Meanwhile, the H2 was compressed to
the fourth-shock state, and the MCOP-II signal amplitude
strengthened further. For later multishocks, the moments t4, t6,
t8 when shock waves arrived at the H2-baseplate interface can-
not be observed from the MCOP-II signal, while the moments
t5, t7, t9 when shock waves arrived at the H2-window interface
can be discriminated in the DLHV signal. The combination
of measured t1, t3, t5, . . . , and the particle velocity of the
hydrogen-window interface measured by the DLHV can be
used to determine the t4, t6, t8 based on the wave propa-
gation relation in the multishock compression process and
shock wave velocities, pressures, and densities of multishock
states using the impedance matching method, whose detailed
inferences can be found in Sec. II of the SM [54]. Note that
the uncertainties of the LiF and S304 EOS are not taken into
account when using the impedance matching method to de-
termine the multishock states of hydrogen beyond the fourth
shock. Therefore, the obtained standard uncertainties should
be viewed as lower bounds. In addition, the first- and second-
shock temperatures were determined by fitting the spectral
radiance recorded by the MCOP to the gray Planck model;
see Sec. I of the SM [54].

III. RESULTS AND DISCUSSIONS

Three shots were applied to hydrogen samples, and the
multishock EOS data were obtained covering a wide range
of pressures (0.02–95 GPa) and densities (0.015–0.64 g/cm3)
and spanning a region from a dense gaseous state to a warm
dense state (Table S4 of the SM [54]). These data provide
adequate information for validating the theoretical models.
In Fig. 2 and Fig. S22 of the SM [54], the current data
are compared with results from several important theoreti-
cal models, including the chemical models SESAME [26],
Saumon, Chabrier, and van Horn (SCVH) [27], and self-
consistent fluid variational theory (SFVT) [28], and recently
developed multiphase EOS models of the Rostock group
(REOS.3) [33] and Chabrier, Mazevet, and Soubiran (CMS)
[35]. The REOS.3 and CMS models were constructed based
on the combination of the first-principles molecular dynamics
(FPMD) calculations and chemical EOS models. The two
multiphase EOS and SCVH models are widely applied in
astrophysics [4,57]. It is clear from Fig. 2(a) that for the
first two shocked states, all the theoretical models predict
behavior consistent with the experimental data for densities
below ∼0.16 g/cm3 or pressures below ∼10 GPa. The be-

FIG. 2. (a) Pressure as a function of the density of H2 for shot
no. H18704 under multishock compressions. Theoretical multishock
Hugoniots are shown for the SESAME model [26] (dash-dotted
lines), the SCVH model [27] (dotted lines), the SFVT model [40]
(dash-double-dotted lines), the REOS.3 model [33] (solid lines),
and the CMS model [35] (dashed lines). Our experimental data are
represented by half-filled diamonds. (b) Single- and double-shock
temperature vs density for shot no. H18704. The lines and symbols
are as in (a).

havior of the SESAME [26], SCVH [27], and SFVT [28] at
low pressure confirm the previous experimental conclusion
for H2 and D2 [5,11]. The trends of the REOS.3 and CMS
models are similar to those of the chemical models in this
region. However, with increasing pressure, the SESAME and
SCVH models show a stiffer behavior and gradually deviate
from the experimental data. That may be because effective
pair potentials or the methods adopted in the SESAME and
SCVH models cannot accurately describe the multibody in-
teraction caused by the effects of high temperature and high
pressure [33,35]. Note that in Fig. 2(a), a kink occurs on
the compression curve produced by the SCVH model at the
fourth shock. This implicitly indicates that the EOS surface
of the SCVH model deviates from the actual system. The

014309-3



GUO-JUN LI et al. PHYSICAL REVIEW B 107, 014309 (2023)

data table for the REOS.3 and CMS models was constructed
by a FPMD calculation using the Perdew-Burke-Ernzerhof
formulation (PBE) [58] of the exchange-correlation functional
in the high-pressure regime. It can be seen that these results
are in good agreement with the experimental data within the
error bar for the pressure above 10 GPa up to the eighth-shock
compression at ∼95 GPa, even though the REOS.3 model has
a slightly stiffer behavior than the CMS model, especially for
pressures above 80 GPa. Moreover, we can see that the SFVT
model can also give satisfactory results up to the eighth-shock
compression for our experimental P − ρ data.

Temperature is also a fundamental thermodynamic vari-
able and can provide an important constraint on EOS models
[59,60]. The experimental first- and second-shock tempera-
tures of hydrogen are compared with those from theoretical
models in Fig. 2(b) and Fig. S22 of the SM [54]. The measured
first- and second-shock temperatures of H2 are consistent with
those from the theoretical models on the whole, especially
REOS.3 and CMS. A comparison of the theoretical models
shows that, in general, REOS.3 and SFVT predict higher and
more moderate temperatures, respectively, while the temper-
atures predicted by SCVH and SESAME are close to each
other and lower. The temperatures from CMS are basically
between those of the REOS.3 and SCVH models, and have a
slight bend above ∼0.08 g/cm3. This may be because, during
the construction of the CMS model, there was a a large gap in
the interpolation connecting the chemical model and FPMD
data (H2 in 0.05–0.3 g/cm3).

The multishock experiments provide principal- and off-
Hugoniot states close to the conditions in giant planetary
interiors. Thus, it is useful to revisit the thermodynamic space
of existing experimental data. Figure 3 compares our data with
the available experimental data for hydrogen. Our multishock
data go beyond the pressure limit of the previous single-shock
gas gun experiments [5,6] and are comparable to an intense
laser shock experiment using a precompressed hydrogen sam-
ple in a diamond anvil cell (DAC) [19]. Our experiments, thus,
build a bridge in thermodynamic space between the existing
gas gun data in the low-pressure region and the laser data in
the high-pressure region. In addition, our data reach a higher
compression ratio (ρ/ρ0 up to ∼43; see Table S4 of the SM
[54]). The theoretical isentrope of H2 for Jovian conditions
(65 K and 1 bar in the atmosphere) is also shown in Fig. 3, as
calculated through the following differential equation [41]:

(
∂T

∂ρ

)
s

= T

ρ2

(∂P/∂T )ρ
(∂E/∂T )ρ

, (1)

where ρ, T , P, E, and S denote the density, temperature, pres-
sure, specific internal energy, and entropy, respectively. The
present multishock data roughly follow the calculated isen-
trope. In contrast, most of the laser shock data [17,19,56] are
near the principal-Hugoniot curve for a liquid with an initial
density of 0.076 g/cm3. However, the laser data (25–75 GPa)
of Loubeyre et al. [19,56] for an initial state at ∼1 GPa and
297 K are comparable to the present data for the fourth- to
sixth-shock states since their thermodynamic states are close
in P − ρ − T space. Overall, compared with the available
single-shock data, our multishock data are closer to the isen-
trope of hydrogen in giant planetary interiors and are favorable

FIG. 3. Comparisons of the present data with available experi-
mental data for hydrogen in pressure vs density plane. Our data are
represented by half-filled diamonds. The numbers in circles represent
the ith-shock state. Data from previous shock compression experi-
ments on hydrogen using a gas gun (black hexagons [5] and gray
downward triangles [6]), convergent explosives (gray upward trian-
gles [55] and cyan stars [22]), and laser shocks (blue squares [17]
and purple circles [19,56]) are also shown. The theoretical principal
Hugoniot curve (solid line) and isentrope (dashed line) calculated by
the REOS.3 model [33] start from the initial conditions of the laser
experiment [17] and Jovian condition, respectively.

for constraining Jovian planetary models. In addition, we also
use the first-principles method to calculate the conductivities
and reflectivities of gaseous hydrogen along the multishock
compression path to give an estimation of whether the present
multishock states can reach into the metallization region; see
more details of the SM [54].

Using the multishock compression technique, as well as
obtaining the EOS data for gaseous H2 up to 95 GPa, we
also achieved a dynamic loading from shock adiabatic to
quasi-isentropic compression [48]. The compression process
can be analyzed by the variations of the calculated specific
entropy along the multishock compression path, as shown in
Fig. S23 of the SM [54]. The result shows that the entropy
hardly changes after the fifth shock. Therefore, the multishock
compression starting at the fifth shock can be regarded as
quasi-isentropic, enabling us to infer the isentropic sound
velocity (Cs). Note that the Cs of only two shots, no. H18622
and no. H18704, can be derived from the nature of the quasi-
isentropic compression. A detailed derivation can be found in
Sec. VII of the SM [54].

Measurements of the sound velocity of high-pressure hy-
drogen can not only provide a different perspective to validate
the theoretical models, but also play a vital role in connect-
ing the theoretical Jovian model to seismic observations of
Jupiter, which is an important input parameter to determine
the characteristic frequency ν0 of Jovian oscillation from
the theoretical Jovian model [63,65]. A comparison of mea-
sured Cs and those predicted by the theoretical modes shows
that some chemical models become inapplicable in the high-
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FIG. 4. Sound velocities of hydrogen (deuterium) vs pressure.
Half-filled diamonds and circles correspond to the sound velocities
of shots no. H18622 and no. H18704, respectively. The previous ex-
perimental data are from Holmes et al. (open circles) [61], Zha et al.
(open triangles) [46], and Fratanduono et al. (open squares) [62].
The pure hydrogen isentropes for the Jovian conditions include the
calculated result by the REOS.3 model (solid line) and extrapolated
experimental results (dash-dotted line) by Duffy et al. [63]. A Jupiter
adiabat (dashed line) based on the hydrogen-helium-water mixtures
EOSs [64] is also shown. The temperature of all data points and
curves is indicated by the color bar.

pressure region, especially for the SCVH model; see Sec. VII
of the SM [54]. We note that the observed ν0 are consistent
with the theoretical Jovian models and Cs extrapolated by
Duffy et al. [63], which were measured by Zha et al. [46]
at room temperature in a DAC using Brillouin scattering
technology and limited to a lower pressure. Our measured
Cs above 60 GPa agrees well with the extrapolated results;
see Fig. 4. The present Cs values of H2 are also compared
with available experimental results for H2 [46] and D2 [61,62]
in Fig. 4. Our data significantly expand the measured ranges
of temperature and pressure for the Cs value of hydrogen,
compared to prior Cs values measured by Zha et al. [46]. As
for deuterium, experimental Cs data were derived from light-
gas gun experiments using a shock-overtake technique [61]
or laser experiments using an unsteady-wave technique [62].
The value of Cs for hydrogen from our experiments is higher
than that for deuterium from the laser experiments at the same
pressure, even though deuterium has a higher temperature
(above 15.0 kK) along the principal-Hugoniot curve. The
hydrogen isentrope for the Jovian conditions shows a slightly

higher sound velocity and lower temperature than the Jupiter
adiabat [64], for which the contributions from other compo-
nents, such as He and H2O, are also considered. Note that Cs

for hydrogen is closer to the Jupiter adiabat than that for the
data in the laser experiments [62] because the quasi-isentropic
compression provides a relatively slow temperature rise. In
addition, the accurately measured Jupiter’s gravitational field
from the Juno mission [66–69] has been used to constrain
Jupiter’s interior structure models [3,70], which are derived
from the EOS, assumed type of temperature profile (adiabatic
or not), and a temperature boundary condition at the observed
atmosphere [71]. Our obtained EOS and sound velocity data
are closer to the thermodynamic states in Jupiter’s interiors
compared to the prior experimental data, and can provide
more experimental constraints to theoretical EOS models used
to construct Jupiter’s interior structure models based on Juno’s
gravity data.

IV. CONCLUSIONS

In summary, EOS and sound velocity measurements for
dense gaseous H2 have been obtained through compression
experiments. The pressure and density were determined up
to 95 GPa and 0.64 g/cm3, respectively. Various theoretical
models have been revisited using the present EOS data. The
comparison between our experimental results and theoretical
models shows that the chemical models SESAME, SCVH,
and SFVT, and multiphase EOS models REOS.3 and CMS,
all can give satisfactory results in a low-pressure region.
In a high-pressure region, the SFVT, REOS.3, and CMS mod-
els are still consistent with the experimental EOS; however,
the SESAME and SCVH models exhibit obvious stiffer be-
haviors. Our EOS data support using the REOS.3 and CMS
models to construct interior models for Jupiter. And the Cs

derived from the multishock states and EOS data are closer
to Jupiter’s interior conditions than previous Cs measurements
for hydrogen and deuterium, which are more suitable for con-
straining and developing interior structure models of Jupiter
over a wider pressure and temperature region.
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