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The process by which open quantum systems thermalize with an environment is both of fundamental
interest and relevant to noisy quantum devices. As a minimal model of this process, we consider a qudit
chain evolving under local random unitaries and local depolarization channels. After mapping to a statistical
mechanics model, the depolarization (noise) acts like a symmetry-breaking field, and we argue that it causes
the system to thermalize within a timescale independent of system size. We show that various bipartite entan-
glement measures—mutual information, operator entanglement, and entanglement negativity—grow at a speed
proportional to the size of the bipartition boundary. As a result, these entanglement measures obey an area law:
Their maximal value during the dynamics is bounded by the boundary instead of the volume. In contrast, if the
depolarization only acts at the system boundary, then the maximum value of the entanglement measures obeys a
volume law. We complement our analysis with scalable simulations involving Clifford gates, for both one- and
two-dimensional systems.
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I. INTRODUCTION

A quantum system interacting with an environment gener-
ically thermalizes, and attempts toward understanding such
dynamics have led to many different technical approaches
[1–6]. Advances in quantum hardware have added further
motivation to understand such dynamics, as physical sys-
tems inevitably evolve in the presence of noise and decohere
without fault tolerance. Determining if noisy devices offer a
quantum advantage over classical simulation [7] benefits from
an understanding of the entanglement dynamics. If the mixed
state of the system is not too entangled during the dynamics,
then classical simulations may be efficient [8–12].

Random circuits have provided a fruitful approach for
studying many-body quantum dynamics of closed systems
[13]. As a toy model, generic unitary time evolution is rep-
resented by local random unitaries, admitting a mapping of
the dynamics to a classical statistical mechanics (stat-mech)
model [14]. This allows calculating many essential features of
many-body quantum dynamics such as entanglement growth
[13], spectral form factors [15], out-of-time-ordered correla-
tions [16], and operator growth [17]. The random circuit can
also be hybridized with measurements, yielding fascinating
phenomena [18–20].

In this work, we use the random circuit approach to study
the dynamics of open quantum systems. Such an applica-
tion has already led to valuable insights in different contexts
[21–24]. As a minimal model for a one-dimensional (1D)
quantum system inside an infinite-temperature bath, we con-
sider a random channel circuit consisting of random local
unitaries and local depolarization channels. We are interested
in how the system eventually reaches equilibrium (in this case,
a maximally mixed state). We map the system to a classical
model of spins taking values in a permutation group. After
the mapping, the effects of the environment (depolarizing

channels) manifest as a permutation symmetry-breaking field
which polarizes the spins and makes the system short-range
correlated, thus setting a system-size-independent timescale
to reach equilibrium. More specifically, we use mutual infor-
mation, operator entanglement, and entanglement negativity
as diagnoses of correlations, and we study their time depen-
dence. These quantities show linear growth at early time,
then reach their peak values and eventually drop to zero. Im-
portantly, regardless of the depolarization strength, we argue
based on the stat-mech model that the peaks are reached at
a system-size-independent time, and the initial linear growth
slopes are upper bounded by the size of the partition boundary.
As a result, the peak values obey an area law: They are upper
bounded by the size of the partition boundary as opposed to
volumes of subsystems.

This setup was considered in Ref. [9], which reached the
same conclusion for operator entanglement entropy based
on numerics. Here, we provide analytic arguments for this
conclusion. For a complementary and scalable numerical sim-
ulation, we also consider a slightly different setup where the
depolarization acts in a probabilistic fashion and the random
unitaries are restricted to Clifford gates. In this setup, we also
find an area law for the entanglement peaks, in both one and
two-dimensional (2D) systems. Finally, we consider a model
in which depolarization only occurs at the system boundary,
and we find the entanglement peaks obey volume law, based
on both analytical arguments and numerical calculations.

Setup

We consider a 1D qudit chain with local Hilbert space
dimension d . The dynamics is shown in Fig. 1(a), where
blocks are Haar random unitaries U chosen independently and
strips are depolarizing channels with a fixed strength parame-
ter p. The combination gives the following random quantum
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FIG. 1. The random circuit consists of random unitaries (blue
blocks) and depolarizing channels (yellow strips).

channel:

�(ρ) = (1 − p)UρU † + ptr(ρ)

d2
I2. (1)

Here I2 is the maximally mixed state of two qudits. We choose
the initial state to be a pure product state.

We bipartite the system into (not necessarily equal-size)
subsystems A and B and focus on the dynamics of the Rényi-2
mutual information for concreteness:

I2(A : B) = S2,A + S2,B − S2,AB

= − log trρ2
A − log trρ2

B + log trρ2
AB, (2)

where S2,∗ is the Rényi-2 entropy of the reduced density
matrices ρ∗ where ∗ stands for (sub)systems A, B, and AB.

Due to the randomness in the Haar unitaries, I2 takes dif-
ferent values for each circuit realization and corresponding
trajectory ρt . We are interested in the average over circuit
realizations:

I2(t ) = EU [I2(ρt )]. (3)

In the Appendix, we also consider the entanglement nega-
tivity [25]—a mixed state entanglement measure and operator
entanglement entropy [26]—the complexity of representing
the density matrix as a matrix product operator. The behavior
of these quantities are similar.

II. MAPPING TO STATISTICAL MECHANICS MODEL

The averaged mutual information Eq. (3) can be com-
puted by mapping to a statistical-mechanics model, similar to
Refs. [14,27,28]. In this section, we show the detailed map-
ping procedure and discuss some properties of the resulting
stat-mech model.

The high-level picture of the mapping is summarized in
Fig. 2 and are divided into the following steps:

(1) To evaluate the average of logarithms appearing in
Eqs. (2) and (3), we use the replica trick:

E log X = ∂

∂α
EX α

∣∣∣∣
α=0

= ∂

∂α
logEX α

∣∣∣∣
α=0

. (4)

Here the last equation is due to EX α|α=0 = 1.

(a) (b)

(c) (d)

FIG. 2. (a) A stack of multiple copies of the circuit, decomposed
(by red dashed lines) into spacetime units. (b) Haar random average
via Weingarten calculus. (c) Averaged stack maps to a spin model on
the honeycomb lattice. (d) Integrating out a subset of spins yields a
simpler model.

(2) Each term in the above equation involves several
copies of the state, represented by stacking copies of Fig. 1
into a multilayer circuit [Fig. 2(a)]. It can be decomposed into
spacetime units. Unitaries in different units are independent,
while unitaries in the same unit are the same.

(3) Within each unit, we average the Haar random uni-
tary by applying a “Weingarten calculus” transformation
[Fig. 2(b)]. This transforms each unit to a different form in
which two effective “spin” degrees of freedom taking values
in SQ, the permutation group of Q elements, are summed
over. Here Q is the number of layers evolved; Q = 2α for
Eq. (2).

(4) After transforming all units, the spins reside at the
lattice sites of a honeycomb lattice, giving us an effective
stat-mech model on the honeycomb lattice [Fig. 2(c)].

(5) Finally, integrate out a subset of spins and simplify the
model to Fig. 2(d).

A. Bulk theory

Representing each ρ (and |ρ〉) as a single-layer circuit (here
the convention is that a pure state and its “dual” together
form a layer), traces evolved in Eq. (2) can be visualized as
multilayer circuits. Taking the replica trick into consideration,
we need to work out the traces for a generic number of layers.

To simplify the notation, we write the random channel
Eq. (1) as

�(ρ) = (1 − p)�U (ρ) + p�T (ρ), (5)
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where �U is the random unitary channel and �T is the trace
channel. Therefore,

E(�⊗Q) =E[(1 − p)�U + p�T ]⊗Q

=
Q∑

k=1

∑
i1,··· ,ik

(1 − p)Q−k pkE

× (�U ⊗ · · · ⊗ �T · · · ⊗ · · · ). (6)

Here {i1, · · · , ik} are the positions where �T appears in �U ⊗
· · · ⊗ �T · · · ⊗ · · · .

The only randomness here is the Haar randomness for the
unitaries. We will make use of the following “Weingarten
calculus” identity for Haar average of m pairs of U and U †:

(7)

Here the orange blocks are Haar random unitaries U (and
yellow for U †); Sm is the permutation group over m elements;
Wm() is the Weingarten function (it also depends on d2 but
we omit it). Therefore, E(�U ⊗ · · · ⊗ �T · · · ⊗ · · · ) terms in
Eq. (6) equals

(8)

In the above equation, h1, h2 ∈ SQ−k , and id ∈ Sk (we omit
the order of the tensor product to make the notation clear). We
emphasize that the subscript of the Weingarten function are
important: It indicates which group the arguments live in. If
a ∈ Sm and b ∈ Sn are defined as acting a on {1, 2, · · · , m} and
keeping {m + 1, · · · , n} fixed (so that a and b are essentially
the same), then it could be that Wm(a) �= Wn(b).

Plugging Eq. (8) into Eq. (6), we see that each term in

Eq. (6) will be of the form , with some gi ∈ SQ

as the combination of hi and id . However, a term with g1, g2

may come from more than one k and {i1, · · · , ik}. Any subset
of the common fixed points of g1, g2 could come from the �T

part in Eq. (6) [equivalently, the id part in Eq. (8)]. So the
coefficient before the g1, g2 term should be

ng1 ,g2∑
i=0

(
ng1,g2

i

)
(1 − p)Q−i pi WQ−i

(
g−1

1 g2
)

d2i
. (9)

Here ng1,g2 is the number of common fixed points of g1 and
g2 [for example, if g1 = (1 2)(3)(4) and g2 = (1 2 3)(4), then

ng1,g2 = 1]. Note that we need to slightly abuse the notation
and regard g−1

1 g2 as living in SQ−i. This is fine since g−1
1 g2

acts nontrivially on at most Q − ng1,g2 elements and Q − i �
Q − ng1,g2 . Combinatorial numbers appear because we need
to pick up i elements from these fixed points and assume they
come from the �T part and other Q − i legs come from the
�U part. Completing the calculation, we find

(10)

Together with the cross-layer contractions

(11)

[here |g| is the distance between g and id in SQ, which
equals the minimal number of transpositions in g; equivalently
Q − |g| is the number of cycles in the cycle decomposition
of g; for example, if g1 = (1 2)(3)(4) and g2 = (1 2 3)(4),
then ng1,g2 = 1, |g1| = 1, |g2| = 2], we arrive at a statistical
mechanics model on the honeycomb lattice. The sum over the
spins at all sites can be regarded as the partition function of
the classical stat-mech model.

On each lattice, there is a SQ spin g; the statistical weight
for a spin configuration {g} is given by∏

v

(1 − p)Q−ng1 ,g2 VQ(g1, g2)
∏

h

d−|g−1
1 g2|. (12)

Here v means vertical bonds and h means horizontal (zigzag)
bonds. VQ(g1, g2) is Eq. (10) multiplied by d2Q. The 1/d2Q

factor in Eq. (10) is exactly canceled by dQ factors in Eq. (11)
since each vertical bond corresponds to two horizontal bonds.

Next, we integrate out spins in the middle of downward
(yellow) triangles, obtaining a spin model on a (rotated)
square lattice Fig. 2(d). Now the statistical weight for a spin
configuration is the product of all downward triangles, where
each triangle contributes:

(13)

Here a, b, c ∈ SQ; na is the number of fixed points of a; and

Kp(a, b, c) =
∑
τ∈SQ

d−|τ−1b|−|τ−1c|(1 − p)na−nτ,aVQ(τ, a). (14)

B. Boundary conditions

Recall that the purpose of drawing Fig. 2(a) is to calculate
the traces in Eq. (2). Therefore, at the upper boundary of the
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Q-layer circuit, different layers need to be suitably contracted
with each other according to the trace and replica structure
dictated by Eqs. (2) and (4). This manifests as fixed boundary
conditions in the single-layer spin model.

More precisely, for I2(A : B), if the replica number α = 1,
then the first term amounts to fixing spins above B region to
a = id2 and fixing spins above A region to b = (1, 2); the sec-
ond term is similar; the third term amounts to fixing spins to b
everywhere. If α � 2, then we need to repeat the above pattern
α times, so a = idQ, b = (1, 2)(n + 1, n + 2) · · · (Q − 1, Q).
At the end, Eq. (3) becomes

I2(A : B) = −2
∂

∂Q
(logZba + logZab − logZbb), (15)

where the subscripts indicate different boundary conditions in
the partition function Z .

We note that Zbb is also related to the Rényi-2 entropy of
the whole system via the following formula:

S2 = −2
∂

∂Q
logZbb. (16)

The bottom boundary corresponds to the initial state, which
we choose to be a product pure state. Under the Haar average
Eq. (7), we should attach a state |ψ〉 to the open ends at
the bottom, which effectively leaves the permutations alone
(basically because 〈ψ |ψ〉 = 1). Therefore, the boundaries at
the bottom are always free.1

C. Noise as symmetry breaking

Before analyzing the stat-mech model quantitatively, let us
consider how the symmetry changes with p.

If p = 0, then since both the Weingarten functions W ( ) and
| | are invariant under conjugation, the weights have an SQ ×
SQ “spin rotation” symmetry acting as independent left/right
group multiplication. However, if p > 0, then to keep various
ng1,g2 and ng invariant, only the diagonal SQ group survives,
acting by conjugation. Hence, the depolarization (nonzero p)
partially breaks the “spin rotation” symmetry. Note that if Q =
2, then the above statement should be slightly modified since
S2 has a nontrivial center (which is itself). The symmetry is
S2 (if p = 0) and {id} (if p > 0), so there is still a symmetry-
breaking effect.

Another way to see the symmetry breaking is by noticing
the (1 − p)Q−na factor in Eq. (13). This term suggests that
the depolarization channel (noise) acts as a polarizing field:
Spins have energy ∝ −na and favor directions with larger na,
breaking the above-mentioned “spin rotation” symmetry.

III. LARGE d ANALYSIS

The stat-mech model is still pretty complicated due to the
complicated triangle weights [Eq. (13)]. Fortunately, in the
large d limit, the triangle weights greatly simplify, and one
can obtain a very intuitive picture.

1On the contrary, if the initial state is the maximally mixed state,
then the bottom boundary should obey a fixed boundary condition
where all spins are fixed to id .

For example, consider the simplest case is the d = ∞ limit.
In this case, the triangle weights are

(17)

enforcing all spins to be equal. The symmetry-breaking effect
is very manifest in this limit. Indeed, if p = 0, spins can take
all possible directions due to the above-mentioned symmetry;
if p > 0, then the symmetry breaks and spins are polarized to
id (for which na = Q).

For large but finite d , spins can differ in orientation. We
follow Ref. [14] and visualize each spin configuration as
regions where spins take the same values, separated by bound-
aries (“domain walls”) between the regions. For an edge a-b
(a �= b), we draw |a−1b| domain walls across it, each repre-
senting a transposition in the decomposition of a−1b [e.g., if
a−1b = (1 2)(3 4), then we draw two domain walls, one for
(1 2), one for (3 4)]. The statistical weight Eq. (12) still equals
a product of all triangle weights, where the triangle weights
are largely determined by the domain wall configuration.

A. Triangle weights

In this subsection, we work out the triangle weights up to
leading order in 1/d .

First of all [29],

d2(Q−i)WQ−i(g) = O

(
Moeb(g)

d2|g|

)
+ O

(
1

d2|g|+4

)
. (18)

Here, Moeb(g) is a coefficient that only depends on the non-
trivial part of g (it does not depend on i which tells us which
permutation group g lives in). We only the actual value of
Moeb(g) in Eq. (26). Therefore, to the leading order,

VQ(g1, g2) =
ng1 ,g2∑
i=0

(
ng1,g2

i

)
(1 − p)ng1 ,g2 −i pi Moeb

(
g−1

1 g2
)

d2|g−1
1 g2|

= Moeb
(
g−1

1 g2
)

d2|g−1
1 g2|

, (19)

and therefore Kp(a, b, c) equals∑
τ∈SQ

(1 − p)na−nτ,a Moeb(τ−1a)d−|τ−1b|−|τ−1c|−2|τ−1a|. (20)

According to the triangle inequality,

|τ−1b| + |τ−1c| + 2|τ−1a| � |a−1b| + |a−1c|, (21)

where equality holds if and only if two “parallel” conditions
are satisfied:

|τ−1b| + |τ−1a| = |a−1b|, and |τ−1c| + |τ−1a| = |a−1c|.
(22)

Hence, to the leading order,

Kp(a, b, c) = d−|a−1b|−|a−1c|
′∑

τ∈SQ

(1 − p)na−nτ,a Moeb(τ−1a),

(23)
where

∑′ means summation over all τ satisfying Eq. (22).
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TABLE I. Some triangle weights for the spin model. a, b, c is the
spin on the bottom, left, right. We also list p = 0 unitary-only case
for comparison.

For us, the relevant graphs are of the following form:

(24)

We denote the number of , , as x, y, z. These (x + y + z)
lines are commuting domain walls: Each domain wall is a
transposition and these transpositions have no common ele-
ments thus commuting to each other. An example satisfying
this graph is the following:

b−1a = (1, 2) · · · (2z − 1, 2z)(2z + 1, 2z + 2) · · ·
× (2x + 2z − 1, 2x + 2z),

c−1a = (1, 2) · · · (2z − 1, 2z)(2x + 2z + 1, 2x + 2z + 2) · · ·
× (2x + 2y + 2z − 1, 2x + 2y + 2z). (25)

In this case, there are 2z possibilities for τ [the variable
integrated out in Eq. (23)]: τ−1a is the product of some in-
volutions choosing from (1,2), (3,4), · · · , (2z − 1, 2z). Under
such restriction,

Moeb(τ−1a) = (−1)|τ
−1a|. (26)

Moreover, notice that na − nτ,a = na − nτ−1a,a is the number
of points invariant under a but change under τ−1a, which is
the number of fixed points of a restricting on the nonfixed
part of τ−1a. For example, if τ−1a = (1, 2)(3)(4) ∈ S4, then
na − nτ,a = n(a|{1,2}) which is just δa(1),1 + δa(2),2. Hence, in
the example Eq. (25),

Kp(a, b, c) = 1

dx+y+2z

z∏
i=1

[1 − (1 − p)n(a|{2i−1,2i} )]. (27)

To summarize:
(1) There is a prefactor (1 − p)Q−na , which is the

symmetry-breaking effect discussed above.
(2) At the leading order of 1/d , commuting domain walls

are effectively independent of each other.
(3) Each or contributes 1/d .
(4) If p �= 0, then horizontal domain walls could exist,

with an extra penalty 1−(1−p)∗
d .

As a sanity check, the contribution of vanishes if p = 0,
so horizontal domain walls are indeed forbidden in the p = 0
unitary-only case. In Table I, we list some examples of the
triangle weights.

(a) (b)

(c) (d)

FIG. 3. Domain wall configurations for I2 at (a, b) small t and
(c), (d) large t . Thick lines on the upper boundary indicate fixed
boundary conditions. Yellow spins are id = (1)(2); blue spins are
(12). Domain walls in (c), (d) are horizontally directed. Here Q = 2
and there is only one domain wall.

B. Qualitative analysis

The above triangle weights provide us the following phys-
ical picture of the stat-mech model.

(1) Each domain wall contributes at least a 1/d factor,
making the spins try to parallel with each other (“ferromag-
netic” interaction).

(2) p �= 0 introduces a factor (1 − p)Q−na , making the
spins try to parallel to id (“magnetic” field).

One immediately notices that the physics is very simi-
lar to those in the ferromagnetic Ising model with magnetic
field. Indeed, for Q = 2, the triangle weights in Table I
can be equivalently summarized in terms of energies [up to
O(1/d )] as

E = − log d
∑
〈i j〉

(δσiσ j − 1) − log
1

1 − p

∑
i

(δσi − 1), (28)

which is exactly the Ising model with a magnetic field on a
(rotated) 2D square lattice.

Now let us proceed to calculate the Renyi-2 entropy I2.
Using Eq. (15), we find

I2 = −2
∂

∂Q
(logZba + logZab − logZbb)

≈ − logZba − logZab + logZbb

∣∣∣
Q=2

. (29)

Here, recall that a = id and b = (12)(34) · · · (Q − 1, Q);
Zg1g2 denotes the partition function with spins above A/B
regions fixed to g1/g2, respectively. The second line is due
to the approximate independence discussed in Sec. III A:
Q/2 domain walls contribute independently, yielding Z (Q) ≈
Z (Q = 2)Q/2 [see discussions near Eqs. (32) and (33) for
more details].

Due to the nearest-neighbor ferromagnetic interaction,
spins near the upper boundary tend to be parallel to the fixed
boundary conditions. However, spins deep in the bulk tend
to be polarized to id due to the polarization field. Therefore,
which configurations dominate depends on the time t ; see
Fig. 3.

More precisely, for small t , dominant configurations should
have no domain walls or vertical domain walls only (due
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FIG. 4. Domain wall configuration for I2 at small t . Blue spins
are (12) or (34); green spins are (12)(34); yellow spins are id . Two
regions are separated by a domain wall. The first figure shows a con-
figuration with Q = 4; it has two commuting domain walls. It can be
decomposed as a product of two single domain wall configurations.
The equation is valid even considering the (1 − p)Q−n factors.

to the energy penalty 1/d for horizontal domain walls); see
Fig. 3(a) for Zbb and Fig. 3(b) for Zba. When t is large, the
above configurations are not economical anymore. Instead, we
need to consider domain walls separating the upper and lower
boundaries; see Figs. 3(c) and 3(d).

C. Small t

In this subsection, we perform the calculation for small
t in detail. We will work out general Q to further explain
the second line of Eq. (29). We take |A| = |B| = L/2 for
convenience.

First, consider the second term Zbb. There is only one
configuration at the lowest order of 1/d: All spins should be
equal to b. The number of fixed points nb = 0; the number of
triangles equals Lt

2 . Therefore, the partition function is

Zbb ≈ (1 − p)
QLt

2 . (30)

This also gives the Rényi-2 entropy of the whole system by
Eq. (16):

S2(t ) = −2
∂

∂Q
logZbb ≈

(
L log

1

1 − p

)
t . (31)

Next, consider the first term Zba, there must be Q/2 com-
muting domain walls starting from the intersection point and
propagating vertically to the bottom. However, this time spins
could have different numbers of fixed points. For example, in
the middle figure of Fig. 4 we show a configuration for Q = 2.
Spins on the right side of the domain wall are equal to id ,
hence they contribute 1 instead of (1 − p)2. Fortunately, if
a configuration only contains Q/2 commuting domain walls,
then one can decompose the configuration as a superposition
of Q/2 configurations, each containing only one type of do-
main wall. The number of unfixed points exactly equals the
summation of unfixed points for each:

Q − na =
Q/2∑

i

(2 − ñai ). (32)

Here, we decompose a ∈ SQ as the product of ai, where ai ∈
S(i)

2 = {id, (2i + 1, 2i + 2)}. ñai is the number of fixed points
of ai defined in that S(i)

2 (so ñid = 2); see Fig. 4 for illustration.
With Eq. (32) and the discussions in Sec. III A in mind, we
have

Zba(Q) ≈ [Zba(Q = 2)]Q/2. (33)

Therefore, the calculation reduces to the case with only one
domain wall as in Eq. (29).

To calculate the entropic contribution, let us represent a
domain wall by a vector x = (x1, x2, · · · , xt ), where xi = ±1
if the ith step turns right or left (from our point of view). Then
the number of (1 − p)2 factors equals

Lt

4
− x1

2
+ x1 + x2

2
+ · · · + x1 + x2 + · · · + xt

2

= Lt

4
+

t∑
i=1

(t + 1 − i)xi

2
. (34)

Therefore,

Zab(Q = 2) = Zba(Q = 2)

≈ 1

dt

∑
x

(1 − p)
Lt
2 −∑t

i=1(t+1−i)xi

= 2t

dt
(1 − p)

Lt
2

t∏
i=1

(1 − p)−i + (1 − p)i

2
. (35)

Combining Eqs. (30) and (35), the Rényi-2 mutual informa-
tion is given by

I2(A : B) ≈
(

2 log
d

2

)
t − 2

t∑
i=1

log
(1 − p)−i + (1 − p)i

2
.

(36)

We note that, all extensive (proportional to L) terms in
Eqs. (30) and (35) exactly cancel with each other, leaving us
an L independent expression. As a side note, the first term in
this expression is not valid if d = 2, since d is not very large.
In this case, we can replace 1/d with the exact vertical domain
wall contribution d

d2+1 :(
2 log

d

2

)
t →

(
2 log

d2 + 1

2d

)
t . (37)

D. Large t

When t is large enough, we expect the system to be almost
maximally mixed:

ρ(t → ∞) = IL

dL
. (38)

Various partition functions in Eqs. (15) and (29) can be easily
calculated in this limit. For example,

Zba =
[

trA

(
trB

IL

dL

)2
]α

= 1

d |A|α = 1

d |A|Q/2
. (39)

Similarly,

Zab = 1

d |B|Q/2
, Zbb = 1

dLQ/2
. (40)

Therefore, I2 vanishes as expected.
From the stat-mech model point of view, as discussed

above, we need to consider domain walls separating the upper
and lower boundaries as in Figs. 3(c) and 3(d). Interestingly,
the sum over these fluctuating domain walls can be analyti-
cally carried out, under the following two restrictions:
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(1) the number of domain walls is minimal (no “bubbles”);
(2) domain walls are horizontally directed: Projecting hor-

izontally, the domain wall can never overlap.
Figures 3(c) and 3(d) are examples of configurations sat-

isfying these restrictions. The reason for imposing these
restrictions is to keep the exponent of 1/d minimal: Extra
horizontal segments and bubbles will contribute more 1/d
factors.

The method for the summation is iterational (over t or L)
and can be found in the Appendix B 2. Here we just mention
that, as a sanity check, the partition functions indeed match
the result with the maximally mixed final state.

E. Thermalization timescale

Comparing Eqs. (30) and (35) with the infinite t result
Eq. (39), we see there is a competition between 1/d and
(1 − p)t . Equating them yields the timescale

t∗ = O

(
log d

− log(1 − p)

)
. (41)

It is natural to interpret this timescale as the timescale
of thermalization (in our case, trivialization). Below this
timescale, vertical domain walls dominate, and the total
system entropy Eq. (31) still grows. After this timescale, hori-
zontal domain walls dominate, total system entropy saturates,
and mutual information vanishes.

We emphasize that there is no L (system size) dependence
in t∗. From the stat-mech perspective, this system-size-
independent thermalization timescale reflects the fact that
the fixed boundary condition has only short-range effects on
the bulk spins. This is because the domain wall contribution
∼ 1

dL is boundary-like, but the polarization field contribution
∼(1 − p)Lt is extensive. Equating them always give us a fi-
nite, L-independent timescale as in Eq. (41). Moreover, as
discussed near Eq. (28), the physics resembles the 2D Ising
model with a magnetic field. In this setting, the Gibbs state is
well-known to be unique and short-range correlated for any
nonzero magnetic field. The same is true for more general
models with a polarizing field like the Potts model [30,31],
which are relevant for higher Q.

IV. AREA LAW

The system-size-independent growth rate in Eq. (36) can
be regarded as an open system analog of the small incremen-
tal theorem [32,33]. It can be rigorously proven for the von
Neumann mutual information under general local quantum
channel dynamics.

Let us consider I (A : B) for any bipartite system AB.
There are two possibilities for each local quantum channels
�. If a local channel � acts inside A or B, then I (�(A) :
�(B)) � I (A : B) according to the data processing inequal-
ity/monotonicity of mutual information. If a local channel �

acts on the boundary between A and B, then I (A : B) can only
increase a constant. Indeed, denote the qubits at the boundary
as a and b (a ∈ A and b ∈ B), then after the action, we have

S′(A) � S′(A\a) + S′(a) = S(A\a) + S′(a)

� S(A) + S(a) + S′(a), (42)

FIG. 5. The probabilistic trace setup. Trace channels (red strips)
are applied with probability p after random Haar or Clifford
unitaries.

since � does not touch A\a (the same for B), and

S′(AB) � S(AB), (43)

since � is unital. Therefore,

I ′(A : B) � S(a) + S′(a) + S(b) + S′(b) + I (A : B). (44)

Since there is only one boundary unitary in each time
slice, I (A : B) grows at most linearly. The maximal slope is
O(log d ), which matches Eq. (36).

We see that this almost-linear growth is valid not only at
the level of trajectory average but also for each trajectory.

Moreover, recall that we have a system-size-independent
timescale Eq. (41) after which the system trivializes and the
mutual information vanishes. Combined with the system-size-
independent growth rate, it leads us to an area law: The
peak of mutual information must be bounded by the size of
the bipartition boundary (hence “area law”) instead of any
volume.

V. PROBABILISTIC TRACE SETUP

A depolarizing channel �(ρ) = (1 − p)ρ + 1
d2 I2 can be

regarded as a probabilistic mixture of an identity channel ρ �→
ρ and a “trace channel” ρ �→ 1

d2 I2. Namely, with probability
p, the two qubits undergo some noise and become completely
trivialized; with probability (1 − p), nothing happens. In re-
ality, we usually do not know whether the noise happens or
not, so we need to use the depolarizing channel to describe
the noisy process.

However, the scenario of knowing whether the noise hap-
pens has its advantage. Namely, if we further restrict all
unitaries to Clifford unitaries, the whole quantum process
will be classically simulatable: Since both trace channels and
Clifford unitaries send stabilizer states to stabilizer states, and
the initial state (pure product state of |0〉) is a stabilizer state,
we can effectively simulate the whole quantum process using
the stabilizer formalism [34].

A. Setup

The “probabilistic trace setup” is shown in Fig. 5. We
still have independent random unitaries U represented as blue
blocks. On top of each unitary, we apply with probability p
a trace channel �T (ρ) = tr(ρ)

d2 I2. Conceptually, this setup also
capture the dynamics of open quantum systems with strength
O(p) depolarization.
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TABLE II. Triangle weights Jp for the statistical model. Here a
is the spin of the downward vertex.

Note that, different from the original random channel
setup, here each quantum trajectory/circuit is realized by fix-
ing the unitaries as well as the presence/nonpresence of each
trace channel. Individual trajectory ρ(t ) does not contains p.
For each trajectory ρ(t ), we still consider its bipartite mutual
information I2(t ). Similar to Eq. (3), we again focus on the
average over circuit realizations. This time we need to average
over both unitaries and the presence/nonpresence of traces:

E[I2(ρt )] = EUET [I2(ρt )]. (45)

The parameter p appears only at the level of averaging.
A trajectory ρ (1) in the previous random channel setup

can be regarded as an averaging over trajectories ρ (2) in the
probabilistic trace setup (fix all the unitaries and only average
over the appearance of traces):

ρ (1) = ET (ρ (2) ). (46)

However, this does not imply any equation between
E[I2(ρ (1) )] [the quantity considered in Eq. (3)] and E[I2(ρ (2) )]
(the quantity to be considered in the new setting), since I2 is
not a linear function and does not commute with ET . Never-
theless, for any convex function M, we have

EUM(ρ (1) ) � EUET [M(ρ (2) )] = E[M(ρ (2) )]. (47)

B. Stat-mech mapping and Area law

The new setup can also be mapped into a stat-mech model,
see Appendix C 1 for details. Here, we just list some relevant
triangle weights in Table II. In this subsection, the unitaries
are chosen from the Haar ensemble.

We see that the physical effects of the noise are still similar
as before:

(1) Polarization field. If p > 0, then the bottom spins are
more probable to be id , due to a relative weight of 1 versus
(1 − p).

(2) Horizontal domain wall. If p > 0, then domain walls
can propagate horizontally. This is only possible when the
bottom spin equals id , again with an extra penalty of 1/d and
a factor (here it is p) to forbid horizontal domain walls in the
p = 0 case.

Up to O(1/d ), the triangle weights in Table II can be
equivalently summarized as

E = − log d
∑
〈i j〉

(δσiσ j − 1) − log
1

1 − p

∑
i

(δσi − 1), (48)

which is the Q!-state Potts model with magnetic field on a
(rotated) two-dimensional square lattice. For Q = 2 it goes
back to the Ising model Eq. (28). Moreover, for Q = 2, if we

(a) (b)

FIG. 6. Simulated state’s von-Neumann entropy SvN(t ) for vari-
ous different (a) system size L, (b) onsite dimension d .

define p′ by

(1 − p′)2 = 1 − p, (49)

then the weights have the same form as in the previous setup
Eq. (27) (in terms of p′) even up to the order of O(1/d2).

Therefore, two models should share very similar prop-
erties. In particular, the system should thermalize in a
system-size-independent time, and the mutual information
peak value should obey an area law.

However, the rigorous analytical treatment in this case is
more complicated. If Q > 2, then triangle weights no longer
factorize as Eq. (27). This means interactions between replicas
are no longer negligible. For example, denote a = (1, 2)(3, 4),
b = (1, 2), then

Jp(id, a, a) = p

d4
�= Jp(id, b, b)Jp(id, b, b) = p2

d4

�= Jp(b, a, a)Jp(b, a, a) = 0. (50)

As another example of the difference, the counterpart of
Eq. (30) will be (1 − p)Lt/2 for any Q.

C. Clifford numerics

As discussed at the beginning of this section, the main
motivation for considering this setting is the ability of scalable
classical simulation if the unitaries are Clifford. In this sub-
section, we discuss the results of Clifford numerics. Besides
the mutual information, we also simulated the entanglement
negativity; see the Appendix for details.

First, we comment on some properties of stabilizer states.
(1) Stabilizer states (pure or mixed) always have flat en-

tanglement spectra, so the Rényi entropy does not depend
on the index n. The statement also holds for Rényi mutual
information and negativity.

(2) The entanglement structure of stabilizer states is very
clear due to a structure theorem [35]: (1) operator entangle-
ment entropy equals the mutual information, which counts
the amount of both classical and quantum correlations; (2)
negativity counts the quantum part of the correlations.

In Figs. 6(a) and 6(b), we show the simulation for the total
system entropy S(t ). We see that it grows and saturates to a
volume law value in O(1) time and takes the form

S(t ) ≈ (L log d ) f (p, t ). (51)

For late time, f (p, t ) curves toward its limiting value
f (p,∞) = 1, so that S(t ) converges to its limiting value
L log d , which is the von Neumann entropy of a maximally
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(a) (b) (c)

FIG. 7. (a) Mutual information for the p = 0 unitary-only case. (b) Mutual information for the nonzero p values. (c) Logarithmic
entanglement negativity between A and B for various nonzero p values.

mixed state. The log d dependence of the slope is different
from the one predicted in Eq. (31) for the previous setup. We
believe it is a subtle difference between two architectures, see
Eqs. (D4) and (D6) for the difference in a 0-dimensional toy
model.

In Fig. 7 we show the simulated results for bipartite en-
tanglement measures (mutual information and log-negativity).
As a comparison and benchmark, for p = 0 unitary-only case
Fig. 7(a), the mutual information grows and saturates to a
volume law (proportional to |A|) plateau. Figure 7(b) shows
how I (A, B) grows and reaches some peak value and then
quickly decays to zero if p �= 0. Figure 7(c) is the result for
the log-negativity. It behaves similarly as I (A : B), indicating
that the classical and the quantum parts of the correlation have
qualitatively similar behavior.

To verify the area law, in Fig. 8, we show the peak values of
mutual information and negativity for different p and subsys-
tem sizes |A|. It is clear that the peaks for both quantities are
|A|-independent and hence obey an area law. In fact, the en-
tire dynamics for two different partitions |A| = L/4, L/2 are
nearly identical, which follow a profile as curves in Figs. 7(b)
and 7(c).

We note that area law in the probabilistic trace setup im-
plies area law in the previous random channel setup for any
convex entanglement measure M due to Eq. (47). While
neither the mutual information nor the log-negativity (what we
plotted) is convex, the negativity itself is convex. Moreover,
for stabilizer states, the structure theorem [35] implies that
the log-negativity equals the squashed entanglement [36], the
latter being a nice convex entanglement measure for general
states.

(a) (b)

FIG. 8. (a) Maximum mutual information and (b) maximum log-
negativity during the dynamics for various p and |A|. L = 256 in
simulations above.

VI. DISCUSSIONS

Using both an analytic mapping to a spin model and large-
scale Clifford simulations, we showed that systems evolving
under random unitaries and depolarization channels thermal-
ize at an L-independent timescale Eq. (41). Correspondingly,
various entanglement measures have peaks obeying area laws.
This implies, in addition to Ref. [9], that matrix product oper-
ator simulations of such noisy 1D dynamics are in principle
efficient, although in practice the required bond dimension
may still be large for small noise strength p. This indicates
that noisy random circuit sampling is not likely to provide a
quantum computational advantage.

An immediate question is whether the area law still holds
in higher dimensions. In Appendix C 3, we also consider a
2D system evolving under random Clifford gates and depo-
larization, and the numerical results still suggest the area law.
A rigorous analytical treatment in higher dimensions is worth
exploring.

The L-independent timescale originates from the exten-
siveness of the depolarization. In contrast, let us consider a
model where depolarizations only apply at the boundary. In
this situation, we can still perform similar mapping, resulting
in a classical spin model. In the spin model, triangle weights
in the bulk are the same as the p = 0 unitary-only case and
only vertical domain walls are allowed. The only difference
happens at the boundary, where horizontal domain walls are
allowed. To reach thermalization such that spins deep in
the bulk are id , domain walls should look like Fig. 9(a).
The timescale is at least O(L) to allow such configurations.
This indicates that the thermalization timescale will be O(L)
for the boundary-only depolarization model. In Fig. 9(b),
we show the numerical results for a Clifford random circuit
with boundary-only trace channels applied definitely (p = 1).
The peak value clearly obeys a volume law, as verified in
Fig. 9(c).

The case of boundary-only depolarization may be re-
lated to a contiguous subsystem of a closed system evolving
under random unitaries. Effectively, this subsystem is cou-
pled to its “environment” (the complement) through its
boundary, which acts as a boundary-only depolarization.
Reference [37] found that the bipartite operator entangle-
ment of such a subsystem exhibits a volume law peak
during the dynamics, consistent with our analysis and
numerics.
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(a) (b) (c)

FIG. 9. Analysis and numerics for boundary-only depolarization setting. (a) Domain wall configurations of the corresponding spin model.
(b) Dynamics of the mutual information for various |A| in the Clifford version. (c) Linear regression between the peak value and |A|. L = 128
in simulations above.
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APPENDIX A: MORE ON THE STAT-MECH MODEL

1. Correlation and entanglement measures

In the main text, we considered the Rényi-2 mutual
information. We could also consider the Rényi-n mutual in-
formation:

In(A : B) = Sn,A + Sn,B − Sn,AB

= 1

1 − n

(
log trρn

A − log trρn
B + log trρn

AB

)
, (A1)

where Sn,∗ is the Rényi-n entropy of the reduced density
matrices ρ∗ where ∗ stands for (sub)systems A, B, and AB.

The operator entanglement entropy for a (pure or mixed)
state is the entanglement entropy for a corresponding normal-
ized operator state. More precisely, a density matrix ρ on a
bipartite system AB can be regarded as a pure state |ρ〉 in
HAB ⊗ H∗

AB, where H∗
AB is the dual space of HAB. This state in

general should be normalized by ‖ρ‖2 = 〈ρ|ρ〉 = trρ2. The
bipartite operator entanglement entropy is then

Sop
n,A,B = 1

1 − n
log t̃rA

(
t̃rB

|ρ〉 〈ρ|
‖ρ‖2

)n

= 1

1 − n
{log t̃rA [̃trB(|ρ〉 〈ρ|)]n − log(trρ2)n}. (A2)

Here, we use t̃r for traces of density matrices on the doubled
Hilbert space HAB ⊗ H∗

AB.
The operator entanglement entropy measures the com-

plexity to represent the density matrix as a matrix prod-
uct operator (MPO), similar to the usual entanglement
entropy measuring the complexity to represent the wave-
function as a matrix product state (MPS). Like mutual
information, it also measures both classical and quantum
correlations.

The entanglement negativity is a useful quantity to mea-
sure the quantum entanglement for a bipartite system. The

logarithmic negativity is defined as

NA,B = log
∥∥ρ
A

∥∥
1, (A3)

where ρ
A is the partial transpose on B, ‖ · ‖1 is the trace
norm—sum of all singular values. Its Rényi generalization is
defined as

Nn,A,B = − log
‖ρ
A‖n

trρn
= − log tr[(ρ
A )n] + log trρn, (A4)

where ‖ · ‖1 is the Ln norm. The second equation holds if n is
an even integer.

2. More on boundary conditions

For In(A : B), if the replica number α = 1, then the first
term amounts to fixing spins above B region to a = idn and
fixing spins above A region to b = (1, 2, · · · , n); the sec-
ond term is similar; the third term amounts to fixing spins
to b everywhere. With α � 2, we need to repeat the above
pattern α times, so a = idQ, b = (1, 2, · · · , n)(n + 1, n +
2, · · · , 2n) · · · (· · · , Q), here Q = nα. At the end, Eq. (A1)
becomes

In(A : B) = n

1 − n

∂

∂Q
(logZba + logZab − logZbb), (A5)

where the subscripts indicate different boundary conditions in
the partition function Z .

For Sop
n,A,B and α = 1, the first term amounts to fix-

ing spins above A region to c = (2, 3)(4, 5) · · · (2n, 1) and
fixing spins above B region to d = (1, 2)(3, 4) · · · (2n −
1, 2n), the second term amounts to fixing spins to d every-
where. With α � 2, c becomes (2, 3)(4, 5) · · · (2n, 1)(2n +
2, 2n + 3) · · · (4n, 2n + 1) · · · (Q, Q − 2n + 1), d becomes
(1, 2)(3, 4) · · · (Q − 1, Q), here Q = 2nα. Equation (A2) be-
comes

Sop
n,A,B = 2n

1 − n

∂

∂Q
(logZcd − logZdd ). (A6)

For Nn,A,B and α = 1, the first term amounts to fix-
ing spins above A to e = (n, n − 1 · · · , 1) and fixing
spins above B to b = (1, 2, · · · , n), the second term
amounts to fixing spins to b everywhere. With α � 2, e
becomes (n, n − 1 · · · , 1)(2n, 2n − 1 · · · , n + 1) · · · (Q, Q −
1 · · · , Q − n + 1), b is the same as in In(A : B). Here Q = nα.
Equation (A2) becomes

Nn,A,B = n
∂

∂Q
(logZeb − logZbb). (A7)
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(a) (b)

FIG. 10. Domain wall configuration for Sop at small t (Q = 4 for
illustration). The thick line on the upper boundary indicates the fixed
boundary condition. In panel (a), all spins are b = (1 2)(3 4). In panel
(b), spins can be different, hence the domain wall. In this case, all
spins have the same number of fixed points (=0), so they are colored
with the same color.

APPENDIX B: MORE LARGE-d ANALYSIS

1. small t calculation of Sop
2

The calculation of Sop
2 is actually easier than the mutual

information.
For the first term Zcd in Eq. (A6), since c−1d =

(1, 3)(2, 4) · · · , we know there must be Q/2 commuting do-
main walls starting from the intersection point. To get the
lowest order in 1/d , the domain walls need to propagate
vertically to the bottom (because horizontal domain walls
cost some extra factors of 1/d2); see Fig. 10(b). Therefore
each domain wall contributes a weight 1/dt . Each domain
wall also has an entropic contribution 2t : It can go left or
right at each step. Moreover, it is easy to check that all
spins have no fixed points no matter how these domain
walls locate, hence each triangle also contributes a (1 − p)Q.
Therefore,

Zcd ≈ (1 − p)
QLt

2

(
2t

dt

) Q
2

. (B1)

The second term Zdd is similar to Eq. (30) in the main text.
There is only one configuration with the lowest order of 1/d:
All spins should be equal to d [see Fig. 10(a)]. The number of
fixed points nd = 0, the number of triangles is Lt

2 , so:

Zdd ≈ (1 − p)
QLt

2 . (B2)

Combining it with Eq. (B1), we get:

Sop
2,A,B(t ) = −4

∂

∂Q
(logZcd − logZdd ) ≈

(
2 log

d

2

)
t . (B3)

2. Large t calculation

In this subsection, we show that the summing over horizon-
tal domain wall configurations can be exactly carried out in
the statistical mechanics model, and the results match with the
limits at Eq. (38). We eventually need to calculate the partition
functions for arbitrary layer numbers. However, the logic in
Eqs. (32) and (33) still applies here, so we only need to focus
on Q = 2.

As discussed in the main text, we sum over horizontally
directed configurations. The relevant graphical rules are sum-
marized as follows:

FIG. 11. Iteration relations used in the calculation. Each rect-
angular represents a summation of some configurations. Dark blue
means those spins are guaranteed to be (1 2)—in other words, the
domain wall is at least 1 step away from the upper boundary; light
blue means the domain wall can sometimes attached to the upper
boundary.

(1) vertical-horizontal segment contributes 1/d (bound-
ary contribution);

(2) horizontal-horizontal segment contributes 1−(1−p)2

d2

(boundary contribution);
(3) each triangle above the domain wall contributes (1 −

p)2 (area contribution).
Let us first consider the “hanging” configurations such

that the distance between endpoints is n (the domain wall
is necessarily vertical at the endpoints). Denote the sum-
mation of these configurations as un. As shown in Fig. 11,
the domain wall can either go right at the first step, or
firstly go down then return to the boundary at position
k (1 � k � n − 1) then go right one more step, or firstly
go down then return for the first time at position n.
Therefore:

un = 1 − (1 − p)2

d2
un−1

+
n−1∑
k=1

(1 − p)2k 1

d
uk−1

1

d

1 − (1 − p)2

d2
un−1−k

+ (1 − p)2n 1

d
un−1

1

d
. (B4)

With this iteration relation and the initial condition u0 = 1,
one can easily verify that

un = 1

d2n
. (B5)

To calculate Zba, denote vn to be the summation of con-
figurations where domain walls’ right endpoints are on the
right boundary (n is the distance between the left endpoint
and the right boundary). Due to the (left and right) bound-
ary conditions, there are actually two types of v, depending
on whether the total number of layers is even or odd. We
use v and v′ to distinguish them. Similarly to Eq. (B4), we
have

vn = 1 − (1 − p)2

d2
vn−1

+
n−1∑
k=1

(1 − p)2k 1

d
uk−1

1

d

1 − (1 − p)2

d2
vn−1−k

+ (1 − p)2n 1

d
v′

n, (B6)
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k
(a)

(b)

FIG. 12. Relations used to calculated Zbb. Blue spins are (1 2)
and yellow spins are id = (1)(2).

and

v′
n = 1 − (1 − p)2

d2
v′

n−1

+
n−1∑
k=1

(1 − p)2k 1

d
uk−1

1

d

1 − (1 − p)2

d2
v′

n−1−k

+ (1 − p)2n 1

d
vn−1. (B7)

With this iteration relation and the initial condition v′
0 = 1,

one can verify that

vn = 1

d2n+1
, v′

n = 1

d2n
. (B8)

(Less rigorously, one can regard this result as the limit of
Eq. (B4) by taking the right endpoint to the right boundary.)
Therefore,

Zba = 1

d |A| . (B9)

It is consistent with Eq. (39). To calculate Zbb, denote w to
be the summation of configurations where domain walls are
attached to the upper boundary for at least one segment; see
Fig. 12(a). By classifying the position of the first attachment
point, we have

w =
L/2∑
k=0

(1 − p)2k 1

d
v′

k

1 − (1 − p)2

d2
vL/2−k−2

= 1 − (1 − p)L

dL
. (B10)

Noticing Fig. 12(b), we have

Zbb =
∞∑

k=0

(1 − p)kLw = 1

dL
. (B11)

Alternatively, one can regard this result as the limit n → L/2
in Eq. (B4) by taking both endpoints to the boundaries. The
result is consistent with Eq. (40).

3. Area law

The argument for area law works as follows: Due to the at
most linear growth, the mutual information I (A : B) at time
t∗ can at most be O(t∗). After t∗ timescale, the system is
trivialized and we anticipate that I (A : B) is at most O(1).
Therefore, the maximal value for I (A : B) can at most be
O(t∗). However, as shown in the main text, three terms S(A),
S(B), S(AB) appeared in I (A : B) are all extensive: They are
O(L) at any time. Therefore, I (A : B)|t>t∗ < O(1) requires
a delicate cancellation. In the following, we argue that this
cancellation is quite natural.

For simplicity we set |A| = |B| = L/2. We anticipate

S(AB)(t ) − S(AB)|t=∞ = −L f1(L, t ), (B12)

S(A)(t ) − S(A)|t=∞ = −L

2
f2(L, t ) + f3(L, t ). (B13)

Here, fi(L, t ) are almost L independent; f3(L, t ) are bounded
by some O(1) value if t > O(t∗). The absence of extra term
in the first equation is due to the translational invariance. The
fact of O(1) thermalization timescale means

fi(L, t ) ∼ Cie
−t/ti , (B14)

where Ci ∈ R and ti ∈ R>0 are some O(1) value [t1 = O(t∗)].
By the small incremental result and nonnegativity of mutual
information, we know rigorously

−O(1) < [ f1(L, t ) − f2(L, t )]L < C3t − O(1) for t > O(t∗).

(B15)

A feature of the function g(t ) = C1e−t/t1 − C2e−t/t2 is that
it has at most one stationary point t∗ in [0,+∞), which is by
definition L independent (just ignore t∗ if it does not exist).
g(t ) monotonically approach 0 after t∗:

|g(t )| � |g(t∗)| � max{|g(t∗)|, |g(t∗)|} for t > O(t∗);

(B16)

hence, for t > O(max{t∗, t∗}):

|g(t )|L � max{|g(t∗)|L, |g(t∗)|L}
� max{|C3t∗ − O(1)|, |C3t∗ − O(1)|, |O(1)|} = O(1).

(B17)

The last equation is because t∗ and t∗ are L-independent. Due
to Eq. (B14) it is natural to expect that f2(L, t ) − f1(L, t )
satisfies similar property as Eq. (B16), perhaps with some
extra constant. Thus, I (A : B) < O(1) for t larger than some
L-independent value.

The area law can also be understood assuming horizontally
directed domain walls are dominant when t > O(t∗). Gener-
alizing Eq. (B10) to finite time, we have

un(t ) = p

d2
un−1(t ) + p

d4

n−1∑
k=1

(1 − p)kuk−1(t − 1)un−1−k (t )

+ (1 − p)n

d2
un−1(t − 1). (B18)

Here, un(t ) is the summation of “hanging” configurations,
under the restriction that the depth of the statistical mechanics
system is t [with t < ∞, the domain wall can disappear at
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the lower boundary and then reappear at a different point;
to clarify, un(t ) is actually a decreasing function of t due to
the decrease of domain wall length although there are more
configurations at larger t]. The boundary conditions are

un�0(t = 0) = d2, u0(t � 1) = 1. (B19)

Although we do not have an analytical expression for un(t ),
the following statement can be numerically checked for t >

O(t∗):

u0(t )uL/2(t )

uL/4(t )2
< O(1), (B20)

and this implies the area law.

APPENDIX C: MORE ON THE PROBABILISTIC
TRACE SETUP

1. Stat-mech model

This setup can be mapped to a statistical mechanics model
similarly.

First,

(C1)
Hence, we have

(C2)
Here the orange blocks are Haar random unitaries U and U †;
we use dashed lines for trace because we may or may not
apply it; WQ() is the Weingarten function.

Following similar calculations toward Eq. (12), we obtain
the spin model on the honeycomb lattice with the following
weights:∏

v

[ p

d2Q
δg1δg2 + (1 − p)WQ

(
g−1

1 g2
)]∏

h

dQ−|g−1
1 g2|. (C3)

See comments around Eq. (12) for notations.

Then we again integrate over the upper spins for each
vertical bonds and obtain the triangle weights:

(C4)
Here J0 is exactly the triangle weight in the unitary-only case
(p = 0):

J0(a, b, c) =
∑
τ∈SQ

d2Q−|τ−1b|−|τ−1c|W (τ−1a). (C5)

2. Small incremental

In this setting, we can also prove that the mutual informa-
tion I (A : B) grows at most linearly for each trajectory. There
are three types of effects:

(1) For a trace channel, no matter acting inside A (or
B) or on the boundary, I (A : B) cannot increase, due to the
monotonicity of mutual information.

(2) For a unitary acting inside A or B, I (A : B) does not
change.

(3) For a unitary acting on the boundary between A and B,
I (A : B) can only increase a constant:

I ′(A : B)

= S′(A) + S′(B) − S′(AB)

� S′(A\a) + S′(a) + S′(B\b) + S′(b) − S′(AB)

= S(A\a) + S′(a) + S(B\b) + S′(b) − S(AB)

� S(A) + S(a) + S′(a) + S(B) + S(b) + S′(b) − S(AB)

= S(a) + S′(a) + S(b) + S′(b) + I (A : B). (C6)

Here two inequalities are due to the triangle inequality.
Since there is only one boundary unitary in each time step,

I (A : B) at most grows linearly.

3. Numerics in two dimensions

Besides the numerical results for 1D systems discussed in
the main text, we also performed simulations of a class of
(2+1)D circuits.

The circuit structure we simulated is displayed in Fig. 13(a,
left): At each even (odd) time step, qubits in each blue
(yellow) square are first acted by a random 4-qubit Clifford
unitary gate with a probability 0.1, then acted by a 4-qubit
trace channel with a probability 0.1p. The prefactors 0.1 that
appear in both probabilities are meant to “slow down” the
dynamics so that we can collect more data before the system
fully thermalizes into a maximally mixed state. In each time
step, unitary gates and measurements applied within different
squares are independent of each other. The geometry of the
system and the bipartition is shown in Fig. 13(a, right): The
periodic boundary condition is taken in both spatial directions,
while the region A and the region B = Ā are separated by a
half-cut in the x-direction.
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FIG. 13. (a, left) An illustration of the circuit structure and (a,
right) the arrangement of A and B. See the text in Appendix C 3 for
a detailed description. (b) Mutual information between A and B for
various different p and L.

Figure 13(b) shows the numerical results for the mutual
information between A and B, for various different L and p. It
is clear from the plot that I (A : B) scales linearly with the size
of the boundary separating A and B, which is proportional to
L. Hence, the area law still holds in this case (note that here
the area ∝ L).

APPENDIX D: ONE QUDIT TOY MODEL

We consider a toy model with only one qudit (with Hilbert
space dimension d). The purpose is to illustrate what to expect
in the replica calculation and large d expansion.

1. Random channel setup

At each step, we apply a random quantum channel �(·) =
(1 − p)U · U † + p

d I1 to the qudit. After t steps, the state
will be

(1 − p)tUρ0U
† + 1 − (1 − p)t

d
I1, (D1)

where U = Ut · · ·U2U1 is again a random unitary and ρ0 is a
pure state.

The Rényi-n entropy 1
1−n log tr(ρn) equals

1

1 − n
log

{[
(1 − p)t + 1 − (1 − p)t

d

]n

+ (d − 1)

[
1 − (1 − p)t

d

]n
}

. (D2)

The von Neumann entropy −tr(ρ log ρ) equals

−
[

(1 − p)t + 1 − (1 − p)t

d

]
log

[
(1 − p)t + 1 − (1 − p)t

d

]
− (d − 1)

1 − (1 − p)t

d
log

1 − (1 − p)t

d
. (D3)

Taking the large d limit, the Rényi-n entropy becomes

nt

1 − n
log(1 − p) + o(1), (D4)

and the von Neumann entropy becomes

[1 − (1 − p)t ] log d − (1 − p)t log(1 − p)t

− [1 − (1 − p)t ] log[1 − (1 − p)t ] + o(1). (D5)

We see that two limits n → 1 and d → ∞ do not com-
mute. Therefore, with large d expansion, one cannot calculate
the von Neumann entropy by replica trick [namely, taking
the limit of n → 1 in Eq. (D4)]. The best thing one can do
is the Rényi-n entropy with n > 1.

2. Probabilistic trace setup

We apply the trace with probability p at each step. Then
after t steps, the system remains is pure with probability (1 −
p)t and is maximally mixed with probability 1 − (1 − p)t .

The averaged Rényi-n entropy and von Neumann entropy
are equal (each trajectory is a stabilizer state):

1

1 − n
log tr(ρn) = [1 − (1 − p)t ] log d, (D6)

while the logarithmic of averaged partition function equals

1

1 − n
log tr(ρn) = 1

1 − n
log

[
(1 − p)t + 1 − (1 − p)t

dn−1

]
.

(D7)

Taking the large d limit, it becomes

t

1 − n
log(1 − p) + o(1). (D8)

We see that the averaging over trajectories and the logarithmic
do not commute.
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