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Entanglement structure in the volume-law phase of hybrid quantum automaton circuits
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We study entanglement fluctuations and quantum error correction in the weakly monitored volume-law
phase of quantum automaton circuits subject to repeated local measurements. We numerically observe that
the entanglement entropy exhibits strong fluctuation with the exponent close to the “growth exponent” of
the Kardar-Parisi-Zhang (KPZ) universality class, the same as other local random circuits studied previously.
We also investigate the dynamically generated quantum error correction code in the purification process and
show that this model has different contiguous code distances for two types of errors that exhibit similar
sublinear power-law scaling. We give an interpretation of these results by mapping them to various quantities in
a classical particle model. We demonstrate that the subleading correction term of the entanglement entropy and
the sublinear power-law scaling of the contiguous code distance in the volume-law phase are both the emergent
phenomena of the hybrid random dynamics. Finally, we show that this classical particle dynamics itself has a
type of error correction ability and can dynamically generate a classical linear code.
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I. INTRODUCTION

The past few years have witnessed a surge of interest
in monitored quantum dynamics [1–11]. These nonunitary
dynamics can exhibit many emergent phenomena which are
inaccessible in pure unitary dynamics or in systems in equi-
librium. It is by now well-known that in a generic interacting
system, repeated measurements can induce a continuous
phase transition from a highly entangled volume-law phase
to a disentangled area-law phase [1–7]. In addition, specific
types of measurements can stabilize various quantum phases,
including critical phases and ordered phases [8–12]. These
rapid developments significantly broaden our understanding
of nonequilibrium dynamics.

To understand these emergent phenomena in monitored
quantum dynamics, various nonunitary random circuits have
been constructed. This includes hybrid random Clifford cir-
cuits and hybrid random Haar circuits. For Clifford circuits,
there exists a very efficient algorithm in terms of the stabilizer
formalism which allows us to simulate nonunitary dynamics
for very large system sizes [3–5,13]. On the other hand, Haar
circuits provide an important analytical approach which can
map many quantum dynamics problems to statistical mechan-
ics models [1,6,7].

Recently, a new type of circuit called hybrid quantum
automaton (QA) circuit was constructed to investigate the
entanglement dynamics in the monitored quantum systems
[14]. This circuit is composed of QA unitaries and local
composite measurements. The detail of these two types of
gates will be explained later in the paper. Compared with
random Haar/Clifford circuits, QA circuits not only provide

*hankq@bc.edu
†chenaad@bc.edu

an efficient method for large-scale numerical simulation, but
also provide an analytical tool to understand the quantum dy-
namics. Due to the basis-preserving feature of QA circuits, the
entanglement dynamics can be interpreted in terms of a clas-
sical bit-string picture. Specifically, the second Rényi entropy
can be mapped to the first-passage problem in the bit-string
dynamics. Based on this mapping, it was further shown that
the measurement-induced entanglement phase transition in a
generic hybrid QA circuit belongs to the directed percolation
(DP) universality class [14]. At the critical point, the pref-
actor of the logarithmic entanglement is related to the local
persistent exponent in the DP universality class. By further
imposing symmetries in the dynamics, new critical points or
critical phases belonging to different universality classes can
also be identified [12].

Aside from the entanglement phase transition at the criti-
cal point, the volume-law phase itself also has an interesting
entanglement structure. Previous studies for one-dimensional
(1d) random Haar circuits suggested that the entanglement
entropy can be mapped to the free energy of the directed
polymer in a random environment (DPRE) which has fluctua-
tion belonging to the Kardar-Parisi-Zhang (KPZ) universality
class [1,15–17]. Such fluctuations lead to a subleading cor-
rection term scaling as L1/3 in the entanglement entropy in
the volume-law phase, with L being the system size. This
has also been numerically verified for 1d random Clifford
circuits [18,19]. Interestingly, it is found in 1d random Haar
circuits coupled with dephasing channels on the boundary that
the entanglement negativity in the steady state has a leading
L1/3 power-law scaling for 0 < p < pc [20]. Inspired by the
above works, in this paper we will study the entanglement
properties of the weakly monitored volume-law phase of 1d
hybrid QA circuits. In particular, we study the fluctuation of
the entanglement entropy and the quantum error correction
property of the volume-law phase. We numerically show that
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the entanglement entropy of a subsystem in both the early
time dynamics and the steady state in the hybrid Clifford
QA circuit also exhibit sample-to-sample fluctuations with the
same scaling behavior. In order to understand this behavior,
we construct a classical two-species particle model based on
the bit-string picture in which the particles undergo stochastic
random dynamics. However, the classical quantity in the two-
species particle model which corresponds to the second Rényi
entropy in the QA circuit is only numerically simulable for the
early time dynamics which exhibits t1/3 fluctuation in the time
direction in the weakly monitored phase. To solve this issue,
we propose two approximations, namely, the single-species
and the approximated two-species particle model, to estimate
the fluctuations more efficiently.

In addition, we study the purification dynamics of a max-
imally mixed initial state in the volume-law phase of hybrid
QA circuits [5]. We modify the aforementioned particle model
slightly and use this to give an interpretation of the en-
tanglement entropy of a subsystem in the presence of the
environment. Previously, it was shown that for purification dy-
namics, the hybrid quantum circuit can dynamically generate
a quantum error correcting code (QECC) [5,21,22]. The con-
tiguous code distance of the QECC, defined as the minimum
length of a contiguous subsystem that supports an uncor-
rectable error, was quantitatively investigated in the random
Clifford circuit and found to exhibit a power-law scaling Lγ

with γ ≈ 1/3 [19]. We analyze the quantum error-correcting
property of the hybrid QA circuit and explain it in terms of the
particle model. In particular, it has two types of contiguous
code distance for different errors occurring in the quantum
system. We show that both of them have a similar power-
law scaling with the exponent close to 1/3. In addition, we
show that both the sublinear power-law exponent in the code
distance and the fluctuation exponent in the entanglement
entropy are the results of hybrid random dynamics.

Interestingly, the stochastic classical particle model itself
has an error correction property, and can dynamically generate
a classical linear code (CLC). We study this random CLC by
analyzing the dynamics of the associated generator matrix and
numerically compute its contiguous code distance.

II. REVIEW OF THE HYBRID QA CIRCUIT AND
TWO-SPECIES PARTICLE MODEL

Reference [14] establishes the relationship between the
entanglement dynamics and the classical bit-string dynamics
in the hybrid QA circuit. The subsequent work of Ref. [12]
explicitly constructs a classical two-species particle model
to describe the entanglement dynamics of the Z2-symmetric
hybrid QA circuit. In this section, we briefly review some
of the important results in these two papers and modify the
two-species particle model so that it can be applied on hybrid
QA circuits without any symmetry.

The hybrid QA circuit is composed of QA unitary op-
erators and composite measurements. A QA unitary gate
permutes product states in the computational basis up to a
phase, i.e.,

U |n〉 = eiθn |π (n)〉, (1)

where π ∈ S2L is an element of the permutation group on the
computational basis of a lattice with L qubits. We choose
the Pauli Z basis as the computational basis and take the
initial state to be a product state polarized in x direction,
|ψ0〉 = |+x〉⊗L. QA unitaries scramble the phase information
stored in the wave function and hence increase the entan-
glement of the state until it saturates to the volume-law
scaling. Meanwhile, the wave function remains an equal-
weight superposition of computational basis states, which is
the characteristic of QA circuits.

On the other hand, local measurements can suppress the
growth of entanglement. In the QA circuit, the composite
measurement of the ith qubit is defined as a projection op-
erator followed by a Hadamard gate,

Mσ
i = Hi ◦ Pσ

i , (2)

where Pσ
i = 1±Zi

2 is the Pauli Z measurement on site i with the
outcome σ = {0, 1} and Hi rotates the state back to an equal-
weight superposition over the computational basis. Therefore,
after imposing Mσ

i , the phase information for half of the basis
states is lost. The composite measurements disentangle the
system while preserving the special feature of QA circuits.

It is shown in Ref. [14] that by increasing the measure-
ment rate p, the one-dimensional hybrid QA circuit undergoes
an entanglement phase transition from a volume-law entan-
gled phase to an area-law disentangled phase, with the phase
transition belonging to the 1 + 1d directed percolation (DP)
universality class. If we bipartition the system into subsystem
A and its complement B, a common quantity to measure the
entanglement between them is the nth Rényi entropy:

S(n)
A = 1

1 − n
log2

[
Tr

(
ρn

A

)]
ρA = TrB|ψ〉〈ψ |. (3)

In this paper, we focus on the second Rényi entropy with n =
2, whose purity equals the expectation value of the SWAPA

operator over two copies of the state [23,24],

Tr
[
ρ2

A(t )
] = 〈ψt |2 ⊗ 〈ψt |1SWAPA|ψt 〉1 ⊗ |ψt 〉2, (4)

with the wave function |ψt 〉 = Ũt |ψ0〉, where Ũt denotes
the circuit evolution up until time t (for more details, see
Appendix A). The SWAPA operator exchanges the spin con-
figurations within subsystem A of |ψt 〉1 and |ψt 〉2.

The entanglement dynamics of the hybrid QA circuit can
be interpreted in terms of classical bit-string dynamics. By
inserting two sets of complete basis which we call “bit strings”
on the right side of the SWAPA operator in Eq. (4) and
applying the circuit on the bit-strings in a time-reversed order,
we obtain

Tr
[
ρ2

A(t )
] =

∑
n1,n2

〈ψt |2〈ψt |1SWAPA|n1〉|n2〉〈n2|〈n1|ψt 〉1|ψt 〉2

= 1

4L

∑
n1,n2

e
−i�n′

1
(t )

e
−i�n′

2
(t )

ei�n1 (t )ei�n2 (t ), (5)

where

ei�ni (t ) =
√

2L〈ni|Ũt |ψ0〉 (6)
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FIG. 1. A cartoon of the two-species particle model. The black
dots represent X particles, and the red dots represent Y particles. Ini-
tially, X and Y particles are distributed in region A and B respectively.
We use x and y to denote the leftmost X particle and the rightmost
Y particle.

and

|n′
1〉|n′

2〉 ≡ SWAPA|n1〉|n2〉 = SWAPA|α1β1〉|α2β2〉
= |α2β1〉|α1β2〉, (7)

where |αi〉 and |βi〉 are the spin configurations in subsystems
A and B of |ni〉. In order to compute Tr(ρ2

A), we need to
understand the dynamics of the relative phase �r = −�n′

1
−

�n′
2
+ �n1 + �n2 for each bit-string pair {|n1〉, |n2〉}. Under

QA evolution, nonzero randomly distributed �r will lead to
destructive interference, and as such only configurations with
trivial relative phase contribute to the purity. This observation
motivates us to construct a two-species particle model [12].

The particles here characterize the difference between a
bit-string pair {|n1〉, |n2〉},

h(x, t ) = |n1(x, t ) − n2(x, t )|. (8)

We use the empty site symbol ◦ to denote h(x) = 0 and the
occupied site symbol • to denote h(x) = 1. Specifically, we
represent the difference at t = 0 in A (B) by X (Y ) particles,
as illustrated in Fig. 1. Under the time evolution, these two
species start to expand according to the update rule deter-
mined by the circuit. For the rest of the paper, we focus on QA
unitary gates U which are linear with respect to the bit-string
addition defined in finite field F2, so that for any bit string pair
n1 and n2, U (|n1〉 + |n2〉) = U |n1 + n2〉. This means that we
can directly work on the particle representation h(x, t ) without
keeping track of the bit-string dynamics. One good example
is the two-qubit CNOT gate. When the first qubit acts as
the control, we have •◦ ↔ ••. On the other hand, the com-
posite measurement forces the spins on the same site to be
identical, which results in particle annihilation, • → ◦. As
shown in Appendix A, only the configurations in which the
X and Y particles do not meet up to time t yield �r (t ) = 0
and hence contribute to the purity. Therefore we have

Trρ2
A(t ) = N (t )

2L
≡ P(t ),

(9)
S(2)

A (t ) = − log2 P(t ),

where N (t ) is the number of configurations in which the two
species do not meet up to time t . At the critical point p = pc,
the fraction P(t ) decays algebraically as P(t ) ∝ t−α , where
α is the persistence exponent. For the DP universality class,
α = 0.938 is a universal number [14]. This power-law decay
is responsible for the logarithmic scaling of the entanglement
entropy at criticality.

III. ENTANGLEMENT DYNAMICS
IN THE VOLUME-LAW PHASE

We now take a closer look at the entanglement entropy
in the volume-law phase with p < pc. Previous studies of
these 1 + 1d hybrid circuits indicate that randomness induces
strong fluctuations in the entanglement entropy in both spatial
and temporal directions. A nice way to understand this prob-
lem is through the minimal cut picture introduced in Ref. [15],
which maps the entanglement dynamics to the first passage
problem on a percolation lattice. Such a picture rigorously
describes the zeroth Rényi entropy S(0)

A of the Haar random
circuit subject to projective measurements. For the entropy
with higher Rényi index, it is argued that it can be treated as
the free energy of the domain wall in a disordered magnet
[18,25]. Notice that in both approaches, the entanglement
entropy is mapped to the free energy of the 1 + 1d directed
polymer in a random environment (DPRE), whose fluctuation
belongs to the KPZ universality class. As a result, there ex-
ists a subleading correction term in the ensemble averaged
entanglement entropy in both the early time dynamics and the
steady states, i.e.,

〈SA(t )〉 = λ1t + atβ + · · · , (10)

〈SA(LA)〉 = λ2LA + bLβ
A + · · · , (11)

where the brackets represent an ensemble average and β =
1/3 is the “roughness exponent” of the DPRE [16]. The sub-
leading correction term can be extracted by computing the
standard deviation

δSA(t ) =
√

〈[SA(t )]2〉 − 〈SA(t )〉2 ∝ tβ, (12)

δSA(LA) =
√

〈[SA(LA)]2〉 − 〈SA(LA)〉2 ∝ Lβ
A , (13)

which characterizes the sample-to-sample fluctuations with
the same exponent β. This result has been confirmed numer-
ically in Clifford circuits in Refs. [18,19]. Below we will
numerically examine the volume-law phase of the hybrid
Clifford QA circuit and understand its physics in terms of the
particle dynamics.

A. Numerical study in hybrid Clifford QA circuits

We consider a hybrid Clifford QA circuit in which the
QA unitaries also belong to the Clifford group. According
to the Gottesman-Knill theorem [13,26], the Clifford circuit
can be efficiently simulated on a classical computer using
the stabilizer formalism. As illustrated in Fig. 2, the circuit
is constructed from two types of unitary gates chosen from
the two-qubit Clifford group, namely, CNOT and CZ gates,
as well as sporadic composite measurements distributed with
probability p. The critical point is at pc ≈ 0.138 [14]. In
the numerical simulation, we take p = 0.04 and p = 0.08 to
investigate the fluctuation of volume-law phase entanglement
entropy. The numerical results are averaged over O(104) sam-
ples. Despite the uncertainty caused by the data itself, there
still exists an uncertainty when estimating the fitted exponents
of δSA, which depending on the number of data points, can
have an error up to ±0.04. Therefore, in the figures where the
scaling exponents are close to β = 1/3, we will only plot the
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FIG. 2. (a) A schematic for the gates appearing in the hybrid
Clifford QA circuit. (b) The dashed box represents the arrangement
of gates in a single time step. Each time step involves two layers of
CNOT gates and two layers of CZ gates, interspersed with composite
measurements with probability p.

curve L1/3
A or t1/3 with a constant offset for comparison and

the estimated exponents are given in the text and summarized
in Table I. Our numerical results in Fig. 3(a) indicate that for
p = 0.04 and 0.08, the standard deviation of the steady-state
entanglement entropy scales as δSA ∝ Lβ1

A with β1 ≈ 0.322
and 0.31, respectively.

Aside from the steady state, we also study the early time
entanglement dynamics in the volume-law phase. Similarly,
we observe in Fig. 3(b) that for p < pc (not necessarily
nonzero), δSA(t ) ∝ tβ2 with β2 ≈ 0.307 for p = 0 and 0.04,
and β2 ≈ 0.266 for p = 0.08. For p � 0.04, The exponents
of the sub-leading terms of the steady-state and early time

TABLE I. The comparison of the exponents of the fluctua-
tion δSA of Clifford QA entanglement entropy, δ(− log2 K ) of the
single-species particle model, the early time δ[− log2 P(t )] of the
two-species particle model using the sampling method, the steady-
state δ[− log2 M(LA)], where M is a term that contributes to P. The
measurement rate or the particle annihilation rate is taken to be
p = 0, 0.04, and 0.08. In the table, β1 refers to the exponent of Lβ1

A

and β2 refers to the exponent of tβ2 .

p = 0 p = 0.04 p = 0.08

δSA β1 N/A 0.322 0.31
β2 0.307 0.307 0.266

δ(− log2 K ) β1 N/A 0.245 0.245
β2 0.304 0.294 0.26

δ(− log2 P) β2 N/A 0.34 0.387
δ(− log2 M ) β1 N/A 0.266 0.266

10

(a)

(b)

2

LA

2

3
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5

δS
A
(L

A
)

L
1/3
A

p = 0.04
p = 0.08

101 102 103

t
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3
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δS
A
(t

)

L = 1024

t1/3

p = 0.0
p = 0.04
p = 0.08

FIG. 3. (a) The standard deviation of entanglement entropy δSA

vs LA plotted on a log-log scale. The data are computed from the
steady-state entanglement entropy SA for half-system size LA = L/2
over a variety of L. We find that δSA ∝ Lβ1

A with β1 ≈ 0.322 at p =
0.04 and β2 ≈ 0.31 at p = 0.08. (b) The standard deviation of early
time entanglement entropy δSA vs t for p = 0, 0.04, 0.08, where
we find δSA(t ) ∝ tβ2 with β2 ≈ 0.307 for p = 0 and p = 0.04, and
β2 ≈ 0.266 for p = 0.08. All of the numerical data for entanglement
entropy are calculated with periodic boundary conditions (PBC).

entanglement entropies are similar and are close to the rough-
ness exponent, i.e., β1 ≈ β2 ≈ 1/3. The exponent β2 ≈ 0.266
at p = 0.08 is smaller than 1/3 and is probability due to the
proximity to the critical point. We also consider the entangle-
ment entropy in the purification dynamics of the same circuit
and in the Z2-symmetric hybrid Clifford QA circuit. In both
cases, we find that it exhibits similar fluctuation. The details
can be found in Appendixes D and B. Overall, these results
provide numerical evidence that the entanglement entropy in
the volume-law phase of the Clifford QA circuit has KPZ
fluctuations.
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B. Single-species particle dynamics

Recall that in the two-species particle model, the entan-
glement entropy is related to the logarithm of P(t ), which
is the fraction of configurations in which X particles do not
encounter Y particles up to t . We denote x (y) as the rightmost
X (leftmost Y ) particle. In the volume-law phase, x and y move
toward each other at roughly the same speed, so P(t ) decays
exponentially in t , leading to the linear growth of S(2)

A (t ). The
subleading term in S(2)

A (t ) is caused by the fluctuation of the
velocities of x and y in different particle configurations. For
simplicity, we fix the position of y to be next to the boundary
between A and B, so that only the fluctuation of x is consid-
ered. This is equivalent as computing a subset of phase terms
in Eq. (5) restricted in subsystem B,

1

4LA

∑
α1,α2

e
−i�B

n′
1
+i�B

n1 . (14)

where {α1, α2} are the spin configurations in subsystem A of
the bit-string pairs {|n1〉, |n′

1〉}. With this approximation, P(t )
is simplified to be K (t ), the fraction of configurations in which
x never crosses the boundary between A and B up to time t .

One important advantage of taking the single-species ap-
proximation is that K (t ) can be efficiently computed using
the following approach. (1) All of the particle configurations
in subsystem A can be generated by a set of binary basis
H0 = {h1, . . . , hLA}. Hence, any particle configuration can be
expressed as the linear combination

h =
LA∑

i=1

hαi
i (15)

defined on the finite field F2 with αi = {0, 1}. Initially, we
can set hi(t = 0) = (0 . . . 1i . . . 0). Under linear operators, we
can evolve each basis separately and the above equation still
holds with {αi} remaining invariant. (2) K (t ) can be eval-
uated by simply evolving a set of basis H (t ) which span
the ensemble of particle configurations which never enter B.
Initially, H (t = 0) = H0 and therefore K (t = 0) = 1. Under
the time evolution, if the rightmost particle x of a single basis
state, say, h j (t ), crosses the boundary, then only the particle
configurations with α j = 0 will contribute to K (t ). Hence,
half of the configurations are ruled out, and the “entanglement
entropy” − log2 K (t ) increases by one. This also means that
h j is excluded from H (t ) for further computation. On the
other hand, if the x particles of multiple basis states, say,
G = {h1, . . . , hn}, cross the boundary at the same time, one
can easily verify that − log2 K (t ) still increases by one, except
that the updated basis set becomes H (t ) = {h1 + h2, . . . , h1 +
hn}

⋃
H (t − 1) \ G. As a result,

− log2 K (t ) = LA − |H (t )|, (16)

where |H (t )| is the number of existing basis at time t .
This way of tracing the basis set which span the configura-
tions whose boundary has not been visited by the particles
resembles the stabilizer formalism in Clifford dynamics.

We use the above method to first study the p = 0 limit of
the single-species particle model under the Clifford QA circuit
defined in Fig. 2(b). With this limit, the particle basis states
evolve under only unitary operators, i.e., random CNOT gates.

FIG. 4. (a) The early time δ(− log2 K ) vs t plotted on a log-log
scale. We find that δ[− log2 K (t )] ∝ t0.304 at p = 0, t0.294 at p = 0.04,
and t0.26 at p = 0.08. (b) The steady state δ(− log2 K ) of the single-
species particle model vs LA plotted on a log-log scale. The numerical
data are calculated from the single-species particle model using the
basis-decomposing method with particle annihilation rate p = 0.04
and 0.08.

The numerics in Fig. 4(a) shows that the early time dynamics
has the fluctuation δ[− log2 K (t )] ∝ t0.304. In the steady state,
the particles in all the basis states will pass the boundary and
therefore − log2 K (t → ∞) = LA without subleading correc-
tion.

When 0 < p < pc, we observe similar fluctuations in the
early time dynamics. Figure 4(a) shows that δ[− log2 K (t )] ∝
t0.294 at p = 0.04 and δ[− log2 K (t )] ∝ t0.26 at p = 0.08. The
power law exponent slightly decreases as we increase p. As
opposed to the p = 0 case, the steady state entropy cannot
reach the maximal value. Due to the local measurement which
forces • → ◦ in all the basis states at the same location,

014306-5



YIQIU HAN AND XIAO CHEN PHYSICAL REVIEW B 107, 014306 (2023)

the time-evolved basis states in H (t ) cease to remain mu-
tually linearly independent. The steady state basis vectors
H (t → ∞) are formed by zero vectors containing no par-
ticles. The fluctuation of the number of such zero vectors
is the same as the fluctuation of − log2 K (t → ∞) and is
shown in Fig. III B. By performing finite size scaling, we
observe that δ[− log2 K (LA)] ∝ L0.245

A for both p = 0.04 and
p = 0.08, slightly off from 1/3.

C. Two-species particle dynamics

In the two-species particle model, it is unclear if there
exists an efficient algorithm to evaluate P(t ). The existence
of two moving fronts makes the problem difficult to solve.
Nevertheless, we can still simulate the early time dynamics
using Monte Carlo sampling method [14]. More specifically,
we prepare a large sample of randomly generated particle
configurations and estimate P(t ) by computing the fraction of
configurations in which X and Y never meet up to time t . This
method works well for subsystem with entanglement entropy
smaller than ∼20. Around pc, the entanglement entropy is
small and this sampling method has been successfully used
to identify pc and compute the critical exponents precisely
over a few hundred qubits [12]. However, deep in the volume-
law phase, evaluating the sample fluctuation of − log2 P(t )
is difficult since P(t ) soon becomes exponentially small and
avoiding the contact between the two species turns into a rare
event. Even though we prepare O(107) number of particle
configurations for each sample, the numerical P(t ) decays to
zero in a short time. Similarly, it is even more unrealistic for
us to evaluate δ[− log2 P(LA)] in the steady state.

We apply the sampling method to the volume-law phase
during the early time and as shown in Fig. 5(a), the standard
deviation of the entropy δ[− log2 P(t )] ∝ t0.34 at p = 0.08,
which is consistent with the KPZ fluctuation, and t0.387 at
p = 0.04, which is already slightly off from β = 1/3. For the
steady state, we analyze the physics of P below and take some
approximation to estimate the fluctuation of − log2 P.

In the context of particle dynamics, the entanglement en-
tropy saturates when all the particle configurations which
contribute to P(t ) have at most one species left. The steady
state P is therefore composed of three parts,

P = NX

2L
+ NY

2L
− NXY

2L
= PX + PY − PXY , (17)

where PX (PY ) denotes the fraction in which X (Y ) parti-
cles annihilate first under the dynamics before they could
encounter the other species, PXY denotes the fraction in which
both species extinguish at the same time before they meet. In
the volume-law phase, PX ∝ exp(−LA), PY ∝ exp(−LB) and
PXY ∝ exp(−L). In the thermodynamic limit, the last term
can be ignored and the first two terms compete as we tune
LA. When LA < LB, PX dominates and we have P ≈ PX . In
contrast, when LA > LB, we have P ≈ PY . This leads to

S(2)
A ≈

{
− log2 PX , LA < L/2

− log2 PY , LA > L/2
. (18)

Computing PX is still not an easy task. Instead we consider
a subset of PX that can be simulated efficiently using the
basis-decomposing method in Sec. III B. We define the binary
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t
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δ[
−

lo
g

2
P

( t
)]

L = 256

t1/3

δ(− log2 P ), p = 0.04
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FIG. 5. (a) The early time δ(− log2 P) vs t plotted on a log-log
scale. The numerical data are calculated from the two-species particle
model with the sampling method and with the system size L = 256.
We find that δ[− log2 P(t )] ∝ t0.387 at p = 0.04 and t0.34 at p = 0.08.
(b) The steady state δ(− log2 M ) vs LA plotted on a log-log scale, the
ratio LA/L is fixed to be 1/2. M is one of the terms that contribute to
P which can be computed using the basis-decomposing method.

basis H0
X (H0

Y ) which span the X (Y ) particle configurations in
the absence of Y (X ) particles. Both H0

X and H0
Y evolve under

the same dynamics. At time t , we consider the configurations
in which the X particles never encounter Y particles in any of
the basis states of H0

Y (t ) and denote this fraction as M(t ). In
other words, M(t ) is equivalent to K (t ) in the single-species
particle model, except that now the boundary determined
by the leftmost Y particle in H0

Y (t ) is spreading to the left.
Therefore

− log2 M(t ) = − log2
2|HX (t )| × 2LB

2L
= LA − |HX (t )|. (19)

where HX (t ) is the basis of X particle configurations which
never meet the leftmost Y particle in H0

Y (t ).
In the steady state, HX is the set of basis in which the X

particles have already vanished before encountering any Y
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particles in H0
Y (t ). As shown in Fig. 5, there exists sample

fluctuation in − log2 M in the volume-law phase. In particu-
lar, we find that δ[− log2 M] ∝ L0.266

A for both p = 0.04 and
p = 0.08. This exponent is smaller than the one computed in
the Clifford QA circuit. The exponents for different models at
various p < pc are listed in Table I and we find that some of
them are smaller than 1/3.

Currently, it is unclear if this is a finite size effect, or if the
fluctuations of these quantities in the one/two-species particle
models belong to other universality classes. The main obstacle
of this issue is the lack of rigorous analytical results. However,
we want to mention that there are some known results about
KPZ fluctuations in the particle dynamics. Under the hybrid
QA circuit, each particle configuration experiences the same
circuit dynamics, therefore the end points of the two species
x and y can be treated as particles performing biased random
walks in a fixed time-dependent random environment. Math-
ematically, the dynamics of the endpoint is known as random
walk in random environment (RWRE), in which the logarithm
of the transition probability is proven to exhibit KPZ fluctu-
ations in some limit [27–29]. Indeed, this quantity is similar
to the second Rényi entropy and the detailed discussion about
this connection can be found in Appendix C.

IV. PURIFICATION PROCESS AND QUANTUM
ERROR CORRECTION

A. Purification process and hybrid QA QECC

An alternative approach to understand the measurement-
induced entanglement phase transition is through purification
dynamics [5]. The basic idea is to prepare a system Q with
an extensive entropy and evolve it under the hybrid quantum
dynamics. Although the system will eventually be purified, in
the weakly monitored volume-law phase with 0 < p < pc, the
purification time is exponentially long in system size L. On the
other hand, when p > pc, the entropy decays exponentially in
time with a constant rate.

The existence of long purification time in the regime 0 <

p < pc suggests that the hybrid quantum circuits can dynami-
cally generate a robust quantum error correcting code (QECC)
at polynomial time [5]. The QECC can be compactly denoted
as [L, k, d]. Here L is the number of physical qubits in Q and
k characterizes the amount of logical information encoded in
the code space and is quantified by the entropy of ρQ. The
third index d is the code distance, which is defined as the
minimum weight of all uncorrectable errors. Here the errors
can be interpreted as measurements which can potentially
reduce the entropy when applied on ρQ. If an error changes
the entropy of Q, then it is an uncorrectable error since it
damages the encoded quantum information and hence can not
be recovered. Due to the locality of the circuit model, a better
measure is the contiguous code distance dcont, which is the
minimal length of a contiguous section of qubits that supports
an uncorrectable error [5]. In the volume-law phase, dcont di-
verges in the thermodynamic limit. The quantum information
is stored nonlocally under the unitary evolution and thus is
protected against any local measurements. On the other hand,
for p > pc, the unitary dynamics fails to protect the encoded
information under frequent measurements. Previous works

System Q

Reservoir R

(a)

CZ gate CNOT gate

Z measurement Hadamard gate

(b)

A B

t

(c)

FIG. 6. (a) We use CZ gates to generate entanglement between
system Q and environment R. (b) The symbols of the CZ gate,
CNOT gate, the single-qubit Z measurement gate and Hadamard gate.
(c) The arrangement of gates for the purification process of the hybrid
QA circuit. Except the initial setup in (a), the hybrid circuit is applied
solely in system Q.

have quantitatively analyzed the statistical property of QECC
in hybrid random Clifford circuits [18,19]. In this section, we
will study the purification dynamics of the hybrid QA circuit
and investigate the QECC in terms of the classical particle
model.

Initially, we prepare a product state of 2L qubits polarized
in +x direction which can be evenly divided into system Q
and environment R. Then, we create L EPR pairs between
them by applying CZ gates as shown in Fig. 6(a). Thus the
system Q becomes maximally entangled with environment
R, i.e., S(2)

Q = L. To investigate the purification dynamics, a
hybrid QA circuit is solely applied on system Q. Numerically,
we consider the model described in Fig. 6(c), identical to the
hybrid QA Clifford circuit in the entanglement dynamics in
the last section. The composite measurements disentangle the
qubits in Q from the environment R. Meanwhile, the unitary
evolution scramble the quantum information within system Q,
increasing the entanglement between any subsystem A in Q
and its complement B := Q \ A, but not affecting S(2)

Q . There

is a phase transition in the purification time of S(2)
Q at p =
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pc ≈ 0.138 [14], consistent with the entanglement dynamics
studied in the last section.

As we discussed before, an important measure of the
error-correcting ability of our QECC is the contiguous code
distance dcont, which is the minimal length of a contiguous
region supporting an uncorrectable error. It is thus natural to
mark the existence of such errors supported on a contiguous
subregion A using the mutual information between A and the
environment R [19,30,31],

IA,R = S(2)
A + S(2)

R − S(2)
A,R = S(2)

A + S(2)
Q − S(2)

B . (20)

When IA,R = 0, A and R are completely decoupled, we cannot
acquire any information encoded in the state by observing any
qubits within the subregion A. In other words, any measure-
ments acting within A are correctable errors since they will
not affect S(2)

Q . Therefore dcont is the maximum length L∗
A such

that IA,R = 0 for LA < L∗
A [32].

We simulate the Clifford QA circuit to find the entangle-
ment entropies S(2)

A and S(2)
B and the mutual information IA,R

over various subsystem sizes LA. The numerical results are
given in Fig. 7. We take the code distance to be the maximum
length L∗

A such that 〈IA,R〉 � ε for LA < L∗
A. In the numerical

simulation of the finite system size, we set ε = 1. Remarkably,
we find that S(2)

A starts to decrease at LA = L − L∗
A until it

reaches S(2)
Q at LA = L. This nonmonotonic behavior coincides

with that in the previous study of the hybrid Clifford circuits
[19] and is crucial in understanding the code distance. We
will modify the two-species particle model in the following
section so as to give an interpretation for S(2)

A . As shown in
Fig. 7(b), dcont has a sublinear power law scaling with L.
Numerically, it scales as L0.343 for p = 0.04 and L0.387 for
p = 0.08, and its value increases as the measurement rate
increases.

B. QECC in classical particle language

To understand the dynamically generated QECC from the
perspective of classical particle dynamics, we need to com-
pute the mutual information defined in Eq. (20) in terms of the
two-species particle model. An important task is to understand
the entanglement entropy of a subsystem A in the presence of
environment R. For the bit-string dynamics in the purification
process, the hybrid QA circuit is applied only on system
Q of the bit-strings in a time-reversed order, generating the
relative phase �r , followed by the CZ gates acting on both
the system Q and environment R, generating another relative
phase �r . Therefore only the configurations satisfying �r = 0
and �r = 0 contribute to the purity. As shown in Appendix E,
in the particle picture, this corresponds to the configurations
in which all of the X particles have vanished before they
can encounter any Y particles at time t . These configurations
are a subset of N (t ) defined in Eq. (9) in the entanglement
dynamics. Let the number of these configurations be N1(t ),
the entanglement entropy of A is then

S(2)
A (t ) = − log2

N1(t )

2L
≡ − log2 P1(t ). (21)

Specifically, when A = Q, there are only one type of particles,
we only need to count the configurations whose particles
extinguish at time t . Letting the number of such configurations

(a)

(b)

FIG. 7. (a) The entanglement entropies S(2)
A and S(2)

B and half of
the mutual information 1

2 IA,R vs LA computed from the Clifford QA
circuit with system size L = 400 at T = 2L, and p = 0.08. (b) The
contiguous code distance dcont for different system size L at p = 0.08
and p = 0.04 at T = 3L plotted on a log-log scale. Here we take dcont

to be the maximum length L∗
A such that 〈IA,R〉 � 1. All of the data are

computed with PBC.

be denoted NQ, we have

S(2)
Q (t ) = − log2

NQ(t )

2L
≡ − log2 PQ(t ). (22)

Initially, PQ(t = 0) = 1/2L and Q is maximally entangled
with R. Under the hybrid QA circuit, more and more
configurations become empty and SQ decreases monotonically
with time. The time scale for which the particles of all the
configurations vanish depends on p and is consistent with that
of the purification transition.

We are interested in the QECC generated at polynomial
time t = λL with λ � 1. At this time, X or Y particles have
already spread over the entire system and therefore the con-
figurations that contribute to P1(t ) can have at most one type
of particle. Similar to the steady state P of the entanglement
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dynamics derived in Eq. (17), P1(t ) can be expressed as

P1(t ) = ÑX (t )

2L
+ ÑY (t )

2L
≡ PX + P̃Y (t ), (23)

where P̃Y (t ) is a subset of PY , which further requires that X
particles vanish at time t . There is also a small contribution
from PXY which we ignore here.

When LA < LB, since PX > PY > P̃Y (t ), PX dominates and
we have P1(t ) ≈ PX . Therefore S(2)

A (t ) is the same as the
steady state S(2)

A in the entanglement dynamics. The regime
LA > LB is different from that of the steady state in the en-
tanglement dynamics. Since P̃Y (t ) is a small fraction of PY ,
when LA is slightly larger than LB, PX > P̃Y (t ) and we still
have S(2)

A ≈ − log2 PX . We define Lc to be the threshold of the
subsystem size LA where PX = P̃Y (t ). When LA > Lc, P̃Y (t )
dominates and we have S(2)

A (t ) ≈ − log2 P̃Y (t ). For P̃Y (t ), it
can be understood as follows:

P̃Y (t ) = ÑY (t )

2L
= NY

2L

ÑY (t )

NY
≡ PY P2(t ), (24)

where P2(t ) ≡ ÑY (t )/NY . Since the X particles of configu-
rations in NY have already spread over the entire system
when all of the Y particles extinguish, P2(t ) actually
counts the fraction of configurations which have no particles
at time t . Directly evaluating P2(t ) is difficult. However, due
to the scrambling property of the unitaries, it is reasonable to
assume that P2(t ) ≈ PQ(t ),

P̃Y (t ) ≈ PY PQ(t ). (25)

Summarizing, we have

S(2)
A (t ) ≈

{
− log2 PX , LA < Lc

− log2 PY − log2 PQ(t ), LA > Lc
. (26)

We numerically verify the above approximation in Fig. 8(a).
Due to the difficulty for simulating highly entangled state, we
are only able to simulate the two-species particle model on a
system with size L = 32 at T = 3L in the volume-law phase.
We find that there indeed exists a nonmonotonic decay area
for S(2)

A = − log2 P1 when LA passes the threshold Lc, and that
Eq. (26) holds within a small difference ε = O(1). The non-
monotonicity comes from the competition of the two terms PX

and P̃Y . As subsystem A enlarges, PY increases and PQ stays
the same. As a result, when LA > Lc and P̃Y dominates, S(2)

A
starts to decline as LA continues to increase. The location of
the peak Lc depends on time and can eventually shift to L/2
when the system is completely purified.

Based on the above analysis of S(2)
A (t ), we are now ready

to understand the QECC in terms of particle dynamics. In
the regime with LA ∈ [0, L − Lc) and hence LB ∈ (Lc, L], the
mutual information becomes

IA,R = S(2)
A + S(2)

Q − S(2)
B

≈ − log2 PX − log2 PQ + log2 PX + log2 PQ = 0. (27)

It vanishes because the two terms in S(2)
B completely cancel

with S(2)
A and S(2)

Q , similar to the decoupling domain wall
picture discussed in Ref. [19]. On the other hand, when Lc >

(a)

(b)

FIG. 8. (a) The entanglement entropy S(2)
A ≈ − log2 P1 vs LA

computed from the two-species particle model, in comparison with
the two approximate values − log2 PX and − log2 (PY · PQ) for LA <

Lc and LA > Lc. The numerical data are calculated by the sampling
method over a system of size L = 32, at T = 3L, p = 0.08 and under
PBC. (b) The Z-error contiguous code distance dZ

cont in comparison
with dcont for different system sizes at p = 0.04 and p = 0.08 at
T = 3L plotted on a log-log scale. We find that dZ

cont scales as L0.327

when p = 0.04 and L0.366 when p = 0.08.

LA > L − Lc, it is easy to show that

IA,R ≈ − log2 PX − log2 PQ + log2 PY > 0. (28)

We arrive at the conclusion that IA,R = 0 if and only if LA <

L − Lc and the contiguous code distance is dcont = L − Lc.
These results are consistent with the numerical results of
hybrid Clifford QA circuit in Fig. 7(a).

The code distance specified by the mutual information
works for all kinds of errors. In the QA circuit, we could
consider a special type of error which is the Z error defined
as the measurement operator (1 ± O)/2, where O is a Pauli Z
string. Suppose at time t , a QECC is prepared through the
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QA purification dynamics and some Z errors occur within
a contiguous subsystem A, which could possibly reduce the
entropy of ρQ. We define the Z-error contiguous code distance
dZ

cont as the maximum length of subsystem A such that S(2)
Q

does not change.
Since the particle dynamics is evolved in a time-reversed

order, the Z error acts as annihilation on all of the particle
configurations at t = 0. For subsystem A of size smaller than
dZ

cont, S(2)
Q is invariant under any Z error occurred within A,

or in other words, with any initial particle distribution in A.
Therefore we start from an ensemble of particle configurations
with empty subsystem A, so that the information about A is
completely removed. The entanglement entropy of Q after the
Z error becomes

S(2)
Q (t ) = − log2 PB(t ), (29)

where PB(t ) denotes that among all the configurations with
only Y particles located in B initially, the fraction that be-
comes completely empty at time t . Consequently, dZ

cont is the
maximum length of subsystem A such that − log2 PB(t ) =
− log2 PQ(t ) for LA < dZ

cont.
Both − log2 PB(t ) and − log2 PQ(t ) can be efficiently calcu-

lated by evaluating the number of independent basis under the
hybrid time evolution. We prepare two sets of binary basis,
one is H whose rows are the basis spanning all the particle
configurations in system Q, the other one is H ′ which is
obtained by replacing a contiguous submatrix of size L × LA

from H with 0’s. Then, we evolve them under the same circuit
dynamics. One can easily see that − log2 PQ(t ) = rank2(H (t ))
and − log2 PB(t ) = rank2(H ′(t )), which are the number of
independent basis in H (t ) and H ′(t ), respectively. The code
distance dZ

cont(t ) is therefore identified as the largest LA such
that the rank of H (t ) and H ′(t ) agree within ε = 1. As shown
in Fig. 8(b), although dZ

cont is much larger than dcont, they have
similar power-law scaling.

The sublinear power-law exponent in the contiguous code
distance is a special feature of the hybrid random dynam-
ics and is closely related to the subleading correction term
in the entanglement entropy. In the Clifford circuit, this
can be easily understood in the dynamics of the stabilizer
generators, in which there exist a finite number of “short”
stabilizers caused by local measurements [4]. These short
stabilizers are responsible for both the fluctuation in the entan-
glement entropy and also the sublinear power-law exponent in
the code distance [19]. Under pure unitary dynamics, these
short stabilizers become long stabilizers and span over the
whole system, the subleading correction term vanishes and
the code distance becomes extensive and is proportional to
L, the same as the conventional random QECC [33].

The above physics can also be understood in the hybrid
QA circuit as shown in Fig. 9(a). Compared with Fig. 6(c),
we add an extra pure unitary evolution for time T2. Recall that
the particle representation experiences the circuit dynamics in
a time-reversed order, it first evolves under the pure unitary
evolution for T2 and then the hybrid dynamics for T1. Here
we take sufficiently long T2 for unitary evolution so that the
particles are fully scrambled and only the configurations with
no X (Y ) particles at the beginning can contribute to PX (PY ).

A B

t

U + M

U

T1

T2

(a)

(b)

FIG. 9. (a) The setup of the alternative hybrid QA circuit.
“U + M” represents the original hybrid QA circuit composed of
unitary gates and sporadic local composite measurements. “U” rep-
resents the circuit in the limit p = 0 with only QA unitaries. (b) The
entanglement entropy S(2)

A and half of the mutual information 1
2 IA,R

vs LA computed from the Clifford model, in comparison with the
two approximations − log2 PX and − log2(PY · PQ ). We also calcu-
late − log2 P2 and find that it grows linearly in LA and saturates to
− log2 PQ when LA = − log2 PQ. We take L = 400, p = 0.08, and
T1 = T2 = 2L.

Hence, PX = 2−LA and PY = 2LA−L and we have

S(2)
A (t ) =

{
LA, LA < Lc

L − LA − log2 P2(t ), LA > Lc
. (30)

Here − log2 P2(t ) is simply counting the number of indepen-
dent basis initially defined in A.

To verify this result, we simulate the Clifford QA circuit
and compare the results with that derived from the particle
model. As shown in Fig. 9(b), we find that S(2)

A agrees with
LA for LA < Lc and L − LA − log2 P2(t ) for LA > Lc with
negligible fluctuation. Different from the previous circuit de-
fined in Fig. 6(c), it is easy to numerically evaluate P2(t )
in this circuit. Due to the scrambling property of the uni-
tary evolution in T2, we find that over a large range of LA,
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− log2 P2(t ) = − log2 PQ(t ) and they become different only
when LA < − log2 PQ(t ). There is no subleading correction
term in S(2)

A anymore and the code distance is L − Lc which
is linearly proportional to L. These results indicate that the
sublinear power-law scaling in both the contiguous code dis-
tance and the fluctuation of the entanglement entropy are
emergent properties of the hybrid random circuit and dis-
appear when the dynamics is fully scrambled under unitary
evolution.

V. CLASSICAL LINEAR CODE

The classical particle model discussed in this paper has
an interesting connection with the classical error correction.
For a system with L sites, the total number of the particle
configurations is 2L and all of them can be generated from
L independent particle string basis. Under the unitary dy-
namics, the number of basis is invariant, indicating that the
total amount of the classical information is unchanged. On
the other hand, the composite measurement forces • → ◦
at one site in all of the basis and can potentially reduce
the number of independent basis, resulting in the loss of
information.

The information retained in the classical particle model
can be characterized by the number of independent basis k.
Under the purification dynamics in Sec. IV A, k is the same
as the entropy SQ. When 0 < p < pc, it takes exp(L) time
for k(t ) decreasing to zero. On the other hand, when p > pc,
k(t ) decreases to zero exponentially fast with a finite decay
rate. The phase transition at p = pc belongs to the directed
percolation universality class.

Similar to the dynamically generated QECC with p < pc,
the associated particle dynamics also generates a classical lin-
ear code (CLC) governed by a k × L generator matrix, whose
rows are binary strings forming a basis for the k-dimensional
codespace. When the time t is linear in L, the encoded bit k is
extensive and the information is protected by the scrambling
property of the unitaries and is inaccessible by the local mea-
surement. A CLC is typically denoted by [L, k, dc], in which
L classical bits can store k bits of classical information. dc is
the classical code distance and is equal to the minimal number
of flips mapping a codeword to another. Similar to the QECC
discussed before, since we have local unitary dynamics, it is
more reasonable to consider contiguous code distance dc

cont for
our CLC.

In a CLC [L, k, dc
cont], any bit flip occurring in a subsystem

with length l < dc
cont does not change the encoded bit k. Nu-

merically, this motivates us to evaluate dc
cont in the following

way as illustrated in Fig. 10(a): consider an initial generator
matrix M with rank2(M ) = L. We evolve all of the row vectors
according to the hybrid QA circuit described in Fig. 6(b). At
any time t , the encoded bit is the number of the independent
binary vectors in M(t ), i.e., k = rank2(M(t )). We then remove
a contiguous L × l submatrix from M(t ) and obtain a trun-
cated M ′(t ). The largest l which makes k − rank2(M ′(t )) < ε

is dc
cont. In the numerical simulation, we take ε = 1 and we

are interested in the regime t = αL with α � 1. As shown
in Fig. 10(b), we observe that dc

cont ∝ L0.331 for p = 0.04 and
dc

cont ∝ L0.35 for p = 0.08. We also plot the Z-error QECC
contiguous code distance dZ

cont for comparison. Although there

M(t) M’(t)

L

l

(a)

103

L

20

30

40

60

100 L0.331

L0.35

dc
cont, p = 0.04

dZ
cont, p = 0.04

dc
cont, p = 0.08

dZ
cont, p = 0.08

(b)

FIG. 10. (a) The CLC is determined by the binary square matrix
M(t ) on the left. The occupied site symbol • denotes 1 and the
empty site symbol ◦ denotes 0. To evaluate the contiguous CLC code
distance dc

cont at time t , an L × l submatrix is taken away from M(t )
and dc

cont is the largest l such that the rank of the truncated matrix
M ′(t ) agrees with that of M(t ) within ε. In the numerical simulation,
we set ε = 1. (b) dc

cont and dZ
cont vs system size L for p = 0.04 and

p = 0.08 at T = 4L plotted on a log-log scale.

is a slight difference in measuring these two quantities that
the Z error occurs at t = 0 for the particle model due to its
time-reversal evolving property, the numerics shows a resem-
blance between dZ

cont and dc
cont. The diverging code distance

is consistent with exponentially long purification time—the
information is encoded nonlocally and is resilient to any local
errors.

VI. CONCLUSION

In this paper, we analyze entanglement entropy fluctuations
in the volume-law phase of 1 + 1d hybrid QA circuits. We
numerically show that the fluctuations belong to the KPZ
universality class, just as for other random circuits studied
previously. Due to the special feature of the QA circuit, we are
able to map the second Rényi entropy to a classical quantity in
a particle model. We compute the fluctuations of this quantity
in different approaches and show that they exhibit fluctuations
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with similar exponents. The existence of the strong fluctu-
ations may have interesting connection with the multifractal
behavior observed in the volume-law phase of hybrid Clifford
circuits, where the entanglement entropy transition is mapped
to an Anderson localization transition [34]. Besides this, we
could also study fluctuations at the critical point in these
hybrid random circuits. These critical points, dominated by
randomness, are different from those clean systems. Since the
hybrid QA circuit has an underlying particle picture, it could
be a good starting point to explore this problem.

We also study the dynamically generated QECC in the
purification dynamics of 1 + 1d hybrid QA circuits. Again,
we give an interpretation of the error correction in terms of the
particle model. In particular, we show that the particle model
itself can be treated as a random classical linear code (CLC),
and numerically compute the contiguous code distance for it.
This observation motivates us to consider other random CLCs
and use similar approaches to construct QECC. We leave this
for the future study.
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APPENDIX A: TWO-SPECIES PARTICLE MODEL

In Ref. [12], we proposed a two-species BAW model which
maps the entanglement dynamics of Z2-symmetric hybrid QA
circuits to the classical dynamics of two kinds of particles per-
forming branching-annihilating random walks (BAW). The
two-species particle model can also be modified and applied
on hybrid QA circuits without Z2 symmetry. Before introduc-
ing the particle model, we will first give an overview of the
classical bit string dynamics.

Recall that the second Rényi entropy S(2)
A = − log2 Tr(ρ2

A).
The purity Tr(ρ2

A) equals the expectation value of the SWAPA

operator over two copies of the state [23,24],

Tr
[
ρ2

A(t )
] = 〈ψt |2 ⊗ 〈ψt |1SWAPA|ψt 〉1 ⊗ |ψt 〉2. (A1)

The wave function can be partitioned into subregions A and B

|ψt 〉 = Ũt |ψ0〉 = Ũt | + x〉⊗L = 1√
2L

∑
i, j

eiθi j |αi〉A|β j〉B,

(A2)

where Ũt = MtUt Mt−1Ut−1 · · · represents the hybrid QA cir-
cuit of depth t as an alternating combination of layers of
measurements and unitary evolution. The SWAPA operator
exchanges the spin configurations |α〉 within subsystem A of
the double copies of |ψt 〉. Then, we insert two sets of complete

basis which we call “bit strings” [14],

Tr
[
ρ2

A(t )
] =

∑
n1,n2

〈ψt |2〈ψt |1SWAPA|n1〉|n2〉〈n2|〈n1|ψt 〉1|ψt 〉2

=
∑
n1,n2

〈ψ0|1Ũ †
t |n′

1〉〈ψ0|2Ũ †
t |n′

2〉

〈n1|Ũt |ψ0〉1〈n2|Ũt |ψ0〉2

= 1

4L

∑
n1,n2

e
−i�n′

1
(t )

e
−i�n′

2
(t )

ei�n1 (t )ei�n2 (t ), (A3)

where

|n′
1〉|n′

2〉 = SWAPA|n1〉|n2〉
= SWAPA|α1β1〉|α2β2〉
= |α2β1〉|α1β2〉. (A4)

Strictly speaking, there does not exist Ũ †
t since the projective

measurements are nonunitary operators. However, we can still
deduce the effective action of the composite measurement on
the bit string,

〈n|Mσ
i |ψ0〉 = 〈n|H ◦ Pσ

i |ψ0〉

= 〈
T σ

i (n)
∣∣ψ0

〉 = 1√
2L

eiθT σ
i (n) , (A5)

where 〈T σ
i (n)| stands for the bit string 〈n| with the spin on

site i forced to be in the σ state. Hence, instead of following
the quantum trajectory of |ψt 〉, we can study the bit string
dynamics in a time-reversed order, i.e., evaluate 〈n|Ũt |ψ0〉
from left to right,

〈n|Ũt |ψ0〉 = 〈n(t ′ = 0)|MtUt Mt−1Ut−1 · · · |ψ0〉
= 〈n(t ′ = 1)|Ut Mt−1Ut−1 · · · |ψ0〉
= eiθn(t ′=1)〈n(t ′ = 1)|Mt−1Ut−1 · · · |ψ0〉
· · ·

= 1√
2L

eiθn(t ′=1) eiθn(t ′=2) · · · eiθn(t ′=t )

= 1√
2L

ei�n (t ), (A6)

where ei�n (t ) is one of the accumulated phase terms un-
der time evolution that are multiplied and summed up over
the ensemble of all the possible bit-string configurations
{|n1〉, |n2〉, |n′

1〉, |n′
2〉} in Eq. (A3) to evaluate Trρ2

A.
In order to understand the dynamics of the relative phase

�r = −�n′
1
− �n′

2
+ �n1 + �n2 , we consider the evolution of

the difference between a bit string pair {|n1〉, |n2〉},
h(x, t ) = |n1(x, t ) − n2(x, t )|. (A7)

It is then natural to use the particle representation where
the empty site symbol ◦ denotes h(x) = 0 and the occupied
site symbol • denotes h(x) = 1. Specifically, we represent the
difference at t = 0 in subregion A (subregion B) by X (Y )
particles. It is easy to check that within the regime occupied
by particles of the same species, under CNOT gate with the first
qubit acting as the control, •◦ ↔ ••, i.e., the particle gives
birth to another particle of the same kind at the neighboring
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t = 0

t > 0

A B

X particle Y particle

(1)

(2)

FIG. 11. An example of the two-species particle model. The
black dots represent X particles, and the red dots represent Y par-
ticles. Initially, X and Y particles are distributed in region A and
B, respectively. Under the time evolution, the two species expand
according to the single-species update rule before they encounter
one another. There are two types of possible particle configurations
in which the two species have not met up to time t : (1) X particles
intrude into B and (2) Y particles intrude into A.

site or kills another if the neighbor is already occupied. On
the other hand, under the composite measurement, • → ◦, i.e.,
the particle annihilates with probability p. Let x denote the
position of the rightmost X particle and y denote the position
of the leftmost Y particle. As shown in Fig. 11, under the time
evolution, the particles start to evolve according to the update
rule. Meanwhile, x and y can also be viewed as the “end parti-
cles” performing biased random walks. Before the two species
encounter each other, the phase generated by each layer of
unitary evolution on |n〉 is θn = θ [1,x]

n + θ
(x,y)
n + θ

[y,L]
n , i.e., the

sum of phases generated within the regimes [1, x], (x, y),
and [y, L]. The bit string configurations within [1, x] occu-
pied by X particles always satisfy n1([1, x]) = n′

2([1, x]) and
n2([1, x]) = n′

1([1, x]). Therefore θ [1,x]
n1

= θ
[1,x]
n′

2
and θ [1,x]

n2
=

θ
[1,x]
n′

1
. Similarly, for the regime occupied by Y particles, since

n1([y, L]) = n′
1([y, L]) and n2([y, L]) = n′

2([y, L]), we always
have θ

[y,L]
n1 = θ

[y,L]
n′

1
and θ

[y,L]
n2 = θ

[y,L]
n′

2
. At the same time, since

there is no bit string difference within the regime (x, y),
θ

(x,y)
n1 = θ

(x,y)
n2 = θ

(x,y)
n′

1
= θ

(x,y)
n′

2
. Therefore the phase difference

along the lattice vanishes: −θn′
1
− θn′

2
+ θn1 + θn2 = 0. If for a

bit string pair {|n1〉, |n2〉}, X and Y particles do not meet each
other up to time t , then the accumulated relative phase �r (t )
is zero and such pair contributes 1/4L to the purity Tr[ρ2

A(t )].
Once the rightmost X particle comes across the leftmost Y

particle, the two-qubit phase gate acting on sites x and y will
generate a nonzero relative phase. For example, if we apply
the CZ gate on •• with a possible corresponding bit string con-
figuration {|n1〉, |n2〉, |n′

1〉, |n′
2〉}x,y = {|10〉, |01〉, |00〉, |11〉}, a

relative phase 0 + 0 − 0 − π = −π is generated. If we apply
the CNOT gate on sites x and y, {|n1〉, |n2〉, |n′

1〉, |n′
2〉}x,y →

{|11〉, |01〉, |00〉, |10〉}, i.e., another type of “particle” dif-
ferent from the two species with bit string configuration
|n1〉y = |n2〉y �= |n′

1〉y = |n′
2〉y appears on site y and will spread

along the lattice under further evolution. As time evolves, the
configurations for which the two species have met will gener-
ate random accumulated phases, half of which are composed
of odd numbers of π , while the other half are composed of
even numbers of π . The accumulated phase terms ei�r of such
configurations will add up to zero and make no contribution

to Eq. (A3). Therefore we have

Trρ2
A(t ) ≈ P(t ),

(A8)
S(2)

A (t ) ≈ − log2 P(t ),

where P(t ) is the fraction of particle configurations in which
X and Y particles never encounter one another up to time t .
This quantum-classical correspondence has been numerically
verified in Ref. [12].

APPENDIX B: ENTANGLEMENT DYNAMICS IN
THE VOLUME-LAW PHASE OF Z2 SYMMETRIC

HYBRID CLIFFORD QA CIRCUIT

In this Appendix, we study the subleading correction term
of the volume-law phase entanglement entropy of the Z2-
symmetric hybrid QA circuit. The Z2 symmetry requires that
the parity of the computational basis remains fixed. This can
be satisfied by measuring the Pauli string Z1Z2 . . . ZL on an
initial product state with L qubits polarized in the +x direc-
tion. We choose a subset of Clifford gates to construct the QA
circuit with Z2 symmetry and the setup is shown in Fig. 12.
The unitary evolution composed of CNOTNOT(CNN) gates
and CZ gates. The CNN gate flips two qubits according to
the value of the third (control) qubit. If the control qubit is on
the left we denote the corresponding gate as CNNL; it acts as

CNNL|1σ1σ2〉 = |1(1 − σ1)(1 − σ2)〉,
CNNL|0σ1σ2〉 = |0σ1σ2〉. (B1)

Aside from the unitary evolution, we also introduce into the
circuit the two-qubit composite measurements defined as

Mσ
L/R = R ◦ Pσ

L/R. (B2)

This measurement is a combination of the projection operator
Pσ

L/R on the left/right qubit into the spin σ = {0, 1}, together
with a two-site rotation operation

R = 1√
2

⎛⎜⎜⎝
1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1

⎞⎟⎟⎠, (B3)

so that the wave function is always an equal weight superpo-
sition of Z2 symmetric computational basis.

As shown in Ref. [12], the competition of the uni-
tary evolution and the composite measurements leads
to an entanglement phase transition from a volume-law
phase to a critical phase as the measurement rate p increases,
and the critical point is pc = 0.335. Here we focus on the
subleading correction of the entanglement entropy in the
volume-law phase p < pc. We first compute the fluctuation of
the steady state entanglement entropy. As shown in Fig. 13(a),
δSA ∝ Lβ1

A with β1 = 0.312 for p = 0.05 and p = 0.1, β1 =
0.256 for p = 0.2. In Fig. 13(b), we compute the fluctuation
of the early time entanglement entropy and find that δSA ∝ tβ2

with β2 = 0.324 for p = 0, β2 = 0.317 for p = 0.05, β2 =
0.289 for p = 0.1 and β2 = 0.214 for p = 0.2. Similar to the
case in the QA circuit without Z2 symmetry, the fluctuation
exponents exhibit a drop from the roughness exponent β =
1/3 as p approaches pc.
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CZ gate
CNN(R) gate

CNN(L) gate

Z measurement Rotation gate

(a)

(b)

FIG. 12. (a) A schematic for the gates appearing in the circuit.
(b) The arrangement of gates in a single time step of the Z2-
symmetric hybrid QA circuit. Each time step involves three layers
of CNN gates and two layers of CZ gates, interspersed with three
measured layers. The dashed box represents a measured layer en-
closing two rows of composite measurements, with the first/second
row containing randomly distributed Mσ

L/R applied on sites (2i −
1, 2i)[(2i, 2i + 1)m] for i ∈ [1, L/2]. As with the CNN gates, the
projection of Mσ

L/R is chosen to be applied on the left/right qubit with
equal probability. In general, the composite measurement appears in
a measured layer with probability p.

APPENDIX C: SINGLE-SPECIES END-POINT
RWRE MODEL

TD-RWRE refers to random walks performed in a
fixed random environment. Different from the diffusions in
time-independent random media where the fluctuations are
of order

√
t , it was found that in the large deviations regime

of TD-RWRE, fluctuations of the logarithm of the transition
probability are distributed with the growth exponent β = 1/3
of the DPRE, i.e.,

log2 P(Xt > ut ) ∼ C1(u)t + C2(u)t
1
3 χ (C1)

at large time, where u > uc = 0 and χ obeys the
GUE Tracy-Widom distribution [27–29]. Hence, the large
deviations regime of TD-RWRE belongs to the KPZ univer-
sality class.

In the two-species particle model, the rightmost X particle
and the leftmost Y particle can be regarded as two end-point
particles performing TD-RWRE since all the configurations
experience the same circuit dynamics. To unravel the problem,
we consider the single-species particle model introduced in

(a)

(b)

FIG. 13. The standard deviation of entanglement entropy of the
Z2-symmetric hybrid Clifford QA circuit. (a) δSA vs LA plotted on a
log-log scale. The data are computed from the steady-state entangle-
ment entropy SA for half-system size LA = L/2 over a variety of L.
The measurement rates are taken to be p = 0.05, 0.1, 0.2. (b) δSA vs
t for p = 0, 0.05, 0.1, 0.2. All of the numerical data for entanglement
entropy are calculated with periodic boundary conditions (PBC).

Sec. III B, in which we focus on the phase difference of |n1〉
and |n′

1〉 in the B region measured by the quantity

1

4LA

∑
α1,α2

e
−i�B

n′
1 ei�B

n1 . (C2)

Denoting the bit-string difference |n1 − n′
1| as particles, it is

obvious that this quantity equals K (t ) which is the fraction
of configurations in which the particles initially located in
regime A never cross the boundary between A and B up to
time t . Therefore we only care about the dynamics of the
end points of each particle configuration and can treat them
as biased random walkers in a fixed random environment.

Based on the above analysis, we propose a single-species
end-point RWRE model. Initially, we place the end points of
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FIG. 14. The standard deviation δN vs t for LA = 1000.

all the particle configurations on the lattice, which results in
a lattice chain fully occupied in A and empty in B. We fur-
ther simplify the problem by assuming that the configurations
with the same end point initially share the same dynamics,
so that each site can be viewed as being occupied by only
one particle at t = 0. At each time step, a random value
ωi ∈ (0, 1) is assigned to each site i on which the particles
have the probability ωi to move to the right. Assume that
when an end point originally located on site i arrives at the
boundary, the end points originally sit on the right of i have
already arrived. Define N (t ) as the number of particles that
have already passed the boundary at time t , the “entanglement
entropy” can be expressed as

− log2 K (t ) ≈ − log2
2LA − 2LA−1 − · · · 2LA−N (t )

2LA

= − log2
2LA−N (t )

2LA
= N (t ). (C3)

N (t ) grows linearly in time and eventually saturates to LA.
In Fig. 14, we compute the standard deviation δN (t ) and find
that it scales as t0.26.

APPENDIX D: PURIFICATION DYNAMICS IN
THE VOLUME-LAW PHASE

In this Appendix, we numerically study the fluctuation
exponent of the purification process of the hybrid Clifford
QA model in the volume-law phase p < pc. We first compute
the fluctuation of the entanglement entropy of subsystem A
in Fig. 15(a) and find that δSA ∝ L0.318

A , with the exponent
0.318 close to the roughness exponent. We can also extract
the subleading term out by computing the mutual informa-
tion between the two subsystems IA,B = SA + SB − SQ. As
shown in Fig. 15(b), IA,B ∝ L0.324

A . This again indicates the
correlation between the volume-law phase of hybrid QA cir-
cuits and the KPZ universality class.

(a)

(b)

FIG. 15. (a) The standard deviation of the entanglement entropy
δSA vs LA plotted on a log-log scale. (b) The mutual information
between the two subsystems IA,B vs LA plotted on a log-log scale. All
of the data are collected from the hybrid Clifford QA circuit at half
system size LA = L/2 for a variety of L at T = 3L and are computed
under PBC.

APPENDIX E: TWO-SPECIES PARTICLE MODEL
OF THE PURIFICATION PROCESS

In order to interpret the purification process in terms of the
two-species particle model, we go back to the bit string picture
and modify Eq. (A3). The wave function can now be expanded
in the basis in subsystems A and B and also the environment
R,

|ψt 〉 = Ũt ◦ CZ|ψ0〉
= Ũt ◦ CZ| + x〉⊗2L

= 1√
4L

∑
i, j,k

eiθi, j,k |αi〉A|β j〉B|γk〉R, (E1)

where the CZ gate acts on both the system and the environ-
ment, creating L EPR pairs, and the following Ũt is the com-
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bination of the hybrid QA circuit applied solely on system Q.
To compute the purity, we can still apply the SWAPA operator
which exchanges the spin configurations |α〉 within subsystem
A of the replicated states, and insert two complete sets of basis
upon which the operators act in a time-reversed order,

Tr(ρ2
A) =

∑
n1,n2

〈ψt |2〈ψt |1SWAPA|n1〉|n2〉〈n2|〈n1|ψt 〉1|ψt 〉2

=
∑
n1,n2

〈ψ0|1CZ ◦ Ũ †
t |n′

1〉〈ψ0|2CZ ◦ Ũ †
t |n′

2〉

× 〈n1|Ũt ◦ CZ|ψ0〉1〈n2|Ũt ◦ CZ|ψ0〉2

= 1

42L

∑
n1,n2

e
−i(�n′

1
+�n′

1
)
e
−i(�n′

2
+�n′

2
)

× ei(�n1 +�n1 )ei(�n2 +�n2 ), (E2)

where

|n′
1〉|n′

2〉 = SWAPA|n1〉|n2〉 = SWAPA|α1β1γ1〉|α2β2γ2〉
= |α2β1γ1〉|α1β2γ2〉. (E3)

Here �n is the accumulated phase generated by the circuit
within system Q of the bit string |n〉, and �n is the phase
generated by the CZ gate acting on both Q and R of the
time-evolved bit string Ũt |n〉.

Based on the analysis in Appendix A, only the bit string
configurations {|n1〉, |n2〉, |n′

1〉, |n′
2〉} whose total accumulated

phases are zero can contribute to Tr(ρ2
A). We can take a

further step by assuming that only the configurations satisfy-
ing �r = −�n′

1
− �n′

2
+ �n1 + �n2 = 0 and �r = −�n′

1
−

�n′
2
+ �n1 + �n2 = 0 contribute to the purity. The for-

mer constraint is met when |n1(t )〉 = |α1β1γ1〉 = |n′
1(t )〉 =

|α′
2β

′
1γ1〉, and |n2(t )〉 = |α2β2γ2〉 = |n′

2(t )〉 = |α′
1β

′
2γ2〉. In the

particle language, it means that the particles representing the
bit-string difference |n1 − n′

1| completely die out at time t .
Meanwhile, the latter constraint is the same as in the entan-
glement dynamics, i.e., the X and Y particles representing the
difference |n1(x, 0) − n2(x, 0)| in A and B respectively never
encounter each other up to time t . To summarize, we only
need to count the configurations for which X and Y particles
do not meet and X particles have become extinct at time t . Let
the fraction of such configurations be P1, the entanglement
entropy of the subsystem A is then

S(2)
A (t ) ≈ − log2 P1(t ). (E4)
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