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Influence of local symmetry on lattice dynamics coupled to topological surface states
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We investigate coupled electron-lattice dynamics in the topological insulator Bi2Te3 with time-resolved
photoemission and time-resolved x-ray diffraction. It is well established that coherent phonons can be launched
by optical excitation, but selection rules generally restrict these modes to zone-center wave vectors and Raman-
active branches. We find that the topological surface state couples to additional modes, including a continuum
of surface-projected bulk modes from both Raman and infrared branches, with possible contributions from
surface-localized modes when they exist. Our calculations show that this surface vibrational spectrum occurs
naturally as a consequence of the translational and inversion symmetries broken at the surface, without requiring
the splitting-off of surface-localized phonon modes. The generality of this result suggests that coherent phonon
spectra are useful by providing unique fingerprints for identifying surface states in more controversial materials.
These effects may also expand the phase space for tailoring surface state wave functions via ultrafast optical
excitation.
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I. INTRODUCTION

A goal of condensed matter physics is to tailor elec-
tronic states on demand using ultrafast pulses of light [1].
Topological materials provide an appealing platform for this
approach, with their nontrivial surface states offering potential
applications ranging from spintronics to quantum computing
[2–5]. Strategies range from “Floquet engineering,” which
employs the periodic electric field within the pulse [6–10], to
“lattice engineering,” in which electronic wave functions are
modified through light-induced structural distortions [10–18].
For the latter, it is broadly relevant to understand the path-
ways through which ultrafast pulses interact with the crystal
lattice and the resulting effects on the topological surface
states.

Ultrafast lattice excitation may drive coherent phonon
motion [19,20], which by virtue of the electron-phonon inter-
action, is accompanied by oscillations in the binding energies
of electronic states [21]. Coherent phonons in bulk ma-
terials are characterized by wave vector q ≈ 0 [22], and
are driven by Raman excitation mechanisms [20,23]. The
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femtosecond-scale lattice and electron dynamics can be sepa-
rately measured by time-resolved x-ray diffraction (trXRD)
and time- and angle-resolved photoemission spectroscopy
(trARPES), respectively. This combination of techniques
provides electronic band, momentum, and phonon mode
specificity [24,25], constituting a powerful toolset for investi-
gating how electronic states respond to coherent lattice motion
initiated by ultrafast optical excitation.

Previous trARPES studies on topological materials (such
as Bi2Se3, Bi2Te3, and the related materials Bi and Sb) have
observed coherent phonons [26,27], with some reporting a
contrast between the response of bulk and surface states
[28–30]. As this difference could provide a handle for se-
lective control over the surface states, it is important to have
a more general understanding of how disparate bulk/surface
responses may be driven by optical excitation.

Here we report combined trARPES and trXRD measure-
ments of coherent phonons in the prototypical topological
insulator Bi2Te3. We observe additional frequencies cou-
pling to the surface states as compared to the bulk states,
which are also not observed in bulk-sensitive probes. This
behavior is reproduced in density functional theory calcu-
lations, and corroborated by measurements on Bi2Se3. We
describe how the photoexcited surface vibrational spectrum

2469-9950/2023/107(1)/014305(13) 014305-1 ©2023 American Physical Society

https://orcid.org/0000-0002-8044-1935
https://orcid.org/0000-0002-7341-383X
https://orcid.org/0000-0002-1571-8352
https://orcid.org/0000-0002-3270-1464
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.014305&domain=pdf&date_stamp=2023-01-12
https://doi.org/10.1103/PhysRevB.107.014305


JONATHAN A. SOBOTA et al. PHYSICAL REVIEW B 107, 014305 (2023)

FIG. 1. (a) Schematic of time-resolved ARPES measurements on Bi2Te3 to measure electronic binding energy oscillations. (b) ARPES
spectrum along the �K direction before and (c) after excitation at the pump-probe delays indicated. The bulk conduction band and most of
the surface state are unoccupied in equilibrium, but become partially filled by the excitation. (d) Time-dependent shift in the binding energy
of the bulk conduction band and (e) surface state within the energy-momentum windows indicated by dashed lines in (c). (f) Magnitude of
the Fourier transform of the bulk conduction band and (g) surface state dynamics after subtracting a slowly varying background (6th order
polynomial for the bulk and exponential for the surface). Points are from the data and lines are fits (see Sec. B for fitting methodology and
Table I for fit parameters). The arrows highlight two modes observed in the surface state but not in the bulk.

can be understood as a continuum of surface-projected bulk
modes, including both Raman and infrared branches, with
possible contributions from surface-localized phonon modes
when they exist. This contrasts the expectation from con-
ventional (bulk-sensitive) optical pump-probe experiments, in
which only a discrete number of Raman-active modes with
q ≈ 0 are observed. Our work offers a comprehensive view
of how optical excitations drive coherent motion in the local
symmetry-broken environment of the surface, and provides a
useful framework for identifying and manipulating topologi-
cal states with coherent phonons.

II. METHODS

The trARPES system is based on a Ti:sapphire regenerative
amplifier outputting 1.5 eV, 35 fs pulses at a repetition rate
of 312 kHz. The photon energy of 1.5 eV is used to pump
and its fourth harmonic at 6.0 eV is used to probe, as shown
in Fig. 1(a). The pump and probe, both p-polarized, were fo-
cused to spot sizes 80 × 82 and 47 × 49 µm2 full width at half
maximum, respectively, at an incident angle 50◦ with respect
to normal. The incident pump fluence (not accounting for
sample absorption) was 0.36 mJ/cm2, and the time resolution
was measured to be 66 fs from a cross-correlation between
pump and probe. The energy resolution was ∼35 meV. Sam-

TABLE I. Fitting parameters for Figs. 1(f) and 1(g).

Bulk Surface

f [THz] τ [ps] f [THz] τ [ps]

- - 1.73 ± 0.02 1.3 ± 0.2
1.910 ± 0.003 22 ± 9 1.904 ± 0.004 7 ± 1
- - 3.40 ± 0.01 2.7 ± 0.5
4.20 ± 0.02 2.1 ± 0.5 4.195 ± 0.005 2.9 ± 0.2

ples were single crystals of Bi2Te3 cleaved in situ. The sample
temperature was set to 27 K, with average heating from the
pump leading to an effective measurement temperature of
86 K as estimated from the Fermi-Dirac distribution measured
before t0.

The trXRD measurements were performed at the Linac
Coherent Light Source at SLAC National Accelerator Labo-
ratory with 1.5 eV pump (p-polarized with incident fluence of
8.2 mJ/cm2) and 9.5 keV probe. The pump and probe were
incident at 2◦ and 0.5◦ with respect to the sample surface,
respectively (grazing incidence). The Bi2Te3 sample was a
50 nm film grown by MBE on a BaF2 substrate, with the
trigonal axis perpendicular to the surface, and measured at
room temperature.

We carried out simulations on a five quintuple layer (QL)
slab with the ABINIT code [31,32] using the local density
approximation [33] and the HGH pseudopotentials [34]. The
interatomic force constants matrix was explicitly obtained on
the 5 QL system using DFT ground state calculations, while
atomic forces due to photoexcitation were computed using
constrained DFT in the one chemical potential approach [35].
The force matrix was then extended to a thicker 500 QL slab
to study the behavior of phonons near the surface before cal-
culating the resulting motion in a dynamical matrix formalism
(see Sec. A for details).

III. RESULTS

The trARPES spectra of Bi2Te3 before and after optical
excitation are shown in Figs. 1(b) and 1(c), respectively. The
spectral features can be readily assigned by comparison to
conventional ARPES measurements [36]. The spectrum be-
fore excitation indicates p-type doping due to the Fermi level
EF being pinned near the top of the valence band (broad
M-shaped band below EF). The surface state (V-shaped band
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FIG. 2. (a) Time-resolved x-ray diffraction measurement to mea-
sure coherent lattice dynamics. [(b)–(d)] Time-dependent relative
change in the intensities of the (h k l ) = (4 4 5), (5 5 6), and
(3 3 4) Bragg peaks. [(e)–(g)] The corresponding Fourier trans-
forms after exponential background subtraction. Points are from
the data, and solid lines are a fit. Two modes are observed, with
(h + k + l )-dependent amplitudes consistent with modes of A1

1g and
A2

1g symmetries.

centered at �) is only partially occupied, and the conduc-
tion band is completely unoccupied. After excitation, a hot
electron distribution extends 100s of meV above EF [37,38],
allowing the conduction band (parabola above EF + 0.2 eV)
to be measured. The time evolution reveals pronounced os-
cillations in the binding energy of all bands (see movie in
Ref. [39]). We fit the energy distribution curves (EDCs) as
a function of delay and parallel momentum k||. To enhance
the signal-to-noise, we average the fit results within the k||
windows indicated by dashed lines in panel (c). The resulting
binding energy shifts are shown in Figs. 1(d) and 1(e) for the
bulk conduction band and surface state, respectively.

To isolate the oscillatory components, we subtract the
slowly varying backgrounds and plot the amplitude of the fast
Fourier transforms (FFT) in Figs. 1(f) and 1(g). The bulk FFT
is well described by a fit consisting of two damped harmonic
oscillators, while the surface FFT is fit with two additional
peaks (see Sec. B for our methodology for fitting the real and
imaginary parts of the FFT). The frequencies f and damping
time constants τ from the fits are reported in Table I. Due
to the similarity of their frequencies, we identify the two bulk
modes near 1.9 and 4.2 THz with the second and fourth modes
observed in the surface state. The same two modes appear in
transient optical reflectivity measurements (Sec. C 2).

We used trXRD [Fig. 2(a)] to characterize the lat-
tice distortions associated with these modes. With five
atoms per rhombohedral unit cell, the optical modes trans-
form as 2A1g + 2Eg + 2A1u + 2Eu, with the A-modes giving
out-of-plane (c-axis) displacements and E-modes in-plane
[40]. By measuring 6 distinct Bragg peaks, the measurements
fully constrain the eigenvectors describing c-axis deforma-
tions. Figs. 2(b)–2(d) show the transient diffracted intensities
of the (4 4 5), (5 5 6), and (3 3 4) Bragg peaks (see Sec. C for
others), with the corresponding FFTs in panels (e)–(g). Two
modes are observed at frequencies of 1.85 and 3.60 THz, and
their contributions are strongly Bragg-peak dependent. The
Bragg peak dependence for both modes is well described by
distortions of A1

1g and A2
1g symmetries, as sketched in Fig. 2(a)

(see Sec. C for structure factor analysis).
Due to their appearance in bulk-sensitive trXRD measure-

ments, we identify these two modes with those found in the
bulk bands measured in trARPES. The fact that the modes
measured in trXRD have lower frequencies than those in
trARPES is a combined effect of the trXRD measurements
being performed at higher temperature and higher fluence, as
described in Sec. C 1. The assignment to A1

1g and A2
1g modes

agrees with the conclusions of previous Raman [40–42] and
transient reflectivity [43] experiments. The absence of the 1.73
and 3.40 THz modes indicates that those modes are associated
with near-surface vibrations.

To gain insight into the disparate surface response, we
performed photoexcited slab calculations for Bi2Te3 with out-
of-plane lattice degrees-of-freedom. In Fig. 3(a), we plot the
FFT of the displacement of the Bi atom in the surface quintu-
ple layer (“surface”) and in the center (“bulk”) of the slab. The
Bi atoms in the bulk oscillate with frequencies of 1.83 THz
and 4.10 THz, with no additional modes observed. In contrast,
the Bi atoms at the surface exhibit a broadened response below
1.8 THz, with an additional feature near 3.4 THz. Next we
used DFT to compute the time-dependent electronic structure
resulting from this lattice motion. We extract the binding
energy of the surface state at the �-point as a function of time
delay, and plot the FFT in Fig. 3(b), directly compared to the
trARPES measurement. The remarkable agreement demon-
strates that our calculations capture the dynamics governing
the surface state response. To confirm the reproducibility, we
performed the same set of calculations for Bi2Se3 in Figs. 3(e)
and 3(f), including a comparison to trARPES results from
the literature which observed a splitting of the A1

1g peak [29].
Overall agreement is again observed, though higher frequency
modes were not observed in Ref. [29] due to the poorer
time resolution of that experiment combined with a weaker
response in Bi2Se3.

Having shown that DFT calculations capture the lattice
dynamics coupled to the surface state, we now seek a deeper
explanation. We begin by comparing to the surface-projected
phonon density of states (DOS) at �. This is plotted in
Fig. 3(c) for the full slab and for the surface QL only. For ref-
erence, the bulk dispersion and mode assignments are shown
in (d). Isolated peaks in the surface DOS signify the existence
of surface-localized phonon modes. These modes split off
from the bulk branches at the Brillouin zone boundaries and
agree with the additional frequencies observed in the surface
state; namely, the A1

1g branch at the Z point and the A1
1u-branch
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FIG. 3. Theoretical calculation of surface and bulk lattice dy-
namics in Bi2Te3 and Bi2Se3 using DFT and a dynamical matrix
formalism. (a) Fourier transforms of the Bi atomic motion at the
surface and center (“bulk”) of the slab. (b) The calculated response
of the surface state compared to the trARPES data for the surface
state [reproduced from Fig. 1(g)], showing overall agreement. (c) �-
projected density of states of the full slab and for the top QL only.
Arrows denote surface modes outside the bulk continuum. (d) Bulk
phonon dispersion curves along �-Z. [(e)–(h)] Same set of analysis
repeated for Bi2Se3, exhibiting similar phenomenology. Experimen-
tal data for Bi2Se3 in (f) reproduced from Ref. [29].

at the � point. The same observations apply for Bi2Se3, as
shown in Figs. 3(g) and 3(h).

Surface phonons in Bi2Te3 and Bi2Se3 have been identi-
fied previously by helium-atom scattering, slab calculations
[44,45], and transient optical second-harmonic spectroscopy
[46], so their appearance here is not surprising. However, it
is well known that the existence of surface-localized phonons
depends sensitively on the details of the surface termination
[47,48]. Moreover, it is unclear how these modes, particularly
those derived from infrared-active branches, are driven by an
optical excitation. To examine these subtleties, we simulate
the simplest model system with both Raman and infrared
modes: a classical, semi-infinite 1D chain of trimers, as shown
in Fig. 4(a). To mimic photoexcitation, which must be spa-
tially homogeneous on atomic length scales and only couple
to Raman-active modes, the initial conditions are set to sym-
metrically displace the outer atoms of each trimer with respect
to the center one, corresponding to a qz = 0, A1

1g mode (see
arrows). The bulk dispersion and surface-projected DOS are
plotted in Figs. 4(b) and 4(c), respectively.

We now consider three scenarios: (d) surface softening, in
which the spring constants k1 in the top layer are reduced by
2%, (f) no surface perturbation, and (h) surface hardening,
with the surface k1 increased by 2%. In each case we plot
the surface DOS, with the frequency range spanned by the
bulk DOS shaded in gray, for reference. This reveals the
characteristic sensitivity of surface phonons to surface condi-
tions: in the softened case, localized modes split off from the
bulk continuum, whereas in the hardened case, those modes
overlap the continuum and form broadened resonances.

The FFTs of the ensuing atomic motion for an atom at
surface (blue) and in the bulk (red) are shown in Figs. 4(e),
4(h) and 4(k) for the three respective scenarios. The bulk
spectra are independent of the surface conditions and exhibit
a single peak at the frequency of the A1g mode at qz = 0,
as generally expected for optical excitation. Despite the dra-
matic difference in surface DOS between these scenarios, the
surface atomic motion is qualitative similar, with additional
peaks near the Z-point frequency of the A1g branch and �-
point frequency of the A1u branch. Only the ratio of peak
amplitudes, and their precise frequencies, is affected by the
degree of surface perturbation. In all cases, these additional
peaks drop off rapidly away from the surface [panels (f), (i),
and (l)].

IV. DISCUSSION AND CONCLUSIONS

From our photoexcited slab analysis (Fig. 3) and sim-
ple model (Fig. 4), we can draw several conclusions about
the behavior of photoexcited surfaces. First, despite the long
lengthscale of the excitation, the boundary conditions allow
localized vibrations to be driven at the surface. Of course,
experimental observation requires a probe sensitive to near-
surface displacements; photoemission from the surface state
of a topological insulator is suitable because its wave func-
tion is largely localized within the top QL [49]. Second, this
motion involves both infrared- and Raman-active branches,
despite the Raman-selectivity of the excitation. And finally,
our toy model reveals that these observations are independent
of the microscopic details of atomic bonding at the sur-
face, which only quantitatively affect the spectrum of the re-
sulting motion. In particular, additional peaks in the surface
state spectrum do not imply the existence of split-off surface
modes.

It is enlightening to build upon this phenomenologi-
cal description with a rigorous mathematical foundation. In
Sec. A 1, we analytically compute the photoexcited motion
of a one-dimensional chain which optionally supports local-
ized surface modes. The main conclusion is that the surface
atomic motion is describable as a summation over surface-
localized modes (when they exist) plus the surface-projected
bulk phonon DOS along �-Z . The latter reflects the fact that
each bulk mode is a standing wave which is delocalized across
the entire crystal. Therefore, the localized motion of surface
atoms must necessarily include a superposition over a contin-
uum of bulk modes.

These principles are well known in helium atom scattering
and electron energy loss spectroscopy [47,48]. In these ex-
periments, the colliding particles have appreciable momentum
(∼1 Å−1) and short range (<1 nm) interaction lengths, which
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FIG. 4. Classical semi-infinite one-dimensional chain of trimers, representing the minimum model containing Raman and infrared
phonons. (a) Cartoon of the model. All atoms have identical masses m, connected by spring constants k1/m = (2π )2(1 THz)2 and k2/m =
(2π )2(0.8 THz)2. At t = 0 the trimers are uniformly distorted throughout the chain (see �x arrows) corresponding to excitation of the A1g

optical phonon with qz = 0. (b) Phonon dispersion and (c) density of states for the bulk. (d) Surface density of states and (e) FFT of resulting
motion for a bulk (red) and surface (blue) atom for the case in which the surface k1 are softened by 2%. A damping time of 20 ps is used. (f)
The amplitude of the low-frequency and high-frequency peaks relative to the central peak, plotted versus layer number. Corresponding plots
for the unperturbed surface are shown in (g)–(i), and for the 2% hardened surface in (j)–(l).

allows them to generate localized excitations at all wave
vectors. In contrast, the optical excitations employed in an ul-
trafast experiment have negligible momentum (∼10−3 Å−1),
are spatially homogeneous over atomic length scales (>10 nm
penetration depth), and couple to lattice excitations rather
indirectly through Raman processes. It is therefore a priori
not obvious that optical photons should be capable of driving
similar lattice excitation spectra, including the full surface-
projected bulk DOS and modes of infrared symmetry. These
results follow from the generically broken symmetries at a
surface: (1) the loss of translational symmetry requires the
participation of a broad superposition of bulk modes, and (2)
the loss of inversion symmetry locally lifts the distinction
between Raman-active and infrared-active modes.

As mentioned, the existence of localized modes can depend
sensitively on microscopic details, and requires careful exper-
imentation and modeling to discern [44,45]. Empirically, it is
useful to note that surface-localized phonon frequencies often
split only weakly from the bulk continuum, which implies
that bulk phonon dispersions can be useful for identifica-
tion of frequencies in surface coherent phonon data. For the
A1

1g branch of Bi2Te3, neutron scattering determined bulk

frequencies of 1.93 and 1.65 THz at � and Z , respectively
[50], which compare favorably to the frequencies of 1.90 and
1.73 THz observed at the surface here. This picture extends
beyond Bi2Se3 and Bi2Te3. For example, a recent trARPES
work detected an additional coherent mode coupling to the
surface state of Sb with a frequency 12.7% higher than its bulk
counterpart [30], to be compared with neutron scattering,
which measured a ∼12% higher frequency at the zone bound-
ary compared to the � point.

Returning now to the observation of an infrared-mode,
the assignment of the 3.40 THz peak to an A1

1u mode has
been the subject of some debate in the literature. A num-
ber of Raman studies detected modes near this frequency in
nanocrystals or thin films, and identified it as the A1

1u mode
becoming Raman-active due to the reduced dimensionality of
the samples [51–59]. However, this interpretation has been
challenged by Raman studies on bulk Bi2Se3 and Bi2Te3,
where the mode was assigned to a surface phonon [60]. As
we discussed above, the surface coherent phonon spectrum
is quite insensitive to microscopic surface details, so our re-
sults are agnostic as to whether a localized mode is indeed
split off.
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FIG. 5. Complementary sensitivities of multimodal probes. Near
the surface (within the top quintuple layer), atomic motion in-
volves the surface-projected bulk phonon spectrum with infrared-
and Raman-active branches in addition to surface-localized modes.
These oscillations are probed by trARPES measurements of the
surface state. Deep within the bulk, only Raman-active modes at
qz = 0 are excited. These are probed by trARPES measurements of
the bulk states, as well as trXRD and transient optical reflectivity. The
different frequency of the A2

1g mode in XRD is due to its different
measurement temperature and fluence.

As summarized in Fig. 5, our results highlight the power of
multimodal probes, in which the complementary sensitivities
of different techniques are exploited to form a comprehensive
understanding of an underlying phenomenon. The concepts
invoked here have broadly-applicable predictive power for
understanding surface dynamics, and establish a more general
framework than previous approaches, which computed only
local energy landscapes rather than consider the bulk/surface
phonon structure in entirety [29]. For the case of topological
insulators specifically, these phenomena offer a practical spec-
troscopic application: in more controversial materials, where
the existence of a surface state is in dispute, we propose that
the coherent phonon spectrum may provide a fingerprint by
which to unambiguously distinguish surface from bulk states.
From the “ultrafast control” point-of-view, our results imply
that surface states can be modulated at frequencies separate
from those of the bulk states. This may enable double-pulse
coherent control schemes to “cancel” the atomic motion in
the bulk, while simultaneously allowing the surface atoms
to independently oscillate [61]. The ability to create surface-
localized perturbations should bolster efforts to tailor surface
state wave functions using ultrafast pulses.

TABLE II. Bi2Te3 and Bi2Se3 lattice parameters taken from
Ref. [62]. a and c are the hexagonal lattice constants, and u and ν are
the internal parameters describing the position of the atoms inside
the unit cell.

a c u ν

Bi2Te3 4.386 Å 30.497 Å 0.4000 0.2095
Bi2Se3 4.143 Å 28.636 Å 0.4008 0.2117
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APPENDIX A: COMPUTATION DETAILS

Density functional theory (DFT) and constrained DFT
(CDFT) calculations are performed in the local-density
approximation (LDA) [33] employing the Hartwigsen-
Goedecker-Hutter (HGH) norm-conserving pseudopotentials
[34] using the ABINIT code [31,32]. All calculations are carried
out using the experimental lattice parameters given in Table II.
Atomic positions are fully relaxed along the [001] direction
while keeping the in-plane lattice parameters fixed to exper-
imental values. Spin-orbit coupling (SOC) is included in all
calculations. For electronic band structure calculations, Bril-
louin zone (BZ) integrations are performed on a 12 × 12 × 1
Monkhorst-Pack (MP) k-point mesh in the slab calculations
and 8 × 8 × 8 mesh in the bulk calculations. An energy cutoff
for the plane waves of 15 Ha is used.

In order to simulate the surface state energy in response
to longitudinal lattice dynamics in a Bi2X3 (X = Te,Se) slab
after photoexcitation, we build a one-dimensional chain model
in the out-of-plane direction using the calculated interatomic
force constants matrix (Ki, j) from DFT. The force constants
are used to construct the dynamical matrix (Di, j) given by

Di, j = Ki, j√
MiMj

, (A1)

where i and j are the atomic layer index and Mi is the mass
of the atom in layer i. DFT calculations are carried out for
the 5-QL slab. We construct the dynamical matrix for the
500-QL slab using the dynamical matrix for the 5-QL slab in
the following way. First, we neglect the interactions between
the QL that are not the nearest neighbors in the 5-QL slab.
Then we assume that the interatomic forces of the two top
and bottom QL in the 500-QL slab are the same as those in
the 5-QL slab, while the force constants for the other QL
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TABLE III. Electronic temperatures (in Kelvin) in the one-
chemical potential constrained density functional theory calculation
for the fixed density of photoexcited carriers of nc = 0.1%.

Bulk 5-QL slab

Bi2Te3 1610.43 1616.46
Bi2Se3 981.48 1211.52

of the 500-QL slab are the same as those in the middle QL
of the 5-QL slab. By diagonalising the dynamical matrix for
the 500-QL slab, we get the normal modes (normalized eigen-
vectors) and the frequency of the normal modes (square root
of the eigenvalues). After the normal modes and frequencies
are obtained, we can calculate the longitudinal motion of each
atomic layer in the slab following photoexcitation.

To simulate the experimental conditions, we calculate
atomic forces induced by a sudden promotion of valence
electrons to unoccupied bands. We start with the equilib-
rium atomic positions for the ground state system, and then
we calculate the resulting forces using constrained density
functional theory [35], taking that 0.1% of valence electrons
are promoted to conduction band (for bulk calculations) or
the surface states (in the case of a slab). First, the atomic
forces are computed for the 5-QL slab and then extended
to the 500-QL slab. In performing this expansion, the forces
for the top two and bottom two QLs remain unchanged. The
forces for the central QL are taken to be bulk-like and thus
applied to the remaining 496 QLs. The resulting motion of the
500-QL slab is computed using the dynamical matrix formal-
ism, as detailed below. In the CDFT calculations we assume
one chemical potential, i.e., electron and hole populations
thermalize rapidly according to the Fermi-Dirac distribution.
The electronic temperatures corresponding to nc = 0.1% are
summarized in Table III.

In the CDFT calculations, the 5-QL system is photoexcited
and the change in force on each atomic layer of the slab is
obtained (Fi). The equation of motion for each atomic layer
after photoexcitation is given by

Miẍ = −
∑

j

Ki, jx j + Fi, (A2)

where Fi is the force on the atom i in the ground-state position
due to photoexcitation. We transform the equation of motion
to scaled coordinates, ui = √

Mixi, then transform these into
the normal mode coordinate representation: ui = ∑

λ aλuλ
i ,

where λ is the normal mode index and uλ
i is the (normalized)

eigenvector of the dynamical matrix (in the atomic basis) for
mode λ. The equation of motion in Eq. (A2) becomes

üi = −
∑

j

Di ju j + Fi√
Mi

. (A3)

By taking the inner product of this set of equations with the
eigenvector uλ, we find

äλ = −ω2
λaλ + fλ, (A4)

where fλ is the projection of the photoexcited forces on the
phonon mode λ, i.e, fλ = ∑

i uλ
i

Fi√
Mi

. Using the initial condi-

tions aλ(t = 0) = 0 and ȧλ(t = 0) = 0, we find that

aλ(t ) = fλ
ω2

λ

(1 − cos (ωλt )). (A5)

We calculate the motion of each atomic layer as

ui(t ) =
∑

λ

aλ(t )uλ
i . (A6)

Note that to account for phonon lifetime τ , we add a decay
of the motion with time: ui(t ) −→ ui(t )e− t

τ . In our model,
the lifetime of all phonon modes is taken to be 3 ps, which
is the same order of magnitude as in our experiments (see
Table I). Different values of the phonon lifetime do not change
our results qualitatively.

To calculate the motion of the surface state energy as a
function of the wave vector k, we couple atomic layers to
the surface state energy. This is done by moving the atoms
in each atomic layer of the 5-QL slab and computing how the
surface state energy changes using DFT. In these calculations,
we use the vacuum level of the Hartree potential to align the
energies of electronic states. To obtain energy changes due to
individual atomic motion for the 500-QL slab, we assume that
those of the top and bottom three QL are the same as in the
5-QL slab, and that they are zero in the other QL. This is a
reasonable assumption since the energy changes in the middle
QL of the 5-QL slab are an order of magnitude smaller than
those for the outer QL, and since it is expected that atomic
motion in the inner layers of thick slabs does not couple with
the surface states whose wave functions are confined to a
few outer QL only. The motion of the surface state energy
is calculated by

ESS
k (t ) =

∑
i

dESS
k

dui
ui(t ), (A7)

where dESS
k /dui is the deformation potential of the surface

state calculated using DFT for the surface state in the vicinity
of the �̄ point in the Brillouin zone (1/150 of the distance
between the �̄ and M points from the �̄ point). Our results do
not change qualitatively if a different point along the �̄-K and
�̄-M lines is taken.

Finally, the time evolution of the atomic layer displacement
ui and the surface state energy ESS

k is Fourier-transformed into
the frequency domain over the period of 100 ps with 104 time
steps.

1. Surface layer excitation in a simplified,
nearest-neighbor model

In this section, we analytically demonstrate that the motion
of an atom at a photoexcited surface is comprised of localized
surface modes (when they exist), plus a broad continuum of
surface-projected bulk phonons modes. It is useful to look
at a simplified model in which an optical phonon branch is
treated in a nearest-neighbor coupling approximation. Let uj

( j = 1, . . . , N) be the displacement of the local mode in the
jth layer. The equations of motion for the interior layers are

ü j = −	2u j − α(u j−1 + u j+1)
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for j = 2, . . . , N − 1. For the surface layers,

ü1 = −[	2 + �]u1 − α u2,

üN = −[	2 + �]uN − α uN−1,

where 	 is the optical mode frequency and α describes
the coupling between neighboring layers. The parameter �

allows for tuning the near-surface spring constants. This
tight-binding formulation should be a good approximation
to physical systems whenever an optical phonon branch is
decoupled from neighboring branches. It is mathematically
equivalent to a 1D chain of dimers with intralayer spring
constant k1 and interlayer spring constant k2, which can be
seen by equating 	2 = 2k1/m + k2/m and α = k2/2m. The
change in surface spring constant is �k1 = (α + �)/2m; that
is, the surface spring constant is unperturbed for � = −α.

The solutions are standing waves with wave vector q,
where the displacement in layer j is

uj,q =
√

2

N
sin(q j + δ) cos(ωt ).

Substituting into the equations of motion for interior, we see
that the frequency ω is given by

ω2 = 	2 + 2α cos q. (A8)

The phase shift δ is determined by matching the equations of
motions for the interior and left surface layers, which gives
the condition:

tan δ = � sin q

α − � cos q
.

The boundary condition at the right surface is identical,
which gives the quantization condition for allowed wave vec-
tors qm:

qm = 1

N
(mπ − 2δm), where m is a positive integer.

Note that

dδ

dq
= (α/�) cos q − 1

(α/� − cos q)2 + sin2 q
.

is everywhere a well-behaved function, so successive values
of q from 0 to π can be generated numerically starting from
q0 = 0 by

qm+1 = qm + π

N + 1 + 2 dδ
dq

,

where dδ
dq is evaluated at the estimated mid-point, q = qm +

π/(2N + 2), between qm and qm+1.
If |�| < |α| and, therefore, the difference is relatively

small between the local mode frequency in the surface layer
and that in the bulk layers, the phase shift δ can be chosen
to be a smooth function of q and lie always, either in the
range (0, π/2) or in the range (−π/2, 0), depending on the
sign of �/α, but never reaching the limit, δ = ±π/2, with
δ = 0 at both q = 0 and q = π . In this case, there are N
distinct allowed values of q lying in the range (0, π ) and these
standing wave solutions include all N normal modes of the
system. (For the threshold case, � = α, δ = (π − q)/2 for

0 < q < π , and for the other threshold, � = −α, δ = −q/2
for 0 < q < π .)

On the other hand, if |�| > |α| and the local mode fre-
quency at the surface is significantly different from the bulk,
tan δ diverges when α − � cos q = 0 and, if δ is a smooth
function of q, it must vary over the range (−π, 0), being equal
to 0 at q = 0 and equal to −π at q = π . This reduces to N − 2
the number of allowed values of q that satisfy the boundary
conditions, so that, in order to make up the full total of N
normal modes, one normal mode must be localized at each
surface. The (normalized) mode at the left surface has the
form:

u j,loc =
(

α

�

) j−1√
1 − (α/�)2,

where we have assumed that N ln |�/α| � 1 and interaction
between localized modes on the right and left surfaces can be
neglected. The frequency ωloc of the localized surface mode
satisfies

ω2
loc = 	2 + � + α2

�
= 	2 + α

(
�

α
+ α

�

)
, (A9)

which, as expected, lies outside the range [	2 − 2|α|,	2 +
2|α|] of the bulk mode frequencies-squared.

Let us now examine the effect of photoexcitation. We as-
sume that photoexcitation causes the equilibrium value of the
A1

1g coordinate u in all unit cells to shift suddenly by a at time
t = 0. Then we can find the induced motion by projecting the
uniform function, u j = a, onto each normal mode u j,m:

am = a
N∑

j=1

u j,m.

The induced displacement in layer j as a function of time is
then

u j (t ) =
∑

m

amuj,m[1 − cos(ωmt )],

where ωm is the frequency of normal mode m. For the bulk
modes, which we label by allowed vectors qm,

am = a

√
2

N

N∑
j=1

sin(qm j + δm)

= a

√
2

N

cos(δm + qm/2)

sin(qm/2)
, form odd,

and am = 0 for m even. For the localized surface mode (when
it exists),

aloc = a

√
1 −

(
α

�

)2 ∞∑
j=1

(
α

�

) j−1

= a

√
1 + α/�

1 − α/�
.

Thus the displacement in layer j as a function of time, due to
the bulk modes, is

u j (t ) =a
2

N

N/2∑
l=1

sin(q2l−1 j + δ2l−1)

× cos(δ2l−1 + q2l−1/2)

sin(q2l−1/2)
[1 − cos(ω2l−1t )],
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where ω2
2l−1 = 	2 + 2α cos(q2l−1). This includes all normal

modes when |�| < |α|, but when the localized surface mode
exists we must add its contribution to the bulk modes:

uloc
j (t ) = a

(
1 + α

�

)( α

�

) j−1
[1 − cos(ωloct )].

Taking the limit N → ∞, we can replace the summation over
l with an integral over frequency:

u j (t ) = a

|α|π
∫ √

	2+2|α|
√

	2−2|α|

sin (q j + δ) cos (δ + q/2)

sin q sin (q/2)

× [1 − cos(ωt )]ω dω,

where

q = cos−1

(
ω2 − 	2

2α

)
,

δ = tan−1

(
� sin q

α − � cos q

)
.

In this integral form, it is clear that the power spectrum of
oscillations in layer j is the integrand:

Pj (ω)

a
= − 1

|α|π
ω sin (q j + δ) cos (δ + q/2)

sin q sin (q/2)
. (A10)

Equation (A10) is the main result of this section. In general,
it shows that all wave vectors q are required to describe the
motion of an atom in a material upon photoexcitation. It
can be cast into a more transparent form by considering the
case of an unperturbed surface (� = −α), which represents
the threshold for splitting off a surface mode. In this case,
the mathematics simplify considerably, and Eq. (A10) can be
rewritten at the surface ( j = 1) as

P1(ω) = − ω

|α|π
1

sin q
,

which is finite for all q ∈ (0, π ) and diverges at the zone cen-
ter q = 0 and zone edge q = π . Moreover, this is proportional
to the phonon DOS (1/ sin q) derived from the dispersion
relation in Eq. (A8). In a three-dimensional crystal, this would
correspond to the surface-projected bulk phonon DOS at �.
This clearly demonstrates that the motion at the surface com-
prises frequencies corresponding to bulk phonons throughout
the full Brillouin zone.

In contrast, if we consider the motion deep into the bulk,
then the numerator of Eq. (A10) is a rapidly oscillating func-
tion with respect to q. This may be evaluated by considering
the limit:

lim
j→∞

sin

(
q

(
j − 1

2

))
= πqδ(q),

where δ(q) is the Dirac delta function centered at q = 0. This
is a reflection of the principle that only q = 0 phonons may be
photoexcited in the bulk limit.

APPENDIX B: FITTING METHODOLOGY

Oscillatory signals can be analyzed directly in the time
or frequency domains. With time domain fitting, it can be

FIG. 6. Overview of the Fourier transform fitting methodology.
(a) Real and imaginary parts of the Fourier transform of a simulated
data set of two oscillators with equal amplitudes and opposite phases.
The frequencies are f1 = 1.0 THz and f2 = 1.5 THz with lifetimes
τ1 = τ2 = 1 ps. (b) Magnitude of the same Fourier transform. The
dashed lines depict the magnitude of each oscillator separately. Note
that the total magnitude is not simply the sum of the individual
magnitudes due to interference. (c) Simultaneous fit to the real and
imaginary parts of the FFT for the bulk band dynamics measured by
trARPES. (d) The FFT magnitude resulting from this fit, which is
also shown in Fig. 1. [(e) and (f)] Same analysis but for the surface
band.

difficult to assess the fidelity of the fit, especially when
separate modes have overlapping frequencies. On the other
hand, frequency domain analysis is typically presented via the
magnitude of a fast Fourier transform, and thus lacks phase
information. Phase information is particularly valuable when
separate modes are closely spaced, since interference occurs
at overlapping frequencies. To illustrate this point, Figs. 6(a)
and 6(b) show the Fourier transform of a simulated data set
consisting of two oscillators. Note that the total magnitude is
not simply the sum of the magnitudes for each separate mode.

Motivated by these observations, we perform our analysis
in the frequency domain while retaining phase information.
The analysis is performed as follows. First, we extract a
slowly-varying background from the time-domain data to iso-
late oscillatory components. Next, we perform a fast Fourier
transform while retaining both the real and imaginary parts,
thus preserving the phase information. Finally, we perform a
simultaneous fit to the real and imaginary parts of the Fourier
transforms. For the fitting function, we assume the time-
domain signal F (t ) can be decomposed into a sum of damped
oscillators: F (t ) = ∑

j Fj (t ), where each damped oscillator
Fj (t ) is given by

Fj (t ) = Aj cos(ω jt + φ j )e
−t/τ j , (B1)
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FIG. 7. Structure factor analysis of trXRD data. [(a)–(f)] Time-resolved x-ray diffraction measurement for six Bragg peaks excited by
800 nm with an incident fluence of 8.2 mJ/cm2. [(g)–(h)] Amplitude of both modes extracted by fitting the time-dependent intensities, plotted
as a function of (h + k + l ) for the six measured peaks. The solid line is a fit from a structure function model assuming modes of A1

1g and A2
1g

symmetries, respectively. This allows for quantitative extraction of the displacements of all five atoms in the unit cell, sketched as arrows in (i)
and (j).

where Aj , ω j , φ j , and τ j give the amplitude, frequency, phase,
and damping time of the jth oscillator, respectively. Then
the complex Fourier transform is given by F̂ (ω) = ∑

j F̂j (ω)
with

F̂j (ω) = cos(φ)/τ j − ω j sin(φ) − iω cos(φ)

ω2
j − ω2 + 1/τ 2

j − 2iω/τ j
. (B2)

The simultaneous fits using Re(F̂j (ω)) and Im(F̂j (ω)) are
shown for the bulk and surface bands in Figs. 6(c) and 6(e).
The corresponding magnitudes, computed after the complex
fits are performed, are shown in panels (d) and (f). For the bulk
band, 2 modes are included in the fit. For the surface band, 5
modes are included. The first mode is held at low frequency
( f ∼ 0.1 THz) and accounts for low-frequency components
which remain after background subtraction, and is not re-
garded as a physical mode.

APPENDIX C: STRUCTURE FACTOR ANALYSIS

The eigenvectors (atomic displacements) of the two coher-
ent A1g phonons can be determined experimentally by a global
fitting of the XRD intensity dynamics. First, we perform a fit
of the time-dependent intensities [Figs. 7(a)–7(f)] to a sum
of exponentially decaying cosines and a slowly varying back-
ground

�I (G, t )

I0
=

∑
j

A j (G) cos(2π f jt + φ j )e
−γ j t , (C1)

for each scattering vector G. Components near zero frequency
f j comprise the slowly varying background, while two fre-
quencies near 2 and 4 THz comprise the A1

1g and A2
1g modes.

In equilibrium, the intensity of the Bragg peak correspond-
ing to G is given by

I0(G) =
∑

n

Fn(|G|) exp(i[G · rn]), (C2)

where the sum n is taken over the atoms in the unit cell,
Fn(|G|) is the atomic form factor, and rn is the equilibrium
atomic position.

The time-dependent change due to coherent phonon mo-
tion may be written as a sum over normal modes j:

I (G, t ) =
∑

j,n

Fn(|G|) exp(i[G · (rn + u j (t )ξ j,n)]), (C3)

where ξ j,n is the displacement of atom n for normal mode j,
and u j (t ) is the time-dependent motion along normal mode
j. The fractional intensity change �I/I0 can be computed by
dividing by the equilibrium structure factor [Eq. (C2)] and
subtracting 1.

However, the symmetry of Bi2Te3 and the fully symmet-
ric A1g modes significantly constrains the symmetry of the
problem. First, all the atoms in the unit cell are stacked along
the z, or (111) direction, and the A1g modes move the atoms
only in the z direction. Furthermore, the mirror symmetry in
this direction and only two atoms reduces this equation to two
terms in the sum (Bi and Te atoms). For each mode j we arrive
at a closed-form equation for the time-dependent Bragg peak
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FIG. 8. Fluence-dependence of mode frequencies measured by
time-resolved XRD at room temperature. (a) Fourier transform of
the (5 5 6) Bragg peak dynamics as a function of incident flu-
ence. Solid curves are fits and dashed lines are guides to the eye.
(b) Fluence-dependent frequencies extracted from the fits. The A1

1g

mode is fluence-independent at 1.84 THz, while the A2
1g mode

extrapolates to 3.94 ± 0.05 THz at zero fluence with a slope of
0.040 THz/(mJ/cm2).

intensity:

I j (G, t ) = 2FBi(|G|)(cos[Gz(zBi + u j (t )ξ j,Bi)])

+ FTe(|G|)(1 + 2 cos[Gz(zTe + u j (t )ξ j,Te)]).
(C4)

For a given A1g mode, Eq. (C4) has only two free param-
eters: ξ j,Bi and ξ j,Te (all other displacements for Bi and Te
atoms are related by symmetry). Alternatively, one can think
of these two free parameters as the Bi/Te atomic displacement
ratio (normalized eigenvector) and the total mode amplitude.
Furthermore, because the A1g eigenvectors are orthogonal, the
Bi/Te ratio is the same in both eigenvectors, but with opposite
sign [Fig. 7(c)]. We measured more than two Bragg peaks
for a given fluence, and are thus able to fit the symmetries,
eigenvectors, and mode amplitudes simultaneously.

Figures 7(g) and 7(h) show the result of our global fit to
the eigenvectors and mode intensities for the two A1g modes
to the six measured Bragg peaks. This shows the fractional
intensity change �I (t )/I0 as a function of the momentum
transfer along the (111) direction Gz, represented as h + k + l
for the A1

1g and A2
1g modes in panels (g) and (h), respectively.

The horizontal axis is Gz in reciprocal lattice units (r.l.u). The
solid line in (a) and (b) is a fit of Eq. (C4) to our experimental
mode amplitudes for each peak, and the points are the mode
amplitudes Aj (G) extracted from a least-squares fit of the
experimental data to Eq. (C1). The periodic structure of the
solid lines has a period of five r.l.u because the five atoms
in the unit cell are nearly evenly spaced along the (111)
direction. This makes e.g. (h + k + l ) = 10 not very sensitive
to atomic motion, as it is near the maximum of the cosine
function in Eq. (C4).

1. Temperature and fluence dependence of mode frequencies

The reported discrepancy in A2
1g frequencies from trXRD

and trARPES can be attributed to temperature and fluence
dependence of its frequency. The temperature-dependence can
be estimated from the Raman literature: its frequency was
reported to be 4.17 THz at 10 K [60] and 4.02 THz at 300 K
[42]. Interpolating between these values gives 4.16 THz at the
trARPES measurement temperature of 27 K, in good agree-
ment with the measured value of 4.20 THz.

The fluence dependence was measured in the room-
temperature trXRD experiment, as shown in Fig. 8. The
frequency of the A2

1g mode extrapolated to zero fluence is
3.94 ± 0.05 THz, in reasonable agreement with the value of
4.02 THz reported for room-temperature Raman. This analy-
sis reaffirms the mode assignments made above.

Note that the A1
1g frequency exhibits less variation with

temperature and fluence. Raman reported 1.9 THz at 10 K
[60] and 1.86 THz at 300 K [42]. This can be compared
with the value of 1.910 THz measured by trARPES at 27 K.
Similarly, the room-temperature trXRD measurement shows a
fluence-indepndent frequency of 1.84 THz (Fig. 8).

2. Optical reflectivity measurements

Optical reflectivity measurements were performed at room
temperature on Bi2Te3 single crystals (800 nm pump, 800 nm
probe), with a 250 kHz amplified Ti:Sapphire laser system at
an incident fluence of 1.54 mJ/cm2 (near normal incidence),
shown in Fig. 9. These measurements were found to be sensi-
tive to the A1

1g and A2
1g modes only.

FIG. 9. Time-resolved optical reflectivity measurement on
Bi2Te3. (a) Relative time-dependent change in the reflectivity at
800 nm. (b) Fourier transform after background subtraction. Points
are from the data, and solid lines are a fit. Two peaks corresponding
to the A1

1g and A2
1g modes are observed at 1.85 and 3.89 THz.
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