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Localization and subdiffusive transport in quantum spin chains with dilute disorder
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It is widely believed that many-body localization in one dimension is fragile and can be easily destroyed
by thermal inclusions; however, there are still many open questions regarding the stability of the localized
phase and under what conditions it breaks down. Here I construct models with dilute disorder, which interpolate
between translationally invariant and fully random models, in order to study the breakdown of localization. This
opens up the possibility to controllably increase the density of thermal regions and examine the breakdown of
localization as this density is increased. At strong disorder, the numerical results are consistent with commonly
used diagnostics for localization even when the concentration of thermalizing regions is high. At moderate
disorder, I present evidence for slow dynamics and subdiffusive transport across a large region of the phase
diagram, suggestive of a “bad metal” phase. This suggests that dilute disorder may be a useful effective model
for studying Griffiths effects in many-body localization, and perhaps also in a wider class of disordered systems.
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I. INTRODUCTION

The study of many-body quantum systems which fail to
thermalize is a major frontier in modern condensed matter
physics, and by now there are many examples of scenar-
ios where thermalization may be avoided, most commonly
through the addition of some form of disorder [1–9], but also
even in a variety of disorder-free systems [10–18]. Similar ef-
fects can even be achieved even by preparing certain systems
in finely tuned initial states without any form of disorder, as
in the case of quantum many-body scars [19].

The focus of this work is many-body localization [4–9],
the interacting variant of Anderson localization [1,2] where
an isolated many-body quantum system can become local-
ized at all energy scales via the addition of a random onsite
chemical potential or magnetic field [3]. Recent years have
seen huge progress in understanding many-body localization,
particularly from the point of view of local integrals of motion
[7,20–25], as well as in establishing under what conditions
it can and cannot exist. Remarkably, there is even a class
of spin chains for which an analytical proof of many-body
localization exists [6], subject to the assumption of limited
level attraction, which is widely considered to be a reasonable
assumption. Behavior consistent with many-body localization
has been experimentally observed in a variety of one- and even
two-dimensional systems [26–32], though its stability remains
under intense discussion. In particular, it is widely believed
that many-body localization is stable only in one-dimensional
systems with short-range couplings, as otherwise localization
has been argued to be unstable due to what is now known
as the avalanche effect, where rare regions of anomalously
low disorder can form ergodic bubbles which can grow and
eventually cause the entire system to thermalize [33].
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Recently, however, the stability of many-body localization
even in one dimension has come into question, with some
works suggesting that the localization transition takes place
at a much higher disorder strength than previously expected
[34], and others suggesting that there may be no transition
at all in the thermodynamic limit [35–39]. It is therefore
of great interest to study in more detail the breakdown of
many-body localization and characterize just how robust this
phase really is. Whether or not it constitutes a stable phase
in the thermodynamic limit, it is clear that upon increasing
the disorder strength the relaxation dynamics of the system
enters a regime that either does not thermalize at all, or does
so only on extremely long times. In the following I shall
refer to this regime as “many-body localized,” and to the
onset of these slow dynamics as the “many-body localization
transition.” In particular, there has been a great deal of work
studying the transport properties close to the many-body lo-
calization (MBL) transition, with a large body of evidence
pointing towards the presence of a Griffths-type subdiffusive
regime and other anomalous transport properties both in mi-
croscopic models of many-body systems [40–46] and proxy
models which investigate MBL via Anderson localization in
Fock space [47–54]. Gaining further insights these anomalous
transport properties could lead to an improved understanding
of the many-body localization transition itself.

In this work I take a different approach to studying the
breakdown of the many-body localized phase. I construct a
model in which homogeneous thermalizing regions can be
controllably added, and ask what happens to many-body local-
ization as the density of these thermalizing regions is varied.
Previous work [33,55] has suggested that rare thermalizing
regions should play a key role close to the transition. These
models allow us to investigate the effects of both rare ther-
mal regions and rare impurities, which in one dimension can
form large bottlenecks that can have a significant effect on
the transport properties of the system, even if the majority
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of lattice sites are in locally ergodic regions. This form of
disorder may be a useful toy model for Griffiths effects [56]
and rare region physics that are believed to play an important
role in the many-body localization transition in systems with
conventional random disorder [50,57], as well as in other
paradigmatic examples of disordered phases of matter such
as the Bose glass [58].

II. MODEL

I will focus on the XXZ model of strongly interacting spins
in one dimension with nearest-neighbor interactions, subject
to two different choices of onsite potential. The Hamiltonian
for a chain of length L with open boundary conditions is given
by

H =
∑

i

hiS
z
i + J0

∑
i

(
Sx

i Sx
i+1 + Sy

i Sy
i+1

) + Jz

∑
i

Sz
i Sz

i+1.

(1)

In the following, all Hamiltonian parameters will be measured
in units of J0 = 1, and I will set Jz = J0. All calculations will
be performed in the zero magnetization sector. I shall consider
the onsite terms hi drawn from two different distributions.
The first case, which I shall call dilute random disorder, is
described by a potential which is randomly chosen to be
either equal to a uniform value or drawn randomly from a box
distribution of width 2d:

hi =
{

1, with probability (1 − p)
∈ [−d, d], with probability p.

(2)

In the limit p → 1, this model reduces to the “standard model”
of MBL, namely, a fully random system with a completely
disordered onsite potential, which has been widely studied
in the literature and its properties are by now well estab-
lished [59–62]. In the opposite limit of p → 0, the model
instead becomes a translationally invariant integrable system,
the properties of which are also well established. By vary-
ing p, it is possible to interpolate between these two limits
and examine at which point localization breaks down. For a
given value of p, the chance of a region of length L which
is completely homogeneous decays exponentially with the
length of the region, and is given by (1 − p)L. Conversely,
the chance to find a region of length L which is entirely
random is pL, and for p = 0.5 at fixed L both types of region
are equally likely to occur. The expected size of the largest
disordered region is given by RL(p) ≈ log1/p[L(1 − p)] =
log[L(1 − p)]/ log(1/p), however, due to the skewness of the
distribution, the largest disordered region can in fact be much
larger than this expectation might suggest [63]. Further details
on the distribution of rare regions are given in the Appendix.
It is important to note that by the nature of random systems, it
is possible (indeed, inevitable) that these random regions can
themselves include rare regions of anomalously low disorder
which are approximately homogeneous and consequently fa-
vor thermalization, however, I will not consider the effect of
these regions in detail here. Note that while the homogeneous
regions would in isolation be integrable, as a consequence
of the disorder-free XXZ model also being integrable, this is
not expected to have a significant effect except in the limit
of p → 0, similarly to the d → 0 limit of the conventionally
disordered XXZ chain.

The second case, which I shall call dilute binary disorder,
is similarly dependent on a probability p but in this case can
take only two values, denoted W0 and d:

hi =
{

W0, with probability (1 − p)
d, with probability p.

(3)

For p = 0.5, this reduces to a straightforward bimodal distri-
bution (similar to others studied in the context of MBL [64]),
while in the limits p → 0 and p → 1 the model is translation-
ally invariant and integrable. We can anticipate that the choice
p = 0.5 will be the most likely value to host a stable localized
phase, however, we shall see later that in fact the hallmarks of
localization exist over a wider region of parameter space than
one might expect. In the following I set W0 = 1 throughout,
and vary d .

The effects of dilute regions have been studied previously
in the context of MBL in the case of both rare strongly disor-
dered impurities [38] and small thermalizing regions [65,66]
or baths [39,67]; however, this work takes a somewhat dif-
ferent approach. Rather than studying the effect of a single
anomalous region on the rest of the spin chain, as in previ-
ous works, here I look at the effect of changing the density
of such thermalizing regions in a way that aims to mimic
Griffiths-type effects close to the localization transition. In
particular, here the transition will be driven by tuning the
distribution of thermalizing regions, rather than by tuning the
bandwidth of the disorder distribution (i.e., disorder strength)
as is more conventionally done. This provides a controllable
way of introducing the resonant regions which are critical for
the many-body delocalization transition [33].

III. METHODS

I will employ full exact diagonalization using the QUSPIN

package [68,69], and will examine both the nonequilibrium
dynamics and the level-spacing statistics. Both are considered
standard measures of localization effects in many-body quan-
tum systems. In all of the following, the exact diagonalization
results have been averaged over a minimum of Ns = 512
disorder realizations (with up to Ns = 4096 for the smallest
system sizes used in this work).

The first quantity of interest is the disorder-averaged
level-spacing ratio, which is by now a standard measure of
investigating localization and chaos in quantum systems [70].
It is defined as

δα = |εα − εα+1|, (4)

rα = min(δα, δα+1)/max(δα, δα+1), (5)

where the εα are the energy eigenvalues and δα is the dif-
ference between successive energy levels. This quantity takes
the value r ≈ 0.53 in a delocalized phase (following Wigner-
Dyson statistics, indicative of level repulsion), and r ≈ 0.39
in a localized phase (following Poisson statistics, indicative
of a random distribution of energy levels).

I will investigate the nonequilibrium dynamics of the im-
balance following a quench from a Néel state of the form
|1010 . . .〉, where |1〉 = |↑〉 and |0〉 = |↓〉. The imbalance
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FIG. 1. Numerical results for the case of dilute random disorder, for a system size L = 14 and averaged over Ns = 512 disorder realizations.
(a) The imbalance I long after a quench (tJ0 = 103) from a Néel state. (b) The averaged level-spacing statistics r, which vary from r ∼ 0.39 in a
localized phase to r ∼ 0.53 in an ergodic phase. (c) The long-time behavior of the entanglement entropy S, again at a time tJ0 = 103 following
a quench. In all plots, the upper left corner is chaotic, while the upper right corner is localized. The lower left corner is chaotic, except for
close to p = 0 where integrability is approximately restored. The lower right corner exhibits a small persistent imbalance, level statistics that
are close to Poisson, and an entanglement entropy that grows slower than expected in a chaotic system. All of these are suggestive of a “bad
metal” regime existing over an extended region of the phase diagram.

(staggered magnetization) is defined as

I (t ) = 1

L

∑
i

(−1)i
〈
Sz

i (t )
〉

(6)

such that I (0) = 1
2 and it decays in time. This observable

gives us an idea of how much “memory” of its initial state
the system has. In order to further investigate the character of
the transport on the delocalized side of the transition, I will
also compute the infinite-temperature dynamical correlation
function

Ci(t ) = 4
〈
Sz

i (t )Sz
i (0)

〉
. (7)

The thermal expectation value of an observable O is defined
as 〈O〉 = Tr[exp(−βH)O]/Tr[exp(−βH)], where β = 1/T
is the inverse temperature. In the limit of infinite temperature,
this becomes 〈O〉 = Tr[O]/D, where D is the Hilbert space
dimension. It has been shown, however, that rather than per-
forming the trace over all basis states, we can make use of
dynamical quantum typicality [71–78] to replace this with an
expectation value with respect to a single randomly chosen
pure state of the form |ψ〉 = C

∑
k (ak + ibk )|φk〉, where C

is a normalization constant, ak and bk are chosen randomly
from Gaussian distributions of mean zero1, and the |φk〉 are
the basis states. This state can be considered a “typical” state
of the desired ensemble, and the properties of this state rep-
resentative of the full trace over the entire Hilbert space. The
resulting expectation value with respect to this “typical” state
then becomes

Ci(t ) = 4〈ψ |Sz
i (t )Sz

i (0)|ψ〉 + ε, (8)

where the final term is an error which has zero mean and
a standard deviation that scales as ∝1/

√
D where D is the

1The distributions used in this work have a variance of 1
2 .

Hilbert space dimension. For many-body systems, D is expo-
nentially large in the system size, guaranteeing that statistical
fluctuations vanish rapidly as the system size increases. A
different random state is chosen for each disorder realization.
In the following, I shall set C(t ) ≡ CL/2(t ), such that boundary
effects are minimized.

In a phase with diffusive transport, one would expect to see
this correlation function decay like C(t ) ∼ 1/

√
t , whereas if

the transport is subdiffusive it will instead decay like C(t ) ∼
t−α with α < 1

2 . It has been shown in Refs. [41,57] that at
infinite temperature the exponent α is linked to the behav-
ior of the optical conductivity σ (ω) ∼ ωβ via the relation
β + 2α = 1, therefore, knowledge of this correlation function
also gives us information about the optical conductivity. It was
also demonstrated in Ref. [57] that it is extremely challenging
to reliably extract an exponent α = 1

2 in the diffusive regime
due to significant finite-size effects, and that extrapolation to
the L → ∞ limit is required in order to recover the expected
value of α = 1

2 . I shall make use of a similar procedure
below.

I will also compute the bipartite von Neumann entangle-
ment entropy density S (t ) across a cut in the center of the
chain:

S (t ) = − 2

L
TrA{ρA(t ) log[ρA(t )]}, (9)

where ρA(t ) = TrB[|ψ (t )〉〈ψ (t )|] is the reduced density ma-
trix of one-half of the chain (subsystem A, with length L/2)
after tracing out the remaining sites in subsystem B. The
entanglement entropy has previously been shown to increase
logarithmically in time in the MBL phase [60,79], in contrast
to the much faster growth expected in an ergodic system, and
provides an important indicator of the slow dynamics charac-
teristic of MBL. In particular, unlike local observables such
as a persistent density imbalance, the entanglement entropy is
capable of clearly distinguishing true many-body localization
from Anderson localization.
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IV. RESULTS

A. Dilute random disorder

A summary of the results for dilute random disorder is
shown in the phase diagrams of Fig. 1. First, the behavior
in both limits p → 0 and p → 1 is as expected, yielding
a vanishing imbalance in the former case (characteristic of
the diffusive transport expected in the integrable XXZ model
[80]) and a localization transition in the latter case, located
at approximately dc ≈ 3.7 [62]. As this transition has been
widely studied elsewhere, I do not linger on it, nor attempt
to locate it any more precisely than has already been done in
other works. For our purposes, it is sufficient to note that there
is a localization transition and ask what happens to it as p is
changed.

The most interesting physics occurs at disorder strengths
d > dc when p is reduced from unity, and one can examine
what happens to the localization transition. Figure 1(a) shows
that the transition shifts to larger values of d as more homoge-
neous regions are added, which makes intuitive sense as these
regions act to favor thermalization. The smaller p becomes,
the larger these thermalizing regions are and the stronger their
effects. Remarkably, however, signatures of a finite imbalance
persist even to small values of p ≈ 0.2. This effect is even
more starkly revealed in the level-spacing statistics, shown
in Fig. 1(b), where at strong disorder there are no areas of
the phase diagram where r takes on the Wigner-Dyson value
of ∼0.53 which would be characteristic of a chaotic ergodic
phase. This this may be due to rare but strong impurities acting
as bottlenecks, or simply a consequence of the finite resolution
of the data shown in Fig. 1.

More information about how the system approaches its
long-time state can be extracted from the evolution of these
observables, rather than just their long-time limits. Figure 2
shows the evolution of the imbalance for a variety of different
disorder strengths and choices of the dilution parameter p,
on a double-logarithm scale with power-law fits to the late-
time behavior indicated by black dashed lines. In all figures,
the uncertainty shown for each observable O is obtained by
computing the mean O and the variance σ 2(O), and plot-
ting the range given by O ± σ 2(O) as a translucent shaded
area: in the present figure, the uncertainty is close to the
linewidth.

At low disorder (i.e., in the delocalized phase), the im-
balance decays like a power law at long times. This persists
to intermediate disorder (d = 3.0) although the slope of the
power law is significantly reduced, implying a slower decay.
At the two highest disorder strengths shown in Fig. 2, the
imbalance appears to saturate at late times and does not ex-
hibit power-law decay, although it must be noted that for small
values of p the imbalance does indeed saturate close to zero,
which is inconsistent with a fully many-body localized phase.

This behavior can be corroborated via the correlation func-
tion, shown in Fig. 3, which exhibits qualitatively similar
behavior. Following Ref. [57], here the fits are performed
over an intermediate window in time before the correlation
function saturates to its long-time value. Again, there is a
power-law decay at low disorder but a clear plateau at large
disorder strengths, even for small values of the dilution pa-
rameter p, indicating that the long-time behavior of the system
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FIG. 2. The decay of the imbalance (staggered magnetization)
following a quench from an initial Néel state, for L = 16 and av-
eraged over Ns = 1024 disorder realizations. The four panels show
four different disorder strengths, and the colored lines each show
different values of p = 0.1, 0.2, 0.5, 0.9. The black dashed lines are
power-law fits to the long-time behavior, shown here as guides to
the eye. The translucent shaded area around each line represents the
uncertainty: note that in many cases it is roughly the same as the
linewidth. (The data for p = 0.1 with d = 1.0 have been smoothed
by convolution with a Gaussian filter of width 1σ .)
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FIG. 3. The decay of the infinite-temperature correlation func-
tion for L = 16 with Ns = 512, again for four different disorder
strengths and varying values of the dilution p. As before, the shaded
area represents the uncertainty, and the dashed lines are power-law
fits shown as guides to the eye.
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FIG. 4. Decay exponents from fits to the imbalance I(t ) ∝ t−γ

and infinite-temperature correlation function C(t ) ∝ t−α , respec-
tively, shown for three different disorder strengths (d = 1.0, 3.0, 9.0,
top to bottom) and three different values of the dilution parameter p.
The dashed lines show the linear extrapolation to the infinite-system-
size limit, where for diffusive transport one would expect to find
α = 1

2 , indicated by the purple dotted-dashed line. For weak disorder,
the results are consistent with diffusive transport, but as the disorder
is increased, the decay becomes significantly slower with α, γ → 0,
suggestive of nondiffusive transport at intermediate disorder and full
localization at strong disorder. Error bars reflect the uncertainty in
the fits, and are in many cases smaller than the plot markers.

is strongly affected by the presence of these rare yet large
bottlenecks.

It is possible to extract decay exponents from the imbalance
I (t ) ∝ t−γ and correlation function C(t ) ∝ t−α , respectively,
as shown in Fig. 4. While the decay of the imbalance is not
directly related to the diffusion exponent α, it is nonetheless
instructive as it displays the same qualitative behavior. In
some cases, it has even shown to exhibit quantitatively similar
behavior. The decay exponent for the correlation function
approaches the diffusive value of α = 1

2 in the thermodynamic
limit, as expected, however, convergence as a function of sys-
tem size is extremely slow and extracting reliable exponents
is challenging. Nonetheless, the results indicate that for weak
disorder (d = 1.0), the decay of the correlation function is
consistent with diffusive behavior, as expected. In all cases,
the imbalance exhibits a smaller exponent γ < α, perhaps
due to finite-size effects or the specific choice of initial state.
For intermediate disorder (d = 3.0) the decay is significantly
and visibly slower, consistent with subdiffusive transport. It
is also interesting to note that the exponent is suppressed
at large values of p, vanishing almost entirely for p = 0.9,
and becoming much larger as the density of homogeneous
regions is increased, confirming that the dilution parameter p
strongly changes the character of the transport in this model.
At the largest disorder strength shown in Fig. 4 (d = 9.0), the
exponents are both effectively zero for all values of p, sugges-
tive of localization, although it is not possible to rule out the
possibility of extremely slow transport that cannot be resolved
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FIG. 5. Growth of the entanglement entropy following a quench
from an initial Néel state, again for four different disorder strengths
and varying values of dilution p, computed for L = 16 using exact
diagonalization. The shaded area around each curve again represents
the uncertainty (variance). For the strongest disorder strength (d =
9.0), even at the weakest value of the dilution (p = 0.1) there is still
a slow logarithmic growth of the entanglement entropy at late times,
suggesting that the rare impurities act as significant bottlenecks to
the growth of entanglement.

at these system sizes and evolution times [81]. In fact, it is
very likely that this is the case, based upon the high density
of thermalizing regions which would by design overwhelm
conventional perturbative arguments for the stability of MBL
[6]. It should be noted, however, that the local integrability
of the inclusions in this model could play a role in allowing
signatures of localization to persist to long times.

In addition, Fig. 5 shows the growth of the half-chain
entanglement entropy S (t ) following the quench, again for
a variety of disorder strengths and values of the dilution pa-
rameter. At weak disorder, the entanglement entropy grows
rapidly and quickly saturates for all values of the dilution
parameter p, while at intermediate disorder the dynamics sep-
arates into an initial transient period of fast growth followed
by a slower logarithmic increase that persists to late times. No-
tably, this feature is also present at strong disorder and small
values of dilution, for example, d = 9.0 and p = 0.2, where
the impurities are strong yet rare. This confirms again that
the presence of even very rare disordered regions is enough
to lead to the emergence of standard MBL phenomenology
which predicts S (t ) ∼ log(t ) [60,79]. The long-time values
of S (t = 103) are shown in Fig. 1(c), where it is clear that the
entanglement in the localized region is significantly smaller
than elsewhere in the phase diagram. The fast linear growth of
the entanglement entropy at short times results from the nearly
free transport of spin over a region set by the localization
length (for p → 1) or the size of the homogeneous regions

014207-5



S. J. THOMSON PHYSICAL REVIEW B 107, 014207 (2023)

2.5 5.0 7.5 10.0
d

0.2

0.4

0.6

0.8
p

(a) I

2.5 5.0 7.5 10.0
d

0.2

0.4

0.6

0.8

p

(b) r

2.5 5.0 7.5 10.0
d

0.2

0.4

0.6

0.8

p

(c) S

0.0 0.2 0.4 0.40 0.45 0.50 0.2 0.3 0.4

FIG. 6. Numerical results for the case of dilute binary disorder, for a system size L = 14 and averaged over Ns = 512 disorder realizations.
(a) The imbalance long after a quench from a Néel state (tJ0 = 103). (b) The averaged level-spacing statistics, which vary from r ∼ 0.39 in a
localized phase to r ∼ 0.53 in an ergodic phase. (c) The entanglement entropy a long time after the quench. Note the singular behavior along
the integrable line W0 = d = 1, clearly visible in all three panels as a vertical line.

(p → 0), and consequently grows more for small values of the
dilution parameter p where spin transport over larger distances
is possible. At later times, however, the disordered regions
always appear to dominate the dynamics even for small values
of p, leading to the slow logarithmic growth characteristic of
MBL.

B. Dilute binary disorder

I now contrast the results shown in the previous sec-
tion with the corresponding results for dilute binary disorder,
which are summarized in Fig. 6. In the limits p → 0 and
p → 1 the system behaves in an integrable manner, with
vanishing imbalance and a level-spacing parameter consistent
with Poisson level statistics, as expected for an integrable
system. At the maximally disordered value of p = 0.5, there
is a transition or crossover between an ergodic and a localized
phase at a critical dc ≈ 4, similarly to the p → 1 limit of the
model with dilute random disorder. Moving away from this
point, as δp = |0.5 − p| increases from zero, the localized
phase is quickly destabilized; however, once again the level
statistics do not significantly deviate from their Poisson value
of r ∼ 0.39 despite the imbalance vanishing, consistent with
a crossover from a disordered to an integrable regime.

Note that along the line W0 = d = 1, the system is inte-
grable for all values of p and displays a rapid transition to a
chaotic ergodic phase as δW = |W0 − d| becomes non-zero.
This is not an error, and is simply a reflection that there
is no ‘disorder’ to speak of along this line, as the system
is translationally invariant (and integrable) regardless of the
value of p.

As before, I compute the same set of observables, begin-
ning with the imbalance following a quench from a Néel
state, shown in Fig. 7. The results are qualitatively similar
to the case of dilute random disorder, showing a power-law
decay of the imbalance at intermediate disorder and a flat
“frozen” imbalance at large disorder strengths, suggestive of
localization. The value d = 1.0 considered in the previous
section is replaced here with d = 0.0, as the system is inte-
grable at d = 1.0 for all values of p (as W0 = d = 1.0 and so

the behavior is qualitatively different here than for all other
choices of d). Figure 8 shows the decay of the dynamical
correlation function, and again it exhibits familiar behavior
consistent with slow transport at intermediate disorder and
localization at higher disorder strengths. The extracted decay
exponents are shown in Fig. 9. At d = 3.0, transport is subdif-
fusive for δp ≈ 0, crossing over to diffusive for δp → 0.5. At
stronger disorder (d = 6.0), transport is (weakly) subdiffisive
for all values of p, where “weakly” in this context means
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FIG. 7. The decay of the imbalance (staggered magnetization)
following a quench from an initial Néel state in the case of dilute
binary disorder, for L = 16 and Ns = 1024. Note that the p = 0.2
and 0.8 lines lie almost on top of each other due to the symmetry of
the phase diagram, as do the lines for p = 0.1 and 0.9. (For d = 0.0,
the p = 0.1 and 0.9 data have been smoothed by convolution with a
Gaussian filter.)
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FIG. 8. The decay of the correlation function following a quench
from an initial Néel state in the case of dilute binary disorder, for
L = 16 with Ns = 512, again for four different disorder strengths and
varying values of the dilution p. As before the shaded area represents
the uncertainty. Again, the p = 0.2 and p = 0.8 lines overlap due to
the symmetry of the phase diagram, as do the lines for p = 0.1 and
p = 0.9.

that the exponent is close to zero. Again, the transport is
slowest for p = 0.5, where the effects of disorder are most
strongly felt. The effect of disorder is qualitatively similar
as in the dilute random case, with strong disorder ultimately
suppressing transport regardless of the value of the dilution p.
Finally, Fig. 10 shows the entanglement entropy, where the be-
havior is qualitatively consistent with the other observables, at
large disorder strengths exhibiting a slow logarithmic growth
around p = 0.5, and a faster growth for δp → 0.5 with late-
time behavior that appears to weakly saturate. Interestingly,
even for values of δp ≈ 0.4, the growth of the entanglement
entropy remains slow for a long period of time, although the
growth appears to undergo a weak crossover to faster than
logarithmic at late times. This suggests that even very rare
impurities can be significant bottlenecks to transport, provided
they are large enough, and could indicate the formation of a
metastable or prethermal phase which appears localized on
intermediate timescales, before eventually thermalizing.

V. DISCUSSION AND CONCLUSION

In this work I have studied two unconventional choices
of disordered potentials and examined the stability of many-
body localization in both cases. The results indicate that
localization appears to be surprisingly robust towards the
addition of homogeneous regions which should favor ther-
malization, with signatures of localization persisting to very
long timescales. Even in parameter regimes where disordered
regions are much smaller (on average) than homogeneous
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FIG. 9. Decay exponents from fits to the imbalance I(t ) ∝ t−γ

and correlation function C(t ) ∝ t−α , respectively, shown for two
different disorder strengths (d = 3.0 and 6.0) and three different
values of the dilution parameter p. The dashed lines show the lin-
ear extrapolation to the infinite-system-size limit, with the diffusive
value α = 1

2 indicated by the purple dotted-dashed line. For d = 3.0
the results are consistent with diffusive transport in the limits of
p → 0 and p → 1, with subdiffusive transport in-between, with the
smallest value of α occurring for p = 0.5. For d = 6.0, the imbalance
suggests that transport is almost entirely absent, but the correlation
function indicates that slow subdiffusive transport persists.

regions, localization effects persist to the largest system sizes
and longest times studied here. Based on analytical arguments
regarding the stability of many-body localization [33], it is
very likely that the localization phenomena observed over
much of the phase diagrams shown in this work will not
survive in the limit of large systems and very long times; how-
ever, it is striking that in many ways, these regions appear just
as stable as the conventionally studied localized regime. The
indistinguishability of localization in the dilute and fully ran-
dom regimes (i.e., p = 1 for dilute random disorder) suggests
that extremely slow mechanisms for delocalization cannot
be captured by numerically exact simulations on such small
system sizes.

These numerical simulations will serve as a useful road
map for future studies examining further exotic properties of
spin chains with dilute disorder. Here I have established the
broad structure of the phase diagram and a few key properties,
but there are many interesting open questions which dilute
disorder may be able to shed some light on. In this work,
I have focused on small system sizes and numerically exact
methods in order to establish the broad properties of these
disorder distributions in the regime most commonly studied
by the many-body localization community. Further studies
using tensor network techniques to access larger system sizes
may be able to contrast the finite-size scaling behavior of
dilute and fully random disorder distributions in order to see
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FIG. 10. Growth of the entanglement entropy following a quench
from an initial Néel state in the case of dilute binary disorder, again
for four different disorder strengths and varying values of dilution
p, computed for L = 16 using exact diagonalization. Note that the
results for p = 0.1 and 0.9 are quantitatively very similar, as are the
results for p = 0.2 and 0.8, mirroring the symmetry of the phase
diagrams shown in Fig. 6.

whether the behavior in the thermodynamic limit continues
to behave indistinguishably, or whether the localization in the
presence of dilute disorder will be destabilized more easily.
While the latter scenario is more likely, the former would
have interesting implications for the stability of MBL in the
thermodynamic limit. This work has not looked in detail at the
universal properties of dilute disorder, nor whether it strongly
modifies any critical properties of the phase transition. Future
works using techniques such as real-space renormalization
group may be able to establish whether the localization tran-
sition triggered by changing p at fixed d is in the same
universality class as the localization transition studied in con-
ventional random potentials. It would also be interesting to see
if future analytical studies will be able to rigorously establish
some of the numerical properties observed in this work, as
to date few analytical works have considered dilute disorder.
Being able to controllably add “rare” regions may offer an
additional parameter for analytical works to study the destabi-
lization of localization by carefully controlling the properties
of these inclusions in a more systematic way than is possible
in conventional random potentials.

While undoubtedly somewhat finely tuned and unlikely to
exist in nature, the potentials introduced in this work offer a
way to controllably add thermalizing regions into an other-
wise disordered sample and may offer a novel path forward
for the study of Griffiths-type effects in disordered systems by
allowing “rare regions” to be included in a more controlled
manner than in purely random systems. They are also entirely
within the realm of current generation experiments, partic-

FIG. 11. Normalized distributions P(r) of the homogeneous
(nondisordered) regions in the case of dilute random disorder, for
various values of probability p, obtained for system size L = 16
and averaged over Ns = 20 000 randomly generated values of the
potential. The mean length of homogeneous regions r is indicated
in each panel. Note that the largest regions can be significantly larger
than the mean value.

ularly ultracold atomic gas platforms, where these tailored
potentials can be realized, for example, using a spatial light
modulator or digital mirror device. This could also allow the
effects of these potentials to be experimentally investigated in
two dimensions, where the existence of MBL is not yet firmly
established and the fragile nature of the putative localized
phase should be much more vulnerable to the controlled addi-
tion of thermal inclusions as proposed in this work. It would
be interesting to see if subdiffusive transport also emerges in
this situation, or if the presence of any finite concentration of
thermal inclusions is sufficient to immediately induce conven-
tional diffusive transport in greater than one spatial dimension.
The disorder distributions studied in this work aimed to
smoothly interpolate between disorder-free and fully random
models; however, as a consequence of the use of the “standard
model” of MBL, the physics at low dilution is close to inte-
grable. In future work, it would be a useful next step to inves-
tigate dilute disorder in a model which explicitly breaks inte-
grability in the p → 0 limit. Another possible avenue of inves-
tigation would be to study the local integrals of motion in sys-
tems with dilute disorder, and specifically their distribution,
as slow transport has previously been linked to a broad distri-
bution of local integrals of motion in a noninteracting system
[82]. Given the key role that local integrals of motion play in
MBL phenomenology, and their link with anomalous trans-
port properties such as those studied here, it seems likely that
the distribution of local integrals of motion in systems with
dilute disorder may be a fruitful direction for further study.

All data and code are available at [83,84].

014207-8



LOCALIZATION AND SUBDIFFUSIVE TRANSPORT IN … PHYSICAL REVIEW B 107, 014207 (2023)

ACKNOWLEDGMENTS

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie Grant Agreement No.
101031489 (Ergodicity Breaking in Quantum Matter). I grate-
fully acknowledge helpful discussions with C. Bertoni, J.
Eisert, A. Kshetrimayum, and A. Nietner, as well as J. Richter
for useful comments regarding the dynamical correlation
function, and comments on the manuscript from L. Vidmar
and I. Khaymovich.

APPENDIX: DISTRIBUTION OF RARE REGIONS

The problem of analyzing the distribution of rare regions
can be mapped onto the equivalent problem of studying the
results of coin tosses of a biased coin. For example, in the
case of dilute random disorder, we can label the homogeneous
lattice sites (which occur with probability 1 − p) as “heads,”
and the random sites (which occur with probability p) as
“tails.” This has been extensively analyzed in Ref. [63] and is a
surprisingly rich problem despite its apparent simplicity. Here
we focus on the probability P(r) to obtain a homogeneous

region of length r. Numerical results are shown in Fig. 11, for
dilute random disorder with four different values of the prob-
ability p. The disorder strength is set to d = 9, however, its
precise value is irrelevant here, as all we care about is whether
the potential at a lattice site is random or otherwise (i.e.,
heads or tails). Here I average over Ns = 20 000 randomly
generated values of the potential for a system size L = 16,
consistent with the size used in the main text. (Note that
simply computing the properties of the rare regions does not
require fully diagonalizing the Hamiltonian, only computing
the onsite potentials, and therefore a very large number of
samples can be used.) To a good approximation, the prob-
ability to obtain a homogeneous region of size r typically
decays exponentially, P(r) ∼ exp(−r). The expected value
for the largest homogeneous region is approximately given
by RL(p) ≈ log1/p[L(1 − p)], however, the probability distri-
bution for the size of the largest region (not shown) has a
long tail, and in a given disorder realization, the largest ho-
mogeneous region may be significantly larger [63]; therefore,
one must carefully consider the entire distribution of rare and
homogeneous regions rather than only looking at averaged
properties. A similar analysis can be conducted for dilute
binary disorder, which I do not show here.
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