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Level dynamics and avoided level crossings in driven disordered quantum dots
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The statistical properties of the dynamics of energy levels are investigated in the case of two two-dimensional
disordered quantum dot models with nearest-neighbor hopping subjected to external time-dependent perturba-
tions. While in the first model the external drivings are realized by a continuous variation of the onsite energies,
in the second one it is generated by deformations of a parabolic potential. We concentrate on the effects of the
potential on the localization properties and investigate the statistics of the energy-level velocities and curvatures
regarding their typical magnitudes and domain of agreement with the predictions of random matrix theory for the
Gaussian orthogonal, unitary and symplectic ensembles. Moreover, the statistical properties of the avoided level
crossings are investigated in terms of the corresponding Landau-Zener parameters. We find that the strength of
the Landau-Zener transitions exhibit universal behavior which also imply universal single-particle dynamics for
slow perturbations independent of the disorder and potential strength, the system size and the symmetry class.
These results can be verified experimentally by measurements of single-particle energy spectra in quantum dots.
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I. INTRODUCTION

The spectra of complex, interacting many-body systems
can be considered up to a large extent indeterministic, for
which random matrix theory (RMT) has proven to provide
an accurate statistical description, relying only on the funda-
mental symmetries of the system and completely neglecting
the microscopical details of the individual energy eigenstates
[1–5]. While its applicability to the spectrum of disordered
tight-binding models has been the subject of many studies
[6–11], the statistical behavior of motion of energy levels and
its connection to RMT still raises many exciting unanswered
questions. Urged by the swift experimental developments ex-
ploring nonequilibrium phenomena in the nanoscale regime
[12–14], considerable theoretical attention is being paid to
the response properties of disordered quantum dots to time-
dependent perturbations. The effects of external drivings
manifest themselves, among others, in the movements of
energy levels, which in turn provide information about the
changes of the physical quantities in the system induced dur-
ing the nonequilibrium process.

One of the earliest approaches to study disordered systems
is provided by the statistics of difference of adjacent energy
levels. First of all, as was proposed in Refs. [15,16], levels
repelling each other, characteristic for RMT, correspond to
classically chaotic nature and follow the celebrated Wigner-
Dyson statistics [17], while regular motion implies Poissonian
statistics. In addition, level spacing statistics also provides an
ideal test bed to study localization properties of single-particle
states. In three dimensions, RMT-like behavior is observed
for states with localization lengths much larger than the sys-

tem size and for delocalized states, while Anderson localized
states with localization length shorter than the system size
exhibit Poissonian level statistics and intermediate statistics
were observed at the metal insulator transition [6,18–21], see
also a new thorough review on the subject [22]. A different
picture emerges, however, in two dimensions as for spin-
less disordered tight-binding models [7,11,23,24] RMT-like
behavior is only observed for states with sufficiently large
ratio of the system size and localization length, L/ξ , which
is the only relevant parameter according to the single pa-
rameter scaling theorem [25–30]. Introducing also spin-orbit
couplings and considering spin degrees of freedom, truly ex-
tended states appear below a critical disorder value [8,9,31–
34]. Further works tested the validity of the Wigner statistics
in various fields ranging from the early studies of Coulomb
blockade [7] and conductance peak spacings [35] through the
effects of Aharonov-Bohm flux piercing through disordered
samples [36,37], kicked one-dimensional systems [38] to the
current investigation of interacting spin systems [39–42], fi-
nite range Coulomb gas models [43,44], and open chaotic
systems realized in microwave cavities [45].

Level spacing statistics, however, provides no informa-
tion about responses to time-dependent perturbations. A large
amount of nonequilibrium phenomena in disordered systems
induced by external drivings can be addressed by the inves-
tigation of the motion of energy levels [46]. Level dynamics
of classically chaotic systems was first formulated in the pi-
oneering works of Refs. [47,48] exhibiting similar statistical
behavior as the spectra of the proper Gaussian random matrix
ensembles. With an appropriate parametric evolution of the
H (λ) disordered Hamiltonian with λ promoted to fictitious
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time, derivatives of energy levels reveal most of the nonequi-
librium properties of driven systems. Of central interest are
the first and second derivatives commonly referred to as level
velocity and level curvature, vn = dEn/dλ, Kn = d2En/dλ2,
respectively, providing information about conductance fluc-
tuations and characterizing the sensitivity of energy levels
to changing boundaries in metallic samples [49–51]. While
the RMT levels exhibit Gaussian velocity statistics exact
curvature distributions resisted evaluation for quite a long
time, with many intuitive initial heuristic guesses until exact
results were derived for it [52–61]. Velocity and curvature
statistics constituting an intense area of research have been
investigated over the years mostly in systems in the presence
of a magnetic field [62,63], in chaotic, irregularly shaped
billiards with changing boundaries [64–69], and quantum
systems with twisted boundary conditions [10,70–73] or in
periodically kicked one-dimensional systems [72,74], while
recent studies considered disordered interacting many-body
systems [75–77].

A further striking feature in the course of parametric evolu-
tion of disordered systems is the formation of the avoided level
crossings. In the seminal work of Wigner [78], it was argued
that the levels of H (λ) without any particular symmetries may
reach close to each other at some λ0 value but finally avoid
true crossing points. Apart from providing an ideal test bed
to study the degree of emerging chaos in the classical coun-
terparts of quantum systems [79–83], avoided level crossings
have a dramatic impact on the conditions of adiabatic time
evolution in driven disordered systems. Following the com-
mon approximate expression around the closest approach of
λ0,

En+1(λ) − En(λ) ≈
√

�2 + γ 2(λ − λ0)2, (1)

even for slowly varying λ = λ(t ) driving protocols adia-
baticity can be violated via Landau-Zener (LZ) transitions
with probability exp(−π

2
�2

γ λ̇
) [84,85] with � and γ be-

ing the smallest level distance (gap) and asymptotic slope,
respectively. While pioneering studies on the LZ parame-
ter statistics and their impact on nonequilibrium dynamics
in random matrix ensembles were provided by Wilkinson
in Refs. [86,87], their strong connection to classical dif-
fusion processes and energy dissipation was established in
Refs. [88–93].

The role of the avoided level crossings were studied
in further exciting phenomena such as dynamical tunnel-
ing [94–97], relations to the famous Lyapunov exponents
[98] or transitions from regular to chaotic regimes in
classical systems [99,100]. Similarly to level response inves-
tigations, LZ parameter statistics were compared with the
RMT results in quantum billiards, kicked tops [101–105],
and in disordered systems with Rashba and spin-orbit
interactions [106,107].

In spite of these extensive progresses, in most cases level
dynamics were generated by magnetic fields and changing
boundaries in microwave cavities or in chaotic billiards not
considering the possibility either of spin degrees of free-
dom or of different driving mechanisms such as deformations
of a confining potential which could open new perspectives

for experimental realizations. Furthermore, neither LZ pa-
rameter statistics nor level dynamics were investigated in
two-dimensional systems with random magnetic fields or
spin-orbit couplings (GUE, GSE symmetry class, respec-
tively). In this paper we fill this gap by studying various
aspects of level dynamics in two-dimensional disordered
tight-binding models with different driving protocols feasible
for experimental realization and most importantly we point
out universal behavior of the LZ parameters implying univer-
sal single-particle dynamics.

The paper is organized as follows: In Sec. II we present
the two two-dimensional disordered quantum dot models. In
Sec. III we investigate the effects of the potential on the
localization length and quantify the domain of agreement of
the level velocity and curvature statistics with the RMT results
and provide analytical results on their typical magnitudes. In
Sec. IV we show that the distributions of the Landau-Zener pa-
rameters at the anticrossings fall on universal curves identical
with the RMT predictions which imply also universal single-
particle dynamics for slow perturbations and also determine
the corresponding time and parametric velocity units’ disorder
and size dependencies.

II. THEORETICAL FRAMEWORK

Before turning to the detailed description of our results we
briefly summarize the basic features of RMT. We consider
three ensembles of the random matrices, spinless systems with
and without time-reversal symmetry described by real sym-
metric (GOE) and complex Hermitian matrices (GUE) and
spin- 1

2 systems with time-reversal symmetry with quaternion
valued Hermitian matrices (GSE), respectively. The distribu-
tion of matrix elements for the above classes is given by

P (H ) ∝ e− βN
4J2 Tr(HH† ), (2)

with J fixing the energy scale and β = 1, 2, 4 denoting the
number of independent real variables of each matrix element
for GOE, GUE, and GSE, respectively. Neighboring energies
exhibit level repulsion as the distribution of their difference
in the middle of the spectrum follows the celebrated Wigner-
Dyson statistics [17],

Plevel,β ∼ �βe−Cβ�2
, (3)

with Cβ = π
4 , 4

π
, 64

9π
, implying Plevel,β (�) ∼ �β for � = 0.

Following the works [87,108], we choose the parametric evo-
lution

H (λ) = Hi cos λ + Hf sin λ, (4)

with Hi and Hf being two independent random matrices drawn
from the same ensemble and which ensure an identical dis-
tribution of matrix elements at any value of λ. In particular,
we consider the following model on a L × L square lattice
(“onsite model”):

Honsite(λ) = − J
∑

r,δ,α,α′
tr,δ,α,α′ |r + δ, α〉〈r, α′|

+
∑
r,α

εr,λ|r, α〉〈r, α| + h.c., (5)

where J sets the energy scale, |r, α〉 and |r + δ, α〉 denote
coordinate and spin eigenstates at lattice site r and spin
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state α, respectively, and δ points to the nearest neighbors.
For the spinless case, choosing unit hoppings tr,δ = 1 GOE-
like behavior, while for random-phase hopping terms, tr,δ =
eiϕr,δ , where ϕr,δ are such that the flux of each plaquette is
distributed uniformly in the interval [−π, π ], statistical prop-
erties similar to GUE are expected. For spin- 1

2 systems with
time-reversal symmetry, the appropriate choice, tr,δ,α,α′ =
(V1I + iV2σy)α,α′ , if δ points in the x direction and tr,δ,α,α′ =
(V1I + iV2σx )α,α′ for δ parallel to the y axis, leads to an energy
spectrum characteristic for the GSE ensemble. Here σx and σy

denote the x and y Pauli matrices and following the convention
of Ref. [9] we chose V1 = √

3/2, V2 = 1/2 for the strength of
the spin-orbit coupling. Evolution in parameter space is re-
alized by the protocol εr,λ = εr,i cos(λ) + εr, f sin(λ) starting
from λi = 0 and ending at λ f = π/2, where εr,i and εr, f are
independent and distributed uniformly on [−W/2,W/2]. Note
that this is the same parametric evolution as in the case of the
RMT protocol (4) but now with randomness only encoded in
the onsite energies and hopping terms making it more feasible
for experimental realizations.

In the case of the “potential model” we consider the fol-
lowing Hamiltonian:

Hpot(λ) = − J
∑

r,δ,α,α′
tr,δ,α,α′ |r + δ, α〉〈r, α′|

+
∑
r,α

(Vr,λ + εr )|r, α〉〈r, α| + h.c., (6)

where level dynamics is now generated by the compression
(decompression) of a parabolic potential, Vr,λ = 1

2
V0
L2 [r2 +

λ(x2 − y2)], in the x (y) direction in a symmetric way with
λ starting at −λ f /2 and ending at λ f /2. Here, choosing the
same tr,δ,α,α′ hopping terms and onsite energies as in the
onsite model (5), statistical properties of level dynamics are
expected to be identical to the proper random matrix en-
sembles (i.e., unit, random phase, and SU(2) phase hoppings
implying GOE, GUE, and GSE-like behavior, respectively),
albeit under slightly different conditions due to the presence
of the confining potential.

III. LEVEL DYNAMICS

This section is devoted to the analysis of the localization
properties and the statistics of the level velocities and curva-
tures in the two quantum dot models.

A. Effects of the potential on the localization properties

In this section we deal with the analysis of the localiza-
tion properties of the potential model captured by the level
spacing statistics. While without the potential term the lo-
calization length depends only on the disorder strength and
the position in the energy spectrum according to the single
parameter scaling theorem, ξ = ξ (W, E ) [26–30], the pres-
ence of the quadratic potential slightly modifies this picture.
First it stretches the spectrum upwards and shifts the zero
energy states towards the lower band edge, second, chang-
ing the onsite energies it also exhibits a nontrivial interplay
with the disorder strength. Due to the scaling V0/L2 in (6),
however, the onsite energy contributions of the potential are
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FIG. 1. Localization length as a function of the potential strength
for various system sizes and disorder strengths. For weak po-
tentials they agree with those in the corresponding Anderson
models and for the GSE ensembles even for W = 3 < Wc finite
localization length is observed for V0 > 300J . Inset shows veloc-
ity variance scaling as ∼W 2/L2 with the same prefactor for the
three ensembles.

independent of the system size. Hence, it is expected that,
for fixed potential strength the single parameter scaling re-
mains valid with a modified, potential dependent localization
length, ξ (W, E ) → ξV (W, E ,V0), under the numerically ob-
served condition that the lowest energy contributions in the
middle of the sample do not exceed extremely the energy
scale, V0/(2L2) < J . Although the precise analysis of the
localization length is beyond the goals of this paper, the
essential characteristics can be captured in terms of the av-
erage level spacing ratio, rn = min{δn, δn−1}/max{δn, δn−1}
with δn = εn+1 − εn denoting the spacing between the n + 1st
and nth levels. In particular, using the results on the disorder
dependencies of the localization lengths of Refs. [9,11,24],
we identified the new ξV localization lengths with those
in the potential free models at which the level spacing
ratios matched.

For fixed potential strengths below the threshold, V0 <

2L2J , up to numerical precision the obtained localization
lengths depended only on the disorder strength checked
for various system sizes ranging from L = 20 to L = 200,
confirming our assumption about the validity of the single
parameter scaling theorem.

The obtained dependencies of the localization lengths on
the potential strength are plotted on Fig. 1 for fixed disorder
strengths in the small, intermediate, and strong localiza-
tion regimes for all the three ensembles for various system
sizes ranging from L = 20 to L = 200. For small potential
strengths, V0 ≈ J , the localization lengths agree with those
in Refs. [9,11,24], while they decrease with increasing V0.
Furthermore, in the GSE ensemble the confining potential
decreases the value of the critical disorder, Wc ≈ 5.875J
observed in the finiteness of ξV (W, E ,V0). Without precise
analysis (being, however, an interesting future direction) it is
demonstrated for W = 3 with the critical potential strength
V c

0 ≈ 300J accurate up to system size L = 200.

B. Level velocity statistics

Next we discuss the statistical properties of the energy-
level velocities both in the RMT and the strongly localized
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regime. The velocity can be expressed as the first derivative
with respect to the parameter λ:

vn ≡ dEn

dλ
= 〈ϕn,λ|dH (λ)/dλ|ϕn,λ〉

=
∑

r

|ϕn,λ(r)|2∂λεr,λ, (7)

with the shorthand notation ∂λεr,λ = −εr,i sin λ + εr, f cos λ

having variance W 2/12 and with ϕn,λ(r) = 〈r|ϕn,λ〉 with 〈r|
denoting the rth coordinate eigenstate at parameter value λ.
In the RMT protocol (4), it exhibits a Gaussian distribution
P (vn) ∼ e− βN

4 v2
n , independently of the λ parameter.

In the onsite model (5), we first determined the domain
of validity of the RMT description quantified by the integral
of the absolute value difference of the numerically obtained
statistics with variances scaled to unity from the Gaussian
curve,

∫ ∞
−∞ dv|P (v) − exp(v2/2)/

√
2π |. We fixed the devi-

ation to be 0.1 and numerically found the corresponding
threshold ratios, L/ξ ≈ 0.77, 0.4, 0.34 for the GOE, GUE,
and GSE classes, respectively, checked for system sizes and
disorder strengths L = 20, . . . , 200, W = 1J, . . . , 10J , re-
spectively.

As far as the weakly and strongly localized limits are
concerned, in the Gaussian regime the eigenstate components
are uniformly distributed on a βL2-dimensional sphere with
absolute value squares becoming independent identically dis-
tributed random variables with mean 1/L2 in the limit L � 1.
Consequently, level velocity in (7) is given by a sum of inde-
pendent identically distributed random variables. Since ∂λεr,λ
is independent of εr,λ and thus of |ϕn,λ(r)|2 as well the total
variance is the sum of each term’s variance, which by the
central limit theorem results in a total variance of ∼W 2/L2

(see the inset of Fig. 1) and a Gaussian velocity statistics
independent of the underlying symmetry class.

In the strongly localized regime, the velocity statistics be-
comes the same as those of the Hamiltonian’s matrix elements
with variance scaling as ∼W 2, as the sum (7) results in just
one term, where the eigenstates are localized with exponential
accuracy.

Turning to the potential model (6), according to the pre-
vious section, with the modified ξV (W, E ,V0) localization
lengths, the same threshold of the absolute value devia-
tion from Gaussian is reached around the values L/ξV ≈
0.41, 0.29, 0.19 for the GOE, GUE, and GSE classes, respec-
tively. Note that, due to the different protocols, the thresholds
are slightly smaller than in the onsite model. In contrast with
the RMT and onsite results, the mean of the velocity can
also take finite values growing linearly with λV0/L2 with the
observed prefactor of 0.6. Similarly, other statistical properties
also acquire additional subleading ∼λV0/L2 correction terms,
however, for λ < 1 their effects are negligible compared with
the λ = 0 point. Considering next the statistical behavior in
the weakly and strongly localized limits first the velocity is
expressed similarly to Eq. (7):

vn = V0

2L2

∑
r

|ϕn,λ(r)|2(x2 − y2), (8)

where only |ϕn,λ(r)|2 is of statistical nature, which, however,
does not depend on the onsite variances in the RMT regime,
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FIG. 2. Velocity distributions normalized such that their max-
imum values are 1 with variances scaled to unity. In the onsite
model the statistics transforms from Gaussian to uniform distribution
as disorder increases (diamonds), while for large potential strength
completely featureless statistics is observed (crosses) in the potential
model. Inset shows curvature unit dependence in the onsite model for
the three ensembles, exhibiting β2W 4 power-law behavior.

implying no disorder dependence of the variance. Investigat-
ing further Eq. (8), one can deduce that its variance does not
depend on the system size up to leading order either. In its
expression,〈
v2

n

〉 ∼ L−4
∑

r

〈|ϕn,λ(r)|4〉(x2 − y2)2

+L−4
∑
r =r′

〈|ϕn,λ(r)|2|ϕn,λ(r′)|2〉((x′)2−(y′)2)(x2−y2).

(9)

(x2 − y2) and the
∑

r summations give ∼L2 contribu-
tions while the two averages scale as ∼L−4. The first
term then gives J2L−4L−4L6 ∼ J2L−2 and the second one
∼O(J2) in the RMT regime. Additionally, here all terms’
variances and correlations are negligibly small compared
with the total variance validating the applicability of the
CLT as 〈|ϕn,λ(r)|2|ϕn,λ(r′)|2〉(x2 − y2)[(x′)2 − (y′)2]/L4 <

L−2L−2L2L2L−4 < L−4. This implies Gaussian distribution
with O(J2) variance also independent of the underlying sym-
metry class with a subleading ≈0.8λ2V 2

0 /L4 correction term
observed numerically. In the strongly localized regime, how-
ever, level velocities exhibit completely featureless statistics
as randomness is now encoded in the r positions where
the nth eigenstate is localized carrying a contribution of
V 2

0
2L2 (x2 − y2). Note that, neither of the above strongly localized
limit results match the exact formula derived in Ref. [72].
The results are demonstrated in Fig. 2 with the statistics
normalized such that their maximum values are fixed at 1,
P̃ (ṽ) = P (ṽ)/max{P (ṽ)} and scaled to have unit variances,
ṽ = v/(〈v2〉)1/2 with the potential model results plotted for
the L2/2th state for V0 = 100J and the L2/40th state for V0 =
1500J , with L = 140, where in the latter case the zero energy
states has been shifted reasonably. In total, the variances read

〈v2〉onsite ∼ W 2/L2, independent of β, (10)

〈v2〉pot = O(J2) + o(L−2) + o(λV0/L2),

independent of W and β. (11)

014206-4



LEVEL DYNAMICS AND AVOIDED LEVEL CROSSINGS IN … PHYSICAL REVIEW B 107, 014206 (2023)

C. Level curvature statistics

Turning to the curvature of energy levels, characterized by
the second derivative with respect to λ, a compact expression
is provided by second-order perturbation theory:

Kn ≡ d2En,λ

dλ2
= 〈ϕn,λ|d2H/dλ2|ϕn,λ〉

+ 2
∑
m =n

|〈ϕn,λ|dH/dλ|ϕm,λ〉|2
En,λ − Em,λ

, (12)

with |ϕn,λ〉 and En,λ denoting again the instantaneous eigen-
states (eigenvalues) and being independent of λ for RMT
(4) and the onsite protocols (5). In the potential model, we
concentrate again on the λ = 0 point.

The RMT result derived in Refs. [58–60] reads

P(K ) = Cβ (W, L,V0)

[1 + K2/γ 2(W, L,V0)]β/2+1 , (13)

with Cβ and γ being the normalization constant and the
natural unit of the curvature, respectively, by which the distri-
butions with different parameters fall on identical curves for
each ensemble.

Following the strategy of Refs. [58,59], we restricted the
investigation to levels around zero energy and computed nu-
merically the second derivative of the energy levels being
closest to zero at λ = 0. While in the onsite model (5) and
RMT, the first term in (12) becomes −En,0 and so can be
neglected, in the potential model (6) it is exactly zero be-
cause d2Hpot/dλ2 = 0. Again the threshold value of the L/ξ

ratio was found numerically, above which the absolute value
deviation from the expression in Eq. (13) gets bigger than
0.1, giving relatively small values of L/ξ ≈ 0.07, 0.16, 0.2
for the three ensembles. The possible reason is that in the
expression of the curvature states far away from E = 0 also
contribute significantly. In the potential model, similarly to
the velocity statistics, slightly different values are observed,
L/ξV ≈ 0.171, 0.09, 0.07, which is again due to the different
underlying mechanism governing the parametric evolution.

Although in the RMT protocol the unit scales as
γ 2(W, L,V0) ∼ β〈v2〉/δε [58,59] with Cβ depending only on
the symmetry class and δε denoting the mean level spacing
at E = 0, different behavior is observed in the investigated
models. These differences are again, most probably, due to
the localized nature of the eigenstates far from E = 0.

To this end we numerically investigated the size and disor-
der dependence of the curvature unit and found that, in the
onsite model, quite unexpectedly, it scales as γ 2 ∼ W 4/J2

(see the inset of Fig. 2), while it does not depend on the
system size in the RMT-like regime because the numera-
tor scales similarly to the velocity which together with the
denominator’s typical magnitude of ∼L−2 gives a scaling
of O(J2). In the potential model writing out the numerator,
〈ϕn,λ|dH/dλ|ϕm,λ〉 ∼ L−2 ∑

r ϕ∗
n,λ(r)ϕm,λ(r)(x2 − y2), where

in contrast with Eq. (8) the summation only yields a factor
of L due to the fluctuating phase in ϕ∗

n,λ(r)ϕm,λ(r) leading
to a typical magnitude of |〈ϕn,λ|dH/dλ|ϕm,λ〉|2 scaling as
∼L−2, which together with the denominator’s similar ∼L−2

scale results in O(J2). In both models, moreover, γ 2 ∼ β2 is

observed as the number of terms in the numerator increases
linearly with β. Summarizing:

γ 2(W, L)onsite ∼ β2W 4/J2, independent of L, (14)

γ 2(W, L,V0)pot ∼ β2O(J2) + o(λV0/L2),

independent of W and L. (15)

Finally, in the strongly localized limit, a quite simple feature
emerges, where the numerator simply disappears in Eq. (12)
implying that levels cross the zero-energy point as straight
lines with zero higher than first-order derivatives.

IV. STATISTICS OF AVOIDED LEVEL CROSSINGS

In this section, having summarized the essential character-
istics of the statistical behavior of the parametric evolution of
energy levels, we turn to the main message of this paper, the
characterization of avoided level crossings and the aspects of
the strongly related universal single-particle dynamics.

A. Distribution of the Landau-Zener parameters

In this section we first investigate the statistics of the LZ
parameters, i.e., the gap and asymptotic slope of energy levels
at the avoided level crossings which determine the strength of
level-to-level transitions in slow parametric time evolutions.
In systems with no particular symmetries single parameter
variations in random Hamiltonians induce avoided crossings,
neighboring levels approaching very closely to each other, but
finally avoiding true degenerate points. Such an anticrossing,
located at λ0, can be described by the effective 2 × 2 matrix,
in the limit that the separation from the other levels are much
larger than the typical distance between the two energies:

H =
[
λγ /2 �min

�min −λγ /2

]
, (16)

�(λ) = E+(λ) − E−(λ) =
√

�2
min + γ 2(λ − λ0)2, (17)

with E±, �min, and γ denoting the two eigenvalues, the gap
and the asymptotic slope, respectively.

In the case of random matrices, concentrating on the
middle of the energy spectrum, statistics of � and γ were
calculated by Wilkinson in Refs. [86,87] for the protocol (4)
when the value of λ is changed from 0 to π/2:

ρβ (�̃min) ∼ �̃β−1e−Cβ,��̃2
min , (18)

ρβ (γ̃ ) ∼ γ̃ β+1e−Cβ,γ γ̃ 2
, (19)

with Cβ,� = 1√
π
, π

4 , 9π
16 and Cβ,γ = 4

π
, 9π

64 , 225π
256 for GOE,

GUE, and GSE, respectively and where the following dimen-
sionless quantities were introduced: �̃min ≡ �min/〈�min〉,
γ̃ ≡ γ /〈γ 〉 chosen such that the statistics have unit mean.
Note that, for both cases, the distributions are independent and
follow different curves for the symmetry classes β = 1, 2, 4,
respectively.

To this end we collected numerical data of the Landau-
Zener parameters for several disorder realizations between the
levels around the zero energy states (i.e., the middle of the
spectrum in the onsite model and RMT) and compared the ob-
tained statistics scaled to unit mean values to the RMT results.
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As far as their sensitivity to localization is concerned, while
gap statistics behave similarly to level spacing statistics, slope
statistics show patterns similar to level velocity statistics. In
particular, we numerically determined again the threshold
ratios above which the integral of the absolute value devia-
tion of the numerically obtained statistics from the analytical
ones exceeds 0.1 yielding L/ξ ≈ 0.77, 0.4, 0.34, L/ξV ≈
0.41, 0.29, 0.19, and L/ξ ≈ L/ξV ≈ 0.75, 0.48, 0.19 for the
slope and gap, respectively. Turning to the investigation of the
typical magnitudes of the LZ parameters first note that both
parameters can only take positive values so it is sufficient to
consider their mean values instead of their variances. Sim-
ilarly to the threshold ratios, the asymptotic slope and gap
behave similarly to the velocity and level spacing, respec-
tively. In agreement with this latter statement, slope scales
with the disorder strength and the system size exactly the
same way as it was observed for the level velocities, i.e.,
in the onsite model 〈γ 〉 ∼ W L−1, while it is independent of
both parameters in the case of the potential model and it does
not depend on the particular ensemble either up to leading
order. Regarding further the typical magnitude of the gaps we
observe that it scales with the system size as 〈�min〉 ∼ JL−2

in both models. Although it is the expected scale, it does not
match the general result for the off-diagonal matrix element,
〈ϕn,λ|dH/dλ|ϕm,λ〉 ∼ L−1. Moreover, quite surprisingly it is
insensitive to the disorder strength up to numerical precision.
Remarkably it also implies that, in strong contrast to RMT,
the gap is not proportional to the mean level spacing (for
RMT-like states) which latter does increase with the disorder
strength.

Next we turn to the analysis of the typical spacing, �λ,
between adjacent anticrossings and the typical width, δλ, of
them, i.e., the approximate region where the formula Eq. (16)
holds up to good precision. As pointed out in Refs. [86–93], in
slowly driven disordered systems, where RMT description is
applicable for the instantaneous energy spectrum, dynamics is
very well captured by classical diffusion of hardcore particles
in energy space, where transitions happen at the avoided level
crossings, approximately around the δλ region of the closest
approach. Furthermore, of utmost importance is its relation
to the typical spacing between adjacent avoided crossings
providing information about the geometrical structure or “typ-
ical shape” of the anticrossings. While, comprehensively, the
typical width should scale as the ratio of the gap and the slope,

δλ ∼ 〈�min〉
〈γ 〉 , (20)

the typical spacing is captured by counting the average
number of the avoided crossings, Ncross, being inversely pro-
portional to the spacing, �λ ∼ N−1

cross. In RMT we previously
showed [91] that the average number grows as Ncross ∼ √

N .
Counting also the number of the anticrossings while analyz-
ing their LZ parameters we found that in the onsite model
it also grows with the square root of the number of levels,
Ncross ∼ L, while in the potential model it increases linearly
with the number of lattice sites, Ncross ∼ L2. As far as the
disorder dependence is concerned, our numerical results show
that, as one would expect, up to high precision insensitivity to
disorder is observed in the potential model, while in the onsite

model it grows as Ncross ∼ W J−1. So in total we obtain for the
parameters:

�λpot ∼ L−2, �λonsite ∼ JW −1L−1, (21)

〈�min〉pot ∼ JL−2, 〈�min〉onsite ∼ JL−2, (22)

〈γ 〉pot ∼ O(J ), 〈γ 〉onsite ∼ W L−1, (23)

δλpot ∼ L−2, δλonsite ∼ JW −1L−1. (24)

Thus we see that the “shape” or “geometry” of the anticross-
ings is invariant against disorder strength and system size as
the ratio of the typical widths and typical spacings in both
models is disorder and system-size independent up to leading
order (neglecting subleading ∼λV0/L2 potential corrections,
which anyway comes with a slightly small prefactor of ≈0.2),
i.e., for L → ∞ they neither disappear (limit of δλ/�λ → 0)
nor merge together (limit of δλ/�λ → ∞):

δλ

�λ
∼ O(1). (25)

The numerical verifications of our statements can be seen in
Fig. 3 for the GOE ensemble, showing the agreement of the
gap and slope statistics with the analytical formulas [86,87]
and with the inset also displaying the disorder independence
of the number and of the gap of the anticrossings for the
potential model. Moreover, in Fig. 4 similar agreement is
demonstrated for the LZ distributions in the case of the GUE
and GSE ensembles with the insets verifying the size depen-
dence of the number of the anticrossings for both models, the
linear disorder strength scale of the number of the avoided
crossings and the constant behavior of the gap for the onsite
model.

B. Universal single particle dynamics

The universal “geometry” of the avoided level crossings
also implies universal (disorder and size independent) tran-
sition rates and single-particle dynamics in the case of slow
quantum quenches, once proper velocity and timescales are
chosen. For the sake of simplicity consider linear time evo-
lution in parameter space, λ(t ) = λi + vt , with transition
probabilities at the avoided crossings given by the celebrated
Landau-Zener formula [84,85]:

PLZ = e− π
2

�2
min
γ v . (26)

Introducing, in the slowly driven case, near adiabatic pro-
cesses, dimensionless time and velocity, measured in units
determined by the gap and frequency of the avoided cross-
ings t̃ = t/tc, tc = 1/〈�min〉, ṽ = v/vc, tcvc = �λ ⇒ vc =
〈�min〉�λ, leads to size and disorder independent Landau-
Zener transition probabilities. To see this, consider the
exponent of Eq. (26) which implies a velocity scale of vc =
〈�min〉2

〈γ 〉 in order to have universal transition strengths, which,

using the relation δλ ∼ 〈�min〉
〈γ 〉 , leads to

vc = 〈�min〉2

〈γ 〉 = 〈�min〉δλ ∼ 〈�min〉�λ, (27)
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(a)

(b) (c)

FIG. 3. Comparison of the distribution of the gap and the asymptotic slope at the avoided level crossings obtained in the two-dimensional
models and the RMT analytical results for the GOE ensemble (symbols). (a) Typical shape of an avoided crossing with width δλ, slope γ̃ and
gap �̃min, with the dashed line fitting the Landau-Zener approximation of the level distance. (b) Gap distribution for the onsite and potential
model. Red squares show potential model for system size, variance and potential strength, L = 28, W = J, and V0 = 100J , respectively.
Blue diamonds show onsite model results for L = 24 and W = J . Good agreement is observed between the distributions with their means
scaled to unity and the analytical results (dashed line). Inset shows disorder dependence of the gap in the potential model for V0 = 50J
showing insensitivity, up to numerical precision, for all the three ensembles. (c) Distributions of the asymptotic slope for the same parameters.
Numerical data collected from around zero energy and scaled to have unit mean values are in good agreement with the RMT analytical results
(dashed line). Inset shows disorder dependence of the number of the avoided level crossings in the potential model for V0 = 50J , exhibiting
again constant behavior up to numerical precision.
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FIG. 4. Statistics of the Landau-Zener parameters at the avoided crossings for the GUE and GSE ensembles comparing the RMT numerical
results with the onsite and potential model (symbols). (a) Gap distribution for the GUE ensemble for system sizes, disorder strengths, and
potential strengths, L = 60, W = 2J , J , and V0 = 75J for the potential model and onsite model, respectively. Inset shows average number of
the avoided level crossings in the potential model with V0 = 50J and W = J as a function of the system size growing as ∼L2 (dashed line)
for all the three ensembles (b) Gap distribution for the GSE ensemble for parameters L = 48, W = J , 2J , and V0 = 75J , respectively, for the
potential and the onsite model. In both cases remarkable agreement is observed with the RMT analytical results (dashed line). Inset shows
average number of the anticrossings as function of the system size at W = J for the onsite model growing linearly (dashed line). (c), (d) Slope
distributions for the same parameters, with the two disordered models following the same curves up to high precision (dashed line). Inset
of panel (c) shows scaling of the gap as a function of the disorder strength in the onsite model showing constant behavior up to numerical
precision. Inset of panel (d) shows average number of the avoided crossings scaled with the size of the system for the onsite model growing
linearly with the disorder strength (dashed line) and with approximately the same coefficient for all the three ensembles.
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FIG. 5. (a) Verification of the universal single-particle dynamics based on the universal distribution of the avoided level crossing
parameters. Occupation profiles are plotted for all the three symmetry classes for velocities and quench times such that the occupation
broadenings are the same. When scaling velocity and time as indicated in the main text these profiles become independent of the symmetry
class, system size, and disorder and potential strength and fall on top of each other on a universal Gaussian curve. Inset: Time evolution of the
variance of the occupation profile for L = 30, W = 2J , and V0 = 300J for the GUE ensemble in the potential model and for L = 50, W = J
for the GOE ensemble in the on-site model exhibiting linear dependence. (b) Velocity dependence of the diffusion coefficient, exhibiting
a universal power-law behavior with an anomalous dependence, ∼ṽβ/2+1 in the slow process limit with the slightly smaller values for the
potential model. Numerical simulations were performed for various system sizes, disorder, and potential strengths, for the three symmetry
classes being identical on the two panels.

where in the last step we used our knowledge about the fact
that, in both models, δλ/�λ is independent of both the system
size and the disorder strength up to leading order. Moreover,
for fixed dimensionless velocities and quench times we get
the same number of the avoided crossings on average as well.
Hence in slowly driven systems, where level-to-level transi-
tions mostly happen at the anticrossings, on average the same
number of such transitions happen with the same strength (up
to leading order in the potential model) implying universal
single-particle dynamics. To gain a clearer description of the
units, we formulate it also in terms of the disorder strength and
system size, with the proper prefactors obtained numerically:

vpot ∼ L−4J, tpot ∼ L2J−1, (28)

vonsite ∼ L−3W −1J2, tonsite ∼ L2J−1. (29)

Next, we verify the above statements by numerically com-
puting the time evolution of the wave function of a single
fermion initially prepared in an eigenstate of H (λ = 0)
with eigenenergy being closest to zero (implying the mid-
dle of the spectrum in the onsite model), denoted by η0

0
with H (λ = 0)η0

0 = ε0(0)η0
0. For solving the time-dependent

Schrödinger equation, i∂tϕ
0(t ) = H (t )ϕ0(t ), we applied the

adiabatic approach, i.e., we expanded the time-evolved wave-
function in terms of the instantaneous eigenstates, ϕ0(t ) =∑L2

k=1 e−i�k (t )α0
k (0)η0

t with �k (t ) = ∫ t
0 dt ′εk (t ′) denoting the

dynamical phase and transferred the differential equation to
these expansion coefficients encoding the dynamics of the
single fermion:

∂tα
0
k (t ) =

L2∑
k=1;k =l

Akl (t )α0
l (t ), (30)

with Akl (t ) = −iηk
t ∂t H (t )ηl

t/[εk (t ) − εl (t )]. Finally, we im-
plemented a RK4 routine to solve the above equation and
obtain the expansion coefficients. The dynamics is then per-

fectly characterized in terms of the occupation probabilities
of the kth instantaneous eigenstates at time t given by |α0

k (t )|2
and the time evolution of their typical width.

In the case of slowly driven systems with ṽ � 1 the
dynamics governed by the Landau-Zener transitions at the
avoided level crossings and a classical Markovian en-
ergy space diffusion picture applies up to high accuracy
[88–90]. Here both of the above quantities exhibit univer-
sal behavior as predicted for fixed ṽ and t̃ . Moreover, the
classical underlying picture immediately implies a univer-
sal Gaussian shape of the occupation numbers, |α0

k (t )|2 ≈
exp(−k2/4D̃t̃ )/(4πD̃t̃ )1/2, and a linear time evolution of its
variance, σ 2(t ) = ∑L2

k=1 k2|α0
k (t )|2 ≈ 2D̃(ṽ)t̃ with D̃(ṽ) being

the universal, purely velocity dependent diffusion constant.
We checked the validity of this universality for various values
of L, W , and V0 for both models and the three ensembles. In
particular choosing such ṽ and t̃ that the broadening σ (t ) of
the occupation profile remains the same, occupation profiles
fall on the same Gaussian curve as demonstrated in Fig. 5(a)
with the inset verifying the linear time dependence. In ad-
dition, we also plotted the numerically obtained values of
the diffusion constant depending only on the dimensionless
velocity [see Fig. 5(b)] and exhibiting in this diffusion regime
an anomalous power-law behavior, D(ṽ) ∼ ṽβ/2+1 for ṽ �
1, which is a direct consequence of the different strengths
of level repulsion in the given ensembles. Note that the
breakdown of the power-law curve starts around ṽ ≈ 1, as
predicted, and there is a small difference in the coefficients
between the two models. For the derivation of the power-law
behavior, see Refs. [88–90] (although in these works units
were defined with different coefficients).

V. CONCLUSIONS

In this work we first investigated the statistical properties of
the dynamics of energy levels of disordered two-dimensional
quantum-dot models defined in Eqs. (5) and (6). In the
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onsite model (5), the same quench protocol was applied as
in RMT, but with randomness only involved in the onsite
energies with nearest-neighbor hoppings, while in the poten-
tial model (6) with fixed onsite random energies and hopping
terms the motion of the energy levels was generated by a
parabolic potential compressed (decompressed) in the x (y)
direction. First we considered the effect of the potential on the
localization properties and the statistics of the velocity and
curvature of energy levels. The localization effects, induced
by the confining potential were captured by the average level
spacing ratio. Next we determined how the variance of the
level velocity and the curvature unit scaled with the system
size and disorder strength and determined their statistics in
the strongly localized regimes. Moreover, we also provided
numerical results on the threshold values in the two models
below which their statistics is described by the RMT predic-
tion up to a fixed precision.

In the third section we investigated the statistical properties
of the avoided level crossings, playing important role in near
adiabatic nonequilibrium processes. In a similar way, almost
perfect agreement was found between the RMT results and the
disordered models within the obtained regime determined by
the threshold values of L/ξ and L/ξV . Considering the size
and disorder dependencies of the LZ parameters we found
agreement for the gap for both the two-dimensional models
and the RMT results scaling with the inverse of the number of
energy levels while insensitivity to disorder strength was ob-
served. The slope exhibited the same scalings as the velocity,
i.e., independence of both the disorder strength and the system
size for the potential model, while linear growth with the
disorder and inverse scaling with the system size for the on-
site model. Finally, the average number of avoided crossings
increased with the number of levels and the system size for the
potential and onsite model, respectively, while insensitivity
and linear growth was observed with respect to the disorder in

the potential and onsite model, respectively. Despite the dif-
ferent scalings, we concluded this discussion with the fact that
the natural time and velocity units matched those predicted
by size and disorder strength independent Landau-Zener tran-
sition rates, implying universal slowly driven dynamics. For
verifying the latter claim we performed numerical simulations
for the slowly driven case, with dimensionless velocity ṽ � 1,
for the time-evolution of a single fermion initially prepared
at zero energy. The results faithfully mirrored the predictions,
that is the instantaneous occupation probabilities and the time-
evolution of its broadening showed diffusion like behavior
falling on a universal curve independently of the disorder and
potential strength, system size, and the symmetry class.

Our findings for the level dynamics in two-dimensional
disordered systems can be extended in many natural ways. To
say the least, localization properties and spacing statistics of
the Floquet eigenstates and quasienergies in cyclic drivings
or finite-size scaling analysis of the localization length and
critical disorder in the potential model for the GSE ensemble
can also provide a fruitful perspective for future research.
Further tests could also be performed verifying the agreement
with RMT, for instance in terms of the fidelity susceptibility
capturing directly the localization characteristics of the eigen-
states [109,110].
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