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Density of photonic states in aperiodic structures
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Periodicity is usually assumed to be the necessary and sufficient condition for the formation of band gaps,
i.e., energy bands with a suppressed density of states. Here, we check this premise by analyzing the band
gap properties of three structures that differ in the degree of periodicity and ordering. We consider a photonic
crystal, disordered lattice, and ordered but nonperiodic quasicrystalline structure. A real-space metric allows us
to compare the degree of periodicity of these different structures. Using this metric, we reveal that the disordered
lattice and the ordered quasicrystal can be attributed to the same group of material structures. We examine the
density of their photonic states both theoretically and experimentally. The analysis reveals that despite their
dramatically different degrees of periodicity, the photonic crystal and the quasicrystalline structure demonstrate
an almost similar suppression of the density of states. Our results give new insight into the physical mechanisms
resulting in the formation of band gaps.
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I. INTRODUCTION

Modern condensed matter physics have stemmed from
translational symmetry analysis, which determines the trans-
port properties of waves according to the band structure,
following the Bloch theorem, which is applicable to any pe-
riodic system. Thus, band gaps related to the periodicity of
the dielectric index give photonic crystals a unique degree of
control over electromagnetic waves. For example, photonic
crystals enable localization of light inside small-volume cavi-
ties, design of waveguides with specific dispersion properties,
and modification of the light emission rate [1–4]. These fea-
tures make photonic crystals useful in optical applications; for
instance, they are used as resonators [5], optical sensors [6],
and topological insulators for photons [7]. However, certain
restrictions on the choice of material and symmetry for pho-
tonic crystals limit the freedom in their design. In particular,
an omnidirectional band gap opens up only for a sufficiently
high contrast of the refractive index and high symmetry of
a structure. Reverse engineering with numerical optimization
can be used to overcome this problem, but it often yields
overly complex structures [8–11].

Another strategy to obtain band gaps is to consider
nonperiodic systems. For example, disordered hyperuniform
structures have the demanded band gap properties despite
their random structure [12–15]. Quasicrystalline structures
are remarkable among other nonperiodic systems, because,
despite the lack of translational symmetry, they are ordered.
Recent advances in three-dimensional (3D) nanomanufactur-
ing enabled the fabrication of these structures with a fine
precision, allowing them to operate even in the visible light
range [16–22].
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Quasiperiodic photonic structures are a special class of
photonic structures with a high degree of order in reciprocal
space. The opportunity to design structures in the reciprocal
space and then obtain their structure in real space by inverse
Fourier transform attracts considerable attention [20]. Real-
space methods allow engineering photonic structures with
the desired properties, for example, complex moiré patterns
[23]. Recently, quasicrystalline structures based on multiple
one-dimensional (1D) gratings oriented in all directions were
reported [24]. Even a weak dielectric contrast in the case of
polymer materials allows such structures to exhibit an un-
precedented suppression of radiation due to the band gaps
created in two-dimensional (2D) and 3D cases.

Translational symmetry allows classification of solutions
by their wave vector: such solutions are either a propagating
or evanescent wave [4]. In the latter case, the wave vector has
a nonzero imaginary part, and for a certain direction there
is a band gap. In disordered lattices, there is another source
of evanescent solutions related to the Anderson localization
[25,26]. Figure 1 shows an ordered photonic crystal with a
periodic structure, a nonperiodic ordered quasicrystal, and a
disordered lattice. The quasicrystalline structure lacks both
conditions for evanescent waves, because it has neither pe-
riodicity nor disorder.

In this paper, we study the suppression of light in a qua-
sicrystalline structure and compare it with similar properties
obtained in a photonic crystal with a honeycomb lattice, and
in a disordered lattice structure. By using a real-space met-
ric, we determine the amount of periodicity that allows us
to numerically compare the quasiperiodic structure with the
disordered lattice with a given degree of disorder. Numeri-
cal results reveal a strong suppression of wave propagation
in the quasicrystalline structure comparable to its photonic
crystal counterpart; in contrast, for the disordered lattice with
the same degree of periodicity, the suppression is weaker.
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FIG. 1. Landscape of ordered and disordered structures with dif-
ferent degrees of periodicity. (a) Honeycomb photonic crystal, an
ordered periodic structure. (b) Disordered lattice with rods randomly
shifted with respect to the rod positions in the honeycomb lattice, a
disordered and nonperiodic structure. (c) Quasiperiodic structure, an
ordered but nonperiodic structure.

The predicted properties are further confirmed by microwave
transmission measurements.

II. DESIGN OF PHOTONIC STRUCTURES

Here, we describe photonic structures with a spatial dis-
tribution of permittivity modulated in two dimensions. We
start with rigorously ordered quasiperiodic structures with
no translational symmetry, then we study a photonic crystal
with perfect ordering and periodicity, and then we consider a
disordered nonperiodic lattice.

Following Ref. [24], we generate the quasiperiodic struc-
ture as a superposition of several one-dimensional gratings
with a sine-type modulated refractive index. The grating ori-
entations are uniformly distributed over the polar angle, and
the continuous spatial distribution of the refractive index is

�nc(r) =
Nopt∑

i=1

�ni sin(bi · r + φi ), (1)

where i enumerates the gratings, Nopt is the optimal number
of gratings, �ni is the modulation amplitude of the refractive
index in the ith grating, bi is the vector determining the grating
period and orientation, and φi is a random phase. For such
quasicrystalline structures, the optimal number of gratings is
Nopt ≈ 2.36(n/�n)2/3, where n is the mean refractive index
and �n is the amplitude of the refractive index deviation from
the average value n, i.e., n1 = n + �n and n2 = n − �n.

Optical properties of the structure can be analyzed in
the reciprocal space strictly connected to Fourier transform.
The Fourier transform of the sine function corresponds to
two Bragg maxima (Dirac delta functions) with the direction
±bi in reciprocal space. Each lattice has the same period a,
so the lattice vector length is defined by b = |bi| = 2π/a.
The uniform angular distribution of the gratings leads to the
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FIG. 2. (a) Schematics of 14 Bragg maxima located along the
circle in the reciprocal space corresponding to the seven gratings
merged into a single structure, which is used for generating a
quasiperiodic structure with an omnidirectional Bragg band gap.
(b) Fragment of the quasiperiodic structure with a binary distribution
of two materials. The structure corresponds to seven gratings, with
the distribution of the maxima in reciprocal space shown in panel
(a). (c) Ordered honeycomb photonic crystal composed of dielectric
rods in air. (d) Disordered lattice of dielectric rods in air. The rod
positions are randomly shifted in both x and y directions with respect
to the nodes of the honeycomb lattice.

superposition in (1), which results in dense distribution of
first-order Bragg maxima around a circle in reciprocal space,
shown in Fig. 2(a). Because of randomly chosen phases and
a sufficient number of gratings, the local perturbation of the
refractive index has a homogeneous distribution with no re-
markable features in any specific direction [see Fig. 2(b)].
Notably, according to a recent report [24], such a quasiperi-
odic structure has a complete photonic band gap for all
directions of propagation of the electromagnetic wave.

To obtain a structure that comprises only two dielectric
materials, a binarization procedure [27–31] is applied to the
refractive index sum �nc(r)

nb(r) = n + �nsign[�nc(r)]. (2)

After binarization, each grating contributes to the light scat-
tering with an effective amplitude �nb,i = 2�n/

√
πNopt. The

binarization procedure introduces additional noise in the re-
ciprocal space, and its integral background value is 36% of the
Bragg maxima intensity. However, for a sufficiently high grat-
ing number, these maxima are so densely distributed that they
are almost indistinguishable in a finite-size structure [32] [see
Fig. 2(a)]. Therefore, a proper choice of the grating number
provides a sufficient density of the maxima along the circle.
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We chose a photonic crystal with a honeycomb lattice
as a periodic and ordered structure [Fig. 2(c)]. Each hexag-
onal unit cell contains six dielectric rods with a radius of
r = 0.26a surrounded by air. The filling fraction of the rod
material matches that of the quasiperiodic structure. Both
structures have the same lattice constant a. The disordered
lattices with no translational symmetry [33–36] are based on
the honeycomb photonic crystal, but the position of each rod
was randomly shifted according to x = x0, j + δx j and y =
y0, j + δy j . Here, δx j and δy j are random values distributed
uniformly in the interval [0 . . . dr]. Figure 2(d) displays an
example of such a disordered lattice.

III. METRIC FOR PERIODICITY DEGREE

Since we aim to reveal how periodicity affects the struc-
tures’ properties, a proper metric is required for quantitative
analysis. Such a metric would allow us to compare ordered
quasiperiodic structures with photonic crystals with a certain
value of disorder σ . Currently, there exists no standard metric
with general qualitative and quantitative properties for an ar-
bitrary case. Various metrics were developed and applied to a
wide range of disordered systems [37]. Most of the proposed
metrics use the characteristics of the disorder spectrum in
reciprocal space [38–41]. However, they are inefficient for
the description of samples that are small in real space. Al-
though several studies proposed nontrivial real-space metrics
that allow distinguishing structures in terms of pseudodisorder
[33,34], they cannot be generalized for other classes of pho-
tonic crystals, including quasiperiodic structures. Thus, an ad
hoc approach is required.

In this study, we exploit a metric based on self-convolution
in real space. A reliable figure of merit is obtained by nu-
merical convolution of the sample with itself [42], which
means calculating the structure numerically after discretizing
the real-space domain into finite square samples

C2D(n, k) =
NW∑

i=1

NW∑

j=1

W (i, j)F (n + i − 1, k + j − 1), (3)

where n = 1 . . . NF − NW + 1, k = 1 . . . NF − NW + 1 are the
elements of the output convolution matrix, F (l, m) is an NF by
NF binary matrix describing the complete structure, W (i, j)
is an NW by NW area of the complete matrix of the structure
for (NF /Na − 4) periods with the lattice constant Na = a/�,
and � = 0.1 is the sampling step. Figure 3 shows such a 2D
convolution for the ordered photonic crystal. At each location,
we calculate the product of each element of the square area
and each element of the complete matrix, i.e., we find their
overlap, and then we sum the results to obtain the output
in the current location [43]. Figures 5(a) and 5(b) show the
convolution maps for the considered disordered lattice and
quasiperiodic structure, respectively. The maxima in the maps
reflect the degree of periodicity of a structure with a spe-
cific lattice constant a. To quantify the periodicity degree, we
consider the nearest maxima located at a distance from the
center equal to the lattice constant a. We notice here that for
the quasiperiodic sample, the maxima merge and form a ring,
which indicates an omnidirectional band gap. The nonperi-
odic distribution of structures is manifested in the broadening
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FIG. 3. Illustration of calculation of a discrete convolution for
the ordered photonic crystal. (a) Choosing a finite area W in a com-
plete structure F . (b) Calculation of the discrete convolution values.
(c) Convolution of the ordered photonic crystal.

of the maxima on the map along with the decrease in their
intensity.

At the next step, we consider a one-dimensional normal-
ized convolution C1D(x) for the selected maxima of both
structures, shown in Fig. 5(c) with solid curves. These data
are described adequately by using a second convolution of
Gaussian G(x) and rectangular rect(x) functions, and the dis-
order is quantified with respect to the standard deviation of the
Gaussian function. The corresponding equations read

CrG(x) =
∑

x=1

rect(x)G(k − x + 1), (4)

C′
1D(x) =

∑

x=1

CrG(x)CrG(k − x + 1) ≈ C1D(x), (5)

where rect(x) is a unit-height rectangular pulse of length
C1D(x), G(x) = exp[−x2/(2σ 2)]/(σ

√
2π ), and σ is the stan-

dard deviation. By applying the one-dimensional convolution
to our structures, we find the standard deviation σ for the
Gaussian distribution when C′

1D(x) ≈ C1D(x). The larger the
structure and the square area are, the more stable the stan-
dard deviation value. For our ordered photonic crystal, the
dispersion σ = 0, which is proven by the fact that the cor-
responding convolution function is triangular, see the green
curve in Fig. 5(c). The dashed curve in Fig. 5(c) shows the
metric function C′

1D(x) for the disordered lattice. This function
describes the original maximum in the map, therefore we

(a) (b) (c)

FIG. 4. Photographs of samples printed on a 3D printer. (a) Or-
dered honeycomb photonic crystal of dielectric rods in air. (b) Disor-
dered lattice of dielectric rods in air. The rod positions are randomly
shifted away from the honeycomb lattice positions in both x and
y directions (the disorder degree is dr = 2 mm). (c) Quasiperiodic
structure with a binary distribution of two materials. The structure
corresponds to seven gratings merged into a single binary structure.
All the structures are 5 mm high. Structures in (b) and (c) have the
same degree of periodicity σ = 4.78.
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FIG. 5. Convolution maps of (a) the disordered lattice and (b) the quasiperiodic structure shown in Figs. 4(b) and 4(c), respectively. The
vectors of translation are shown with white arrows. (c) Comparison of the cut of convolution along the x axis for the honeycomb photonic
crystal (green curves), the quasiperiodic structure (red curve), the disordered lattice (blue curve), and the metric function for the disordered
lattice (blue dashed curve). Inset: RMSE difference between the convolutions of the quasiperiodic structure and the disordered lattice as a
function of the degree of disorder of the disordered lattice.

can apply this metric to describe the degree of periodicity in
random photonic crystals as well.

We find the minimum of the root-mean-square error
(RMSE) function [44] of the difference in the convolution
maps of the quasiperiodic structure and disordered lattice. By
this criterion, the quasiperiodic structure is equivalent to the
disordered lattice with a degree of disorder of dr = 2 mm,
as can be seen in the inset in Fig. 5(c). In this case, the
described metric reveals a standard deviation of σ = 4.78
for both structures. Thus, these two structures have the same
degree of periodicity, which is the parameter responsible for
the formation of photonic band gaps.

IV. PROBING OF BAND GAP PROPERTIES

Now we compare the electromagnetic properties of the
quasiperiodic structure and the disordered lattice with the
same degree of periodicity according to the metric described
above. First, we carried out full-wave simulation by using the
time-domain solver of CST STUDIO SUITE software. A linear
dipole emitter was located at the center of each structure under
consideration. We also analyzed the results after averaging the
data for 15 different dipole positions in the central unit cell. To
facilitate further experiments, we chose a dipole source with
TM polarization (in this case, the electric field oscillates along
the vertical z direction). The top and bottom boundaries of the
structure were chosen to be a perfect electric conductor; the
vertical boundaries of the structure in the x-y plane were a
perfectly matched layer to simulate open boundary conditions.

To verify our theoretical predictions in experiment, we
used polymer samples fabricated with a 3D printer. A pair
of aluminum plates formed a plane-parallel waveguide for
TM polarization, and the samples were placed between the
plates. A small dipole antenna was located in the center of the
structures. We measured the parameters of the structures in
the frequency range from 10.8 to 15 GHz. For each structure,
the reflection coefficient (S11 parameter) was measured using
a vector network analyzer, and the real part of S11 allowed
estimating the emitted power P. To measure the reference
radiation power in vacuum P0, we placed the dipole antenna
in the plane-parallel waveguide without the structure.

For the structures both in the simulation and in the experi-
ment, we chose polylactide (PLA) plastic with a permittivity

of about ε1 = 2.2 (n1 ≈ 1.5) and low losses (tan δ ≈ 1 ×
10−2) in the microwave range [45]. The dielectric structures
were surrounded by air (n2 ≈ 1). The optimal number of
gratings for the quasiperiodic structure with the refractive
contrast n1/n2 = 1.5 was Nopt = 7. The scale of the structures
was chosen for the lattice constant to have the same value,
a = 10 mm, at different frequencies of the band gap of the
quasiperiodic structure and the photonic crystals. For the pho-
tonic crystals, the radius of the dielectric rods was r = 0.26a.
These structures are shown in Fig. 4. The structures had the
dimensions of 250 × 250 × 5 mm3 (25a × 25a × 0.5a), and
the total volume filling fraction was about 50% for all the
samples.

First, we simulated the radiation efficiency and studied
the radiation suppression due to the modification of the local
density of photonic states. The emitted power of the dipole P
was estimated by the real part of the impedance normalized
to that of the dipole located in free space P0 [18,46,47]. For
convenience, we use dimensionless frequency a/λ for repre-
sentation of the emission spectra of the dipole in the structures
under study (the dashed blue curve in Fig. 6). The photonic
crystal structures exhibit a suppression band around 0.46a/λ

[Fig. 6(a)]. A pair of emission suppression gaps is clearly
seen around 0.38a/λ and 0.41a/λ in the power spectrum
of the quasiperiodic structure [Fig. 6(c)]. We notice that the
spectrum of disordered lattice is quite similar for different
realizations of the structure. Thus, we do not average the
spectrum over the ensemble. The suppression of the radia-
tion related to the local density of photonic states decreases

(a)                                                 (b)                                             (c)
QPCPC DL

/
P
P

/a � /a � /a �

Simulation
Experiment

FIG. 6. Normalized radiation power P/P0 of a dipole placed in-
side (a) the honeycomb photonic crystal, (b) the disordered lattice,
and (c) the quasiperiodic structure. The plots correspond to the theory
(dashed blue curve) and the experiment (solid red curve). The gray
dashed line shows the level of radiation suppression up to 0.2.
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strongly within the band gaps. Noteworthy, the finite sizes
of the structures result in nonzero local density of photonic
states in the band gap. Macroscopic interference effects cause
oscillation fringes that are observed in all the spectra at the
frequencies outside the band gaps, but these features are ne-
glected in the further discussion. An important observation
is that both regular structures demonstrate almost the same
suppression of radiation down to the base level of 20% despite
the rather distinct degree of periodicity. The disordered lattice
with the same degree of periodicity as the quasiperiodic struc-
ture demonstrates a significantly weaker suppression, about
40% [Fig. 6(b)] .

The normalized TM power emission spectra of the dipole
obtained in experiment for each structure are shown by the
solid red curve in Fig. 6. In contrast to the simulation, high-
frequency fluctuation fringes are observed in the spectra for
all the structures. These fringes are likely to result from the
spatial gaps between the sample and metal planes in the exper-
imental setup. These gaps create additional waveguide modes,
which are absent in the simulations. However, such oscilla-
tions do not affect the analysis of the band gap suppression
features.

For all three structures, the spectra exhibit band gaps
around 0.46a/λ [photonic crystal samples in Fig. 6(a)] and
0.38a/λ and 0.41a/λ [the quasiperiodic sample in Fig. 6(c)],
which is in excellent agreement with the ones obtained in
simulations. Moreover, the suppression of the electromag-
netic radiation due to the Bragg band gaps is stronger for
the ordered structures (down to the baseline at 20%). In the
experiment, the disordered lattice [Fig. 6(b)] with the same
degree of periodicity as that of the quasiperiodic structure
demonstrates weaker effects related to the emission suppres-
sion (with a baseline at about 40%). Thus, the experimental
data completely confirms the theoretical predictions.

Let us discuss the parameters related to the modification
of the local density of photonic states. The main parameters
contributing to this effect are the following: the size of the
structure, dielectric contrast, stop bands overlapping for all
spatial directions, and the degree of periodicity. The transla-
tional symmetry of a crystal lattice limits possible rotational
symmetries, which are responsible for the overlap of the stop

bands in all directions. If the dielectric contrast is low, there
is an additional leakage of radiation in photonic crystals, and
nonperiodicity introduces another leakage channel. In con-
trast, quasiperiodic structures have no strict restrictions on
the overlapping of stop bands, but a fixed degree of period-
icity opposes the suppression of the local density of states.
These competing effects create opportunities for designing
polymer-based structures with a local density of states due
to an additional degree of freedom provided by rotational
symmetry.

V. CONCLUSION

In this work, we have analyzed the opportunities pro-
vided by quasiperiodic structures for advanced manipulation
of electromagnetic radiation. Our study focuses on the sup-
pression of local density of photonic states and its interplay
with the degree of periodicity of the structures. We have pro-
posed a real-space metric to compare the photonic properties
of quasiperiodic structures and disordered lattices. We have
found that quasiperiodic structures made of available plastic
materials achieve the same suppression of local density of
photonic states as photonic crystal with a perfect transla-
tional symmetry does. We have carried out both theoretical
and experimental research, and the results are in excellent
agreement. Surprisingly, we have revealed that the lack of
periodicity is beneficial for the suppression of density of
photonic states, and nonperiodic structures have inherent ad-
vantages over the ordered ones in this regard. Our findings
pave the way for engineering photonic structures made of var-
ious low-index materials with an additional degree of freedom
enabled by quasicrystal design. We anticipate that polymer-
based structures empowered with a quasiperiodic topology
will broaden the possible applications of photonic structures.
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