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First-principles study of thermoelasticity and structural phase diagram of CaO
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We present pressure (P) and temperature (T ) variations of elastic and anisotropic properties, solid-solid
(rocksalt, B1 to cesium chloride, B2) and solid-liquid structural phase transitions of CaO. We employed first-
principles density functional theory supplemented with an anharmonic contribution to phonon dynamics. Good
agreement is obtained for all properties up to the pressure and temperature range relevant to the Earth’s mantle
and outer core. Born elastic criteria are generalized for arbitrary stress to elaborate the structural phase diagram
from a thermoelastic viewpoint. We propose a self-consistent computational scheme to incorporate the effect of
thermal hysteresis into Lindemann’s melting law. This improvised melting law exhibits quantitative agreement
with reported findings for the high-P melting curve. We find the triple point (i.e., the coexistence of B1, B2,
and liquid phases) at 23 GPa and 4600 K. By examining the pressure-term included elastic properties, we can
show that the solid-solid transition is mechanical in a pressure range of 0–200 GPa and temperature up to 3000
K. The softening of shear elastic constant C44 drives the B1-B2 phase transition. This assertion is corroborated
by examining the phonon dispersion curve and mode Grüneisen parameter at different pressures for both B1
and B2 phases. The solid-liquid phase boundary can be treated accurately through the temperature-dependent
thermodynamic Grüneisen parameter. Furthermore, in this paper, we predict a negative melting slope >140 GPa
with a peak temperature of 7800 K, suggesting a smaller molar volume on the liquid side than that of the solid
phase. This finding is supported by electronic band structure calculation. It is proposed that the hybridization
of the empty 3d band of the cation with s orbitals lowers the conduction band to cross the Fermi energy at the
Brillouin zone center and leads the insulator-to-metal/semimetal phase transition ∼200 GPa. Different electronic
states on solid and liquid sides make the liquid phase more compressible than the solid phase, eventually reducing
the melting temperature with pressure.
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I. INTRODUCTION

Lime (CaO) is one of the important components in the
Earth’s lower mantle (LM) and upper mantle (UL), and it is
believed that the region D′′ at the bottom of the mantle is
enriched in CaO [1]. The study of high-pressure structural
phase transition (SPT) and elastic properties of lime and its
usage in deriving calcium silicate perovskite CaSiO3 (CaPv)
from a geophysical viewpoint is vital for understanding the
Earth’s LM and outer core. For instance, thermal conductivity
and mass transport mechanisms depend sensitively on the
thermoelasticity and the structure [2]. The pressure (P) and
temperature (T ) across the LM and outer core span over 23 to
>200 GPa at 2000 to >4000 K. As computed in this paper,
this is the (P, T ) region where the rocksalt (B1) structure
with face-centered-cubic (fcc) space lattice, the cesium chlo-
ride (B2) structure with simple cubic space lattice, and the
liquid phase have competing free energies. Transport across
the rocky LM and the molten metallic core thus requires
the knowledge of P, T variation of SPT and elasticity for
these phases separately as well as at the onset of the phase
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transition. It is also essential to unveil the role played by the
thermal stress at finite P, T conditions on elastic moduli and
their connection in determining the high-P melting curve. It
is noted that, in closely related compounds of the mantle,
the anharmonic effect is also important. For instance, anhar-
monicity is detected in (i) the Raman spectrum of MgSiO3 at
ambient pressure [3], (ii) at the boundary across the olivine
to wadsleyite transition [4], (iii) high-T stabilization of the
cubic phase of CaPv [5], and (iv) in Mg orthoenstatite [6],
to mention a few. Also, recent first-principles density func-
tional theory (DFT)-based studies [7–16] on high-T thermal
assessment of CaO have clearly shown the inadequacy of
quasiharmonic approximation (QHA) above room tempera-
ture (RT). We [17] have thoroughly investigated the role of
anharmonicity in reference to the projector augmented-wave
(PAW) pseudopotential and the effect of exchange correlation
(XC) on high-T thermodynamic properties for the B1 phase
of CaO extending up to 3000 K. In this paper, we also discuss
the bonding scenario in CaO at expanded volumes. In this
conclusive paper, we suggest a non-negligible contribution
due to phonon anharmonicity for CaO beyond RT, lesser for
the local density approximation (LDA)+PAW scheme. There-
fore, these studies advocate the need to calculate anharmonic
phonon dynamics while deriving free energy for geophysical
and geochemical exploration from a thermoelastic viewpoint.
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Experimentally, mimicking such an extreme environment
to perform in situ measurement is challenging either due
to grain size effects or the presence of impurities [18]. It
is also difficult to obtain a single crystal for measuring the
elastic properties, and thermal instability causes additional
difficulties [19]. For instance, the phase transition from B1
to B2 in CaO has been observed from static diamond anvil
cell and shock-wave measurements in a pressure range of
60–70 GPa [20–23]. Jeanloz and Ahrens [20] carried out a
shock-wave study of the compression of CaO to 175 GPa, and
they observed a phase transition from B1 to B2 at 60 GPa.
However, the compression of the B2 phase was inadequately
known from these shock-wave experiments, which exhibit
an unusual dispersion >100 GPa. The authors attributed this
dispersion to the thermally generated instabilities that would
have resulted in another phase transition. The volume change
at the B1-to-B2 transition and the compression of the B1
phase up to the transition pressure has also been determined
statically in Refs. [21,22]. Richet et al. [23] reported the RT
compression data to 135 GPa in a diamond anvil cell experi-
ment. However, these studies exhibited the SPT only at RT,
whereas a complete phase diagram is required for a better
understanding of the behavior of the LM and the LM–Earth
outer core interface.

Ab initio calculations provide an alternative to investigate
SPT and thermoelastic response, and it is possible to deduce
a complete structural phase diagram at an arbitrary point
in the (P, T ) plane. In these regards, the phase transition
of CaO has also been studied theoretically but with a wide
range of predicted phase transition pressures, ranging from 32
to 121 GPa [10,11,24–30]. The modified electron-gas study
for CaO crystal by Cohen and Gordon [24] predicted the
phase transition to be 121 GPa using the Watson function
and 162 GPa using the Yamashita-Asano function. Mehl et al.
[25] predicted the B1-B2 phase transition pressure using the
potential-induced breathing to be 55 GPa. In another study,
Mehl et al. [26], using the full-potential self-consistent lin-
earized augmented plane-wave, showed the phase transition
∼54 GPa. Bukowinski [27] adopted the LDA, which resulted
in transition pressure being 32 GPa, which was in better agree-
ment with the experimental data [21]. The computations of
Karki and Crain [29] based on DFT within LDA resulted in
phase transition at 58 GPa. Phase transition at 56 GPa was
also observed by Karki and Wentzcovitch [10] using a DFT-
LDA-based investigation. Deng et al. [30] employed the ab
initio plane-wave pseudopotential method and showed phase
transition at 62.8 GPa. In a similar study, but using generalized
gradient approximation (GGA), Jiang et al. [11] predicted the
phase transition at 66.7 GPa. Although these studies show a
wide scatter in SPT pressure at T = 0 K or RT, they reveal the
specific trend in derived phase transition pressure. The LDA-
based findings generally estimate smaller values for transition
pressure than the GGA-based estimate. Similarly, even though
the high-P analysis of the elastic behavior of lime can provide
a better perception of elastic destabilization, very limited ex-
perimental findings are available, and virtually no experiments
were attempted to examine the temperature effect on the pres-
sure dependence of elastic moduli [31]. Oda et al. [32] have
obtained T -dependent elastic constants (TDECs) but at ambi-
ent pressure. Several theoretical estimates for elastic constants

(ECs) at high-T are reported but at atmospheric pressure
[33–35]. These studies are limited to a maximum of 2000 K,
well below the melting temperature (TM = 3160 K [36]). In
an experimental analysis to investigate the elasticity of single-
crystal CaO at high-P, Speziale et al. [37] involved a combi-
national study using the Brillouin scattering (BS) and radial
x-ray diffraction (RXRD) techniques at RT. However, the
study is limited to 30 and 70 GPa for BS and RXRD methods.
Theoretical predictions of pressure-dependent ECs (either at
T = 0 K or RT) for CaO have been made by Karki and Crain
[29], Deng et al. [30], Jiang et al. [11], and Ackland [38]. In a
recent study on CaO using DFT-LDA- 1

2 , authors [39] also pro-
pose a nearly thermodynamic stable hexagonal phase in addi-
tion to conventionally known B1 and B2 phases. Furthermore,
the results for the high-P melting curve of CaO are inadequate
compared with neighboring isostructural magnesium oxide
[40–43]. Wang [44] and Wang et al. [45] proposed a model
based on the relationship between temperature and thermo-
dynamic properties to predict high-P melting. Sun et al. [46]
implemented a shell model molecular dynamics (MD) simu-
lation and analyzed the thermal instability to investigate the
melting curve of CaO. Restricted either due to experimental
limitations or finite-temperature ab initio computations, the
high-P, T structural phase diagram of lime is incomplete.

Since the pressure and temperature dependence of phonon
frequency is known to arise from the non-harmonic character
of the interatomic potential, we attempted to incorporate the
anharmonicity in our recent work [17] using the lowest-order
thermodynamic perturbation theory in conjunction with the
DFT-based quasiharmonic (QH) full lattice dynamics. In that
study [17], we report comprehensive thermophysical proper-
ties, including a bonding scenario in the B1 phase of CaO.
Extending the LDA+PAW scheme for the B2 phase, in this
paper, we have investigated (P, T ) dependence of SPT, high-P
melting curve, and various elastic (second-order ECs Ci j , bulk
modulus B, shear modulus G, and Young’s modulus Y ), and
anisotropic (Zener elastic anisotropy A and Poisson’s ratio σ )
properties of CaO in both B1 and B2 phases. The present
method of computing elastic moduli thus includes the effect of
phonon anharmonicity through the correct thermal expansion
and therefore goes beyond the conventional QH technique.
The isothermal equation of state (EOS), enthalpy H , thermal
pressure Pth, and thermodynamic Grüneisen parameter γth are
also obtained. To explain the studied phase diagram due to
elastic instabilities, the Born elastic criteria for Ci j are gen-
eralized for arbitrary stress [47–50], the so-called modified
Born criterion. Furthermore, as elaborated in the next section,
we propose a computational scheme to capture the effect
of anharmonicity and structural relaxation to improvise the
conventional Lindemann’s law of melting [51]. This gives a
high-P melting curve in good agreement with classical MD
results [46]. By including the pressure dependency of elastic
properties, we can show that the solid-solid phase transition is
mechanical in a pressure range of 0–200 GPa and temperature
up to 3000 K. The shear EC governs the B1-to-B2 SPT,
whereas the solid-liquid phase boundary can be treated ac-
curately through the temperature-dependent thermodynamic
Grüneisen parameter. The observed peak structured melt-
ing curve proposes the insulator-to-metal/semimetal transition
∼200 GPa, which is also discussed.
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The rest of the paper is organized as follows. In Sec. II,
we give a brief theory and computational strategy for evaluat-
ing various thermoelastic properties and the high-P, T phase
diagram. Computed results are compared and discussed in
Sec. III. The paper is summarized and concluded in the last
section.

II. THEORY AND COMPUTATIONAL DETAILS

A. Elastic properties and SPT

In a perfectly harmonic crystal, the ECs are temperature
independent. In such a case, they can be conveniently com-
puted using first principles, and their pressure dependence
can be derived. However, such static calculations mistreat
the effects of temperature and lattice vibrations on elasticity.
In our previous work [52], we had evaluated the TDECs of
CaO under the quasistatic approximation (QSA) [33,53–57].
TDECs can also be computed within the QHA on a grid of
reference geometries. In this method, the phonon dispersion
curve (PDC) is computed for a given geometry to evaluate the
total Helmholtz free energy as a function of the volume. The
TDECs are interpolated and evaluated at equilibrium volume
at a given temperature [58,59]. Thus, the QHA scheme, al-
though a very robust technique for computing ECs, requires
knowledge of PDC and electronic band structures at several
strained geometries, and hence, it is computationally expen-
sive. Instead, we follow a computational scheme where the
total Helmholtz free energy is computed after including the
T -dependent contribution from phonon anharmonicity [17]
(henceforth, we refer to Ref. [17] as Paper I). Computed
equilibrium volume at each temperature is an input for the
computation of elastic properties. As elaborated in Paper I for
the B1 phase of CaO, anharmonicity is significant above RT;
an accurate thermal expansion is possible only after includ-
ing the effect of intrinsic anharmonicity. An accurate volume
thermal expansion coefficient of Paper I thus ensures accu-
rate estimates of ECs. In recent work, Levitas [60] derived
a general nonlinear theory for elasticity. Although, the effect
of temperature and entropy variation is not included in the
theoretical framework, the theory incorporates the effect of
initial hydrostatic loading effect in various elastic moduli and
proposes, as exploited in this paper, that the second-order ECs
can be accurately determined from the second-order derivative
of volume and temperature-dependent free energy.

According to the elastic theory due to Barron and Klein
[49], we can derive the isothermal elastic stiffness coefficients
for a strained crystal from the knowledge of total Helmholtz
free energy F (V, T ) as follows:

Ci j (V, T ) = 1

V0(T )

[
∂2F (V, T )

∂ei∂e j

]
, (1)

where V0(T ) is the unit cell equilibrium volume at temperature
T , and ei represents strain along the i direction. The total
Helmholtz free energy can be given by

F (V, T ) = EC (V ) + F QH(V, T ) + F An(V, T ), (2)

where EC (V ) is the cohesive energy, F QH(V, T ) is the QH
vibrational free energy, and F An(V, T ) is the anharmonic
phonon energy. As discussed in detail [17], the PAW pseu-
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FIG. 1. Phonon dispersion curve of B1 phase.

dopotential [61] was used in the computation. Since high-T
thermal assessment for CaO is better estimated by LDA XC
functional [17,62], we prefer to use the Perdew-Zunger (LDA)
[63] scheme for the XC functional. Recent studies have drawn
a similar conclusion for calculating formation energies for
alkaline oxides [62]. For both Ca and O, the pseudopoten-
tial includes the nonlinear core correction for Ca 3s23p64s2

and for O 2s22p4 treated as the valence state. We keep the
optimized cutoff for the wave function as 140 Ry for the B1
phase and 200 Ry for the B2 phase. The Monkhorst k-point
grids [64] used are 8×8×8 and 10×10×10, respectively, for
the B1 and B2 phases. We evaluated total energy (E ) as a
function of volume ranging from 0.7V0 to 1.25V0 in steps of
0.05 a.u. for lattice constant a0 for both phases. The obtained
E (V ) at various volumes are then fitted to the third-order
Birch-Murnaghan (BM) EOS [65] to obtain an equilibrium
lattice constant a0, equilibrium volume V0, bulk modulus B0,
and its first-order pressure derivative B′

0. Cohesive energy
EC (V ) is calculated using the energy of isolated Ca and O
atoms and subtracting the sum of both from E (V). Equilib-
rium properties for B1 and B2 phases are compared in Table I.
The dynamical matrices for each volume are calculated on
a 4×4×4 grid in q-space using the density functional per-
turbation theory [66]. The QHA module of the QUANTUM

ESPRESSO code [67,68] was employed to derive the PDC and
the phonon density of states (DOS) for the entire range of
volume. The PDC under zero-pressure conditions and at 67
GPa pressure for B1 and B2 phases are depicted in Figs. 1
and 2, respectively. The knowledge of DOS permits the com-
putation of F QH(V, T ) in Eq. (2). We refer to Paper I for
complete details of the anharmonic contribution [third term
of Eq. (2)] to the vibrational part of free energy. For the B2
phase, we retain the same anharmonic parameters used in
Paper I for the B1 phase within the LDA, table 1 of Paper I.
The total free energies as a function of volume but at an
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TABLE I. Ground state properties of B1 and B2 phases.

This paper Reported data

B1 B2 B1 B2

a0(Å) 4.7095 2.8488 4.81 [22] Expt. 4.714 [26] 2.907 [23] Expt. 2.85 [26]
B0 (GPa) 128.51 133.13 115 [22] Expt. 129 [26] 130 [23] Expt. 123 [26]
B′

0 4.36 4.29 4.10 [22] Expt. 4.47 [26] 3.5 [23] Expt.
a′

0 (K−1) 3.599×10−5

m 3.5012

assumed temperature T are fitted to the BM-EOS to obtain an
equilibrium V0(T ) and hence the volume thermal expansion
coefficient for the B2 phase. In lieu of other data for the
B2 phase, we have compared volume expansion coefficients
with the one derived within the QH Debye model [69] and
with the QSA-based results in Fig. 3. The QH Debye model,
which ignores the true phonon DOS, shows an overwhelming
rise in expansion, whereas the QSA gives the wrong trend in
the computed thermal expansion. Present phonon DOS-based
results show a similar trend with and without including the
anharmonic contribution. A closer inspection of Fig. 3 also re-
veals that the anharmonicity reduces the QH expansion values.
This comparison justifies and proposes the use of full lattice
dynamics in conjunction with an adequate anharmonic contri-
bution for an accurate evaluation of thermal expansion. This
is a vital ingredient to this paper, as previous theoretical and
experimental studies on a diverse class of materials [70–73]
all advocate that the TDECs are predominantly determined
by equilibrium volume at a given temperature. In Voigt’s
notation, for the B1 and B2 phases, the three independent ECs,
C11, C12, and C44 are computed using THERMO_PW code [74]
at each V0(T ). These ECs are further modified to incorporate
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FIG. 2. Phonon dispersion curve of B2 phase.

the hydrostatic pressure term [75] as follows:

C′
11 = C11 − P, (3)

C′
12 = C12 + P, (4)

C′
44 = C44 − P. (5)

Computed TDECs are used to calculate other elastic and
anisotropic properties at high-P within the Voigt-Reuss-Hill
approximation using standard equations [52,76].

B. High-pressure melting

Melting is a phenomenon in which a solid converts to
a liquid above a specific temperature, the melting tempera-
ture. However, it changes due to the application of pressure.
This first-order phase transition is described by the widely
used phenomenological Lindemann [51] criterion (vibrational
instability) and the Born [77] criterion (elastic instability).
Refined versions of these empirical laws [51,78–80] give
the physical explanation of the law and relate the melting

0

20

40

60

80

100

T (K)
0 500 1,000 1,500 2,000 2,500 3,000

LDA
LDA-QH
QH-Debye model
QSA

FIG. 3. Volume thermal expansion of B2 phase as a function of
temperature.
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temperature to entropy [81], thermodynamic Grüneisen pa-
rameter [81], anharmonic lattice vibrations [82], phonon DOS
[83], and shear modulus [84–87]. Gilvarry [78] has derived the
Lindemann melting law in a convenient form using the ther-
modynamic Grüneisen parameter, which is now generalized
to incorporate the explicit effect of temperature:

TM (η) = T 0
Mexp

{
−

[
2

∫ η

1

γth(η, T ) − 1
3

η
dη

]}
. (6)

Here, η = V
V0

shows the volume fraction, and in this paper,
the normal melting point is taken as the experimental value,
T 0

M = 3160 K. Equation (6) is found to be satisfactory for
producing a low- to moderately high-P melting curve for
close-packed fcc metals [88–92] when the QH Grüneisen
parameter is considered. At higher pressures, Eq. (6) predicts
a steep increase in melting temperature and progressively
deviates from the experimental trend, and for more open
structures, results are discouraging. The major criticism for
this observation is assigned to single-phase computation. The
melting process can be attributed to the gradual weakening
of intermolecular forces, changes in atomic arrangement, and
lattice structure. This assertion was demonstrated on a math-
ematical framework by Stacey and Irvine [81] and is further
extended in this paper to compute the high-P melting curve
of CaO up to the pressure of the Earth’s LM and outer core.
According to Stacey and Irvine [81], Eq. (6) can be derived on
a rigorous physical basis by assuming a melting as a four-stage
thermodynamic cyclic process involving a melting at con-
stant pressure (isobaric), resolidification at slightly expanded
constant volume (isochoric), cooling at reduced pressure (iso-
baric), and heating at constant volume. The net work done
during the cycle is compensated by the heat input (increase in
temperature). This mathematical approach derives a correc-
tion term to the Clausius-Clapeyron equation as follows (only
the most significant correction term is shown):

TM

(
dTM

dP

)−1

= L

�V
≈ B

2γth
+ γthCV TM

V
, (7)

where CV is the specific heat at constant volume, and B
represents bulk modulus. When solved, Eqs. (6) and (7) are
formally equal, but Eq. (7) describes a scope to improvise the
melting law quantitatively. The dominating correction term
[second term in Eq. (7)] is proportional to γth, and it explicitly
depends on temperature. At temperatures as high as melting
temperature or even higher, CV can be treated as a constant
term. It is to be noted that the inclusion of anharmonicity may
lower the value of CV slightly below the Dulong-Petit value
for CaO [17] at ambient pressure, but with pressure, anhar-
monicity decreases. Under this approximation, it is reasonable
to apply correction to the melting slope through variation of
γth as a function of temperature. Semi-ab initio anharmonic
treatment of Paper I allows us to find the explicit temperature
dependence of γth:

γth(V, T ) = γ
QH
th (V ) − 1

2 mTa(V ), (8)

where the first term indicates the volume-dependent part of
γth, whereas the second term depends on temperature. Thus,
it is now possible to solve Eq. (6) self-consistently, given the
normal melting point, that is, starting from T 0

M , in each step

changing γth for a temperature of the last step and recalculat-
ing the melting temperature at a given η until the calculation
converges. The physical justification of the procedure can be
given as follows. If we identify the term ( γthCV TM

V ) as internal
thermal stress, each iteration relaxes the stress and anneals the
system against the increment in temperature. In the theory
of Stacey and Irvin [81], this is equivalent to bringing the
Gibbs energies of solid and liquid phases close to each other
so that the thermal hysteresis in the thermodynamic cycle
describing the melting curve reduces. Although the number
of self-consistent iterations increases with pressure (smaller
η), they are not >5 for pressure as large as 200 GPa.

III. RESULTS AND DISCUSSION

Structural optimization of CaO for B1 and B2 phases has
been carried out under the LDA+PAW scheme satisfying the
minimum condition for the total energy and forces acting
on atoms. Table I shows the ground state properties and the
anharmonicity fitting parameters for both phases. Equilibrium
lattice constants of both phases agree with the available exper-
imental and theoretical findings. The computed equilibrium
lattice constant of the B1 phase varies by 2 and 0.09% with
experimental [22] and theoretical [26] findings, respectively,
whereas for the B2 phase, the equilibrium lattice constant
varies by 2 and 0.04% with experimental [23] and theoretical
[26] data, respectively. Equilibrium bulk modulus B0 and its
pressure derivative B′

0 for both phases also agree well with
the reported findings. The PDC corresponding to computed
lattice constants for B1 and B2 phases are presented in Figs. 1
and 2, respectively. The figures also depict that the vibrational
spectra of both phases depend strongly on pressure. Most
of the vibrational mode frequencies increase with pressure,
except for the lowest acoustic branch at the X point and along
the � → X direction for the B1 phase. The phonon softening
at the X point for the B1 phase exhibits mechanical instability
at ∼150 GPa. In contrast, in Fig. 2, for the B2 phase, the
negative acoustic phonon frequencies at the X and M points
under the equilibrium condition harden with pressure and
become positive at ∼67 GPa. Thus, the B2 phase achieves
phonon-driven stability at 67 GPa.

Figure 3 shows the temperature dependence of volume
thermal expansion (αV ) of the B2 phase. The results are
obtained using the same scheme discussed in Paper I em-
ployed to compute thermal expansion for the B1 phase [17].
Since no findings for thermal expansion of the B2 phase
are available, the present full lattice dynamics-based results
are compared with the one based on the QH Debye model
[69] and with QSA-based results. QH lattice dynamics uses
volume dependence of quasiparticle energies of phonons to
compute the approximate free energy. The computed lattice
dynamics-based total (including anharmonicity) and QH vol-
ume thermal expansion (αQH

V ) coincide up to 500 K, but
dispersion is observed thereafter. This observation suggests
the importance of anharmonic contribution >500 K. Total
(including anharmonicity) and QH expansion coefficients in-
crease initially and show a slightly decreasing trend beyond
1800 K. The present results with and without anharmonicity
deviate significantly compared with both QSA- and QH De-
bye model-based findings. The low-T deviation is attributed
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FIG. 4. Equation of state for CaO.

to the use of the PAW potential, as discussed thoroughly in
Paper I. The QSA-based result shows an increasing trend up
to 300 K and then decreases toward a negative value beyond
1800 K. On the other hand, the QH Debye model-based result
shows an ever-increasing trend. Overwhelming Debye model-
based results and unphysically decreasing results due to QSA
advocate the importance of full lattice dynamics results, and
we compute all physical properties corresponding to volumes
V0(T ) derived using these thermal expansion results.

Figure 4 displays the pressure-volume isotherms for both
phases for several temperatures. The T = 0 and 300 K EOSs
are in good agreement with experimental [20,22,23,93] and
theoretical findings [29]. At higher temperatures, the material
softens, and the volume fraction (V/V0) decreases at a con-
stant pressure. To illustrate the phase transition from B1 to
B2, we consider the enthalpy of these phases. The enthalpy
of B1 and B2 structures as a function of pressure for various
isotherms is shown in Fig. 5. At a given pressure, the stable
structure is the one whose enthalpy has the lowest value.
The transition pressure for the T = 0 K lattice is 67 GPa.
This agrees with reported results [11]. The B1-B2 enthalpy
crossing shifts toward a lower pressure with an increase in
temperature and decreases to 50.2 GPa at 3000 K. Corre-
sponding to T = 0 K transition pressure, the volume collapses
(�VB1−B2) by 10.8% and reduces linearly with temperature.
At 3000 K, it reduces to 6.2%. However, the transition pres-
sures computed using theoretical methods differ largely from
each other as LDA underestimates the transition pressures,
while GGA slightly overestimates them.

The mode Grüneisen parameter γn,�q(V ), where (n, �q) is
the branch index number, of the B1 phase (Fig. 6) at 0 GPa
is positive throughout the first Brillouin zone (BZ) except
for small negative values in the vicinity of the � point. It is
attributed to the numerical nature of the calculation. For the
same phase but at 67 GPa, large negative values of the mode
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FIG. 5. B1-B2 enthalpy crossing at different temperatures.

Grüneisen parameter show the vibrational instability of the
rocksalt structure. The opposite behavior is observed for the
B2 phase at both pressures, as shown in Fig. 7. This observa-
tion points toward a dynamic nature of phase transition from
B1 to B2 at ∼67 GPa.

The elastic properties of the two phases of CaO as a
function of pressure are shown in Figs. 8–13. The EC C11

represents elasticity in length, and a longitudinal strain can
produce a change in C11, whereas C12 and C44 are related to
the elasticity in shape, and hence, a transverse strain changes
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the shape without the volume change. In the B1 phase, C11

varies strongly with pressure compared with C12 with a slope
of 7.48. For the B2 phase, rather an opposite behavior is
observed. The ECs C11, C12, and C44 agree well with the ex-
perimental [37] and theoretical [11,29,30] findings. Here, C44

decreases with pressure for both phases due to the softening
of a transverse branch in PDC. For the B2 phase, C44 remains
positive throughout the examined pressure range. However,
it approaches zero value for the B1 phase ∼180 GPa. The
Born elastic stability criteria for cubic structure [47,50,58],
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FIG. 8. C11 and C
′
11 as a function of pressure.

C
12

 a
nd

 C
' 12

 (
G

Pa
)

0

200

400

600

800

1,000

P (GPa)
0 50 100 150 200

C12 - BS - Speziale et al.
C12 - RXRD - Speziale et al.
C12 - B1 - Karki and Crain
C12 - B2 - Karki and Crain
C12 - B1 - Deng et al.
C12 - B1 - Jiang et al.
C12 - B2 - Jiang et al.
C12 - B1
C'12 - B1
C12 - B2
C'12 - B2
C'12(3000 K) - B1
C'12(3000 K) - B2

FIG. 9. C12 and C
′
12 as a function of pressure.

viz. (C11+2C12) > 0, C44 > 0 and (C11 − C12) > 0, are con-
nected to the bulk, shear, and tetragonal moduli, respectively.
They are commonly referred to as spinodal, shear, and Born
criteria. Spinodal and shear conditions are satisfied for both
phases, while for the B1 phase, C44 becomes negative at
180 GPa, indicating elastic instability. This is manifested as
a SPT, but the transition pressure is large compared with
the phonon instability; the acoustic transverse branch softens
to zero at ∼150 GPa. This apparent conflict can be rec-
tified when the pressure effect is included in ECs. In the
strained condition, ECs C11, C12, and C44 do not consider
the work done against an applied strain. Effective nth-order
ECs for hydrostatic pressure consider (i) the change in the
free or internal energy of a crystal during the deformation
near an initial state at a given pressure and (ii) the work
to be done against the pressure by the deformation-induced
forces. These pressure-term-included ECs C′

11, C′
12, and C′

44
[Eqs. (3)–(5)] can describe the elastic behavior of a crystal
with arbitrary loading. The pressure-corrected ECs are also
compared in Figs. 8–10. One infers from the figure that C′

11
is now reduced by 200 GPa at the highest pressure examined
in this paper. On the contrary, the pressure term raises C12

of both phases by ∼200 GPa. Here, C12 and C′
12 are negative

for the B2 phase at zero pressure, indicating an elastically
unstable structure. Also, C′

44 of the B2 phase is positive and in-
creases with pressure, while for the B1 phase, it decreases and
becomes negative beyond 60 GPa. This is in excellent agree-
ment with the estimated phase transition pressure (67 GPa)
obtained through enthalpy crossing, Fig. 5. When the same
computational exercise is carried out for T = 3000 K, for the
B1 phase, C′

44 becomes zero at 52 GPa, again in excellent
agreement with enthalpy-based phase transition pressure. All
original (= pressure uncorrected; Ci j) and pressure-corrected
(C′

i j ) ECs for temperature corresponding to 3000 K, except
C′

44, increase with pressure.
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FIG. 10. C44 and C
′
44 as a function of pressure.

Original (= pressure uncorrected) and pressure-corrected
elastic properties such as bulk modulus, Young’s modulus,
and shear modulus for B1 and B2 structures are shown in
Figs. 11 and 12, respectively. Here, B′ and temperature-
dependent B′(3000 K) coincide with each other and remain
higher than B by 67 GPa for both structures. Also, Y ′, G′,
Y ′(3000 K), and G′(3000 K) become negative in the pressure
range of 80–100 GPa for the B1 phase, which suggests the
instability of the structure. A drastic decrease is observed from
Y to Y ′ and G to G′ for both the structures, indicating the
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FIG. 12. Elastic moduli of B2 phase as a function of pressure.

sensitivity of these moduli to pressure. The differences be-
tween Y ′ and Y ′(3000 K) and for G′ and G′(3000 K) decrease
with pressure.

The Poisson ratio (σ ) and elastic anisotropy factor (A)
and their pressure-corrected values (σ ′ and A′) are shown in
Fig. 13. Here, σ of the B1 phase increases with pressure, while
that of the B2 phase decreases up to 50 GPa and then tends to
remain constant. The anisotropy factor for the B1 phase de-
creases with pressure and becomes negative beyond 180 GPa,
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FIG. 13. Poisson ratio and anisotropy factor as a function of
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TABLE II. Elastic and anisotropic properties at the onset of B1-
B2 phase transition.

0 K 3000 K 0 K 3000 K

B1 B2 B1 B2 �B1−B2

C′
11 (GPa) 781.03 675.85 769.38 645.91 105.18 123.47

C′
12(GPa) 221.13 280.14 232.77 310.08 −59.01 −77.31

C′
44 (GPa) −8.66 50.65 −20.31 20.71 −59.31 −41.02

B′ (GPa) 407.76 412.04 411.64 422.02 −4.28 −10.38
Y ′ (GPa) 133.04 253.83 87.12 160.18 −120.79 −73.06
G′ (GPa) 46.01 90.82 29.74 55.74 −44.81 −26.00

σ ′ 0.89 0.79 0.92 0.87 0.10 0.05
A′ −0.03 0.25 −0.07 0.12 −0.28 −0.19

while that due to the B2 phase increases and remains posi-
tive throughout the pressure range. Here, σ ′ of the B1 phase
increases with pressure, while that for the B2 phase remains
constant with pressure showing an opposite response to exter-
nal volumetric strain. Also, A′ for B1 decreases with pressure
and crosses zero at 60 GPa, while for the B2 phase, it remains
positive and increases with pressure. Further, σ ′ (3000 K) fol-
lows the same trend as σ ′ for both phases. Also, A′ (3000 K)
of the B1 phase decreases and becomes negative at 55 GPa,
again indicating instability, while that for the B2 phase re-
mains negative in the initial pressure range showing instability
and becomes stable at pressure over 40 GPa. Thus, pressure-
corrected elastic moduli and anisotropic parameters also agree
with thermodynamic (enthalpy-based) phase transition up to
3000 K.

To investigate the role played by thermoelasticity at the
onset of the phase transition, we have tabulated pressure-
corrected elastic and anisotropic properties for B1 and B2
phases at T = 0 and 3000 K in Table II. An abrupt change is
observed in the elastic response at the SPT. For instance, C′

11
decreases from 781 to 675 GPa; on increasing the temperature
from 0 to 3000 K, the difference �B1−B2 for C′

11 increases,
and it is positive, while the opposite behavior is observed
for C′

12 and C′
44, resulting in a negative �B1−B2. It is also

observed that the higher the temperature, the higher the mag-
nitude of the difference �B1−B2 for C′

11 and C′
12, but for C′

44,
it reduces. A similar response is exhibited by B′, Y ′, and G′ but
with negative �B1−B2. The pressure-corrected Poisson ratio
σ ′ stays positive for both phases at both temperatures. Since
Poisson’s ratio measures the ductility-brittleness of materials,
its pressure-corrected value for both phases remains greater
than the critical value (0.33), showing that CaO remains duc-
tile. As evidenced by Fig. 13, the anisotropic factor A′ drops
rapidly with pressure initially for the B1 phase, changes sign
to negative ∼50 (43) GPa at T = 0 (3000) K, and then de-
creases more slowly at higher pressures. However, for the B2
phase, it increases, changing the sign from negative to positive
∼4 (44) GPa at T = 0 (3000) K, but the difference �B1−B2 at
the SPT remains negative.

The thermal pressure, a measure of the thermoelastic re-
sponse of the material, as a function of temperature but at
equilibrium volume, is shown in Fig. 14. We find that Pth

increases linearly with temperature >200 K for both phases.
Linearity confirms the assertion that cold pressure governs
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FIG. 14. Thermal pressure as a function of temperature.

the EOS at finite temperatures. However, at low temperatures,
the quantum effect gives rise to nonlinearity with almost
zero slopes, and the estimated zero-point pressure is ∼1 GPa
for both phases. Thermal pressure for the B2 phase remains
higher than the B1 phase, which is attributed to the large
thermal Grüneisen parameter.

Figure 15 shows the volume variation of thermodynamic
γth(V, T ), Eq. (8), along the melting curve, and the average
mode Grüneisen parameter 〈γn,�q(V )〉. Computed results for
〈γn,�q(V )〉 at 0 and 67 GPa are shown as symbols, whereas
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Wentzcovitch [10].

results for the thermodynamic Grüneisen parameter are shown
as lines. For the low-P unstable B2 phase, due to cancella-
tion between positive and negative γn,�q(V ), the average value
remains very low, but at 67 GPa, it rises to 1.9. However,
for both phases, γth(V, T ) decreases, more sharply for the B1
phase. Again, due to negative γn,�q at 67 GPa for the B1 phase,
〈γn,�q(V )〉 becomes low.

Figure 16 shows the structural phase diagram of CaO.
The present results for finite pressure melting temperatures
are in good agreement with the MD simulation results
(T 0

M = 3200 K) [46] and Wang’s empirical model-based
results (T 0

M = 3400 K) [44,45] but deviate significantly from
the thermal instability criteria (T 0

M = 4200 K) [46] and with
the conventional method that is based on Lindemann’s crite-
rion (T 0

M = 3200 K) [46]. The compared melting temperature
[46] due to Lindemann’s law remains higher by 32% than
the computed results at 60 GPa, while it coincides with the
MD-based results at the same pressure. The self-consistent
computational scheme [Eqs. (6) through (8)], to incorporate
the effect of thermal stress into Lindemann’s melting law,
improves the computed melting curve and brings it in better
agreement with other estimates. The variation at 60 GPa of
the present data with the results due to Wang’s empirical
model is 2.8%, and that with the MD results through thermal
instability criteria is 23%. All the data, including the present
results, agree with the conventional non-iterative Lindemann
melting curve only up to 5–6 GPa, and deviation increases
rapidly with pressure. Depending on the accurate computa-
tion of the reference melting point T 0

M , one can determine
the high-P melting curve. Since the anharmonic force law
between neighboring atoms, which relates the atomic vibra-

tion and the thermal expansion, governs the melting process,
the significance of the thermodynamic Grüneisen parameter
is apparent in this context. For instance, treating CaO as a
weak anharmonic oscillator at high-T , an average vibrational

frequency can be written as 〈ωn,�q(V, T )〉 ≈ [ k(V,T )
m ]

1/2
, where

k(V, T ) refers to the generalized force constant. Through the
definition 〈γn,�q(V, T )〉 = − dln〈ωn,�q (V,T )〉

dlnV , if we identify (within
the few percent) 〈γn,�q(V, T )〉 to be equal to γth(V, T ), the
temperature-induced vibrational anharmonicity (due to ther-
mal stress, atomic rearrangement, etc.) for interacting ions can
be treated through Eq. (8). According to Stacey and Irvine
[81], anisochoric heating [constant η in Eq. (6)] leads to the
thermal instability which upon relaxing modifies γth(V, T ). It
is assumed that this modification scales linearly with thermal
pressure and can be treated iteratively. Thus, the iterative
scheme seems to capture some features of the pre-melting
scenario and that of the liquid phase, such as a change in
coordination number and possible density crossover at the
solid-liquid interface, which in turn modifies the thermal re-
sponse of the material. The improved high-P melting curve
thus corroborates this proposition. Apart from the melting
curve, the phase diagram also includes the B1-B2 phase tran-
sition, which is compared with the QHA-based result (inset
graph) due to Karki and Wentzcovitch [10]. Since present
results are incorporated with an anharmonic contribution, a
deviation appears between the computed and compared re-
sults. The calculated transition pressure decreases with an
increase in temperature showing a negative Clapeyron slope
dPT
dT = −0.0021 GPa/K. As an important outcome of this

paper, we could identify the triple point (TP) for CaO at
(P, T ) = (23, 4600). The TP of CaO lies within the LM.
So far, an accurate melting temperature of the B2 phase is
not known. To predict the melting temperature of the B2
phase, we have chosen the intersection point of the B1 melt-
ing curve and B1-B2 phase transition curve, i.e., (P, T ) =
(23 GPa, 4600 K), as the reference point. Beyond this point,
the B2 phase is stable, and the volume fraction and the explicit
T -dependent Grüneisen parameter is known. This information
is exploited to deduce the melting curve of the B2 phase using
the same method which is employed for the B1 phase. Next,
to estimate the correct melting curve below the reference
point, and the (theoretical) zero-pressure melting temperature
of the B2 phase, we use the fitting procedure as employed in
Ref. [94]. The predicted normal melting temperature (2907 K)
is compared with the classical MD result (2605 K). Results
and methodology are elaborated in detail in the Supplemental
Material [95] (see also Refs. [96,97]). Further, very recently,
a similar exercise to derive the solid-solid and solid-liquid
phase diagrams of CaO was also reported by Wang et al.
[94]. The authors have proposed interatomic potentials, and
performed a classical MD simulation. Their paper reports the
structural phase diagram of CaO up to 135 GPa of pressure
and temperature up to 9000 K. It is found that the B1-B2 phase
transition pressure due to Wang et al. [94] remains higher than
the experimental pressure range [20–23] with almost constant
steep Clapeyron slope as compared with present results and
that computed in Ref. [10]. On the other hand, the present
first-principles estimate of the B1-B2 transition curve shows
the expected general trend, i.e., at higher temperatures, the
SPT pressure decreases nonlinearly. Further, the computed
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FIG. 17. Electronic band structure (left panel) and electron den-
sity of states (e-DOS; right panel) in B2 phase of CaO at 0 GPa
(blue), 140 GPa (green), and 200 GPa (red).

Clapeyron slopes dPT
dT are found to be 0.0160 GPa/K (B1

phase) and 0.0138 GPa/K (B2 phase) at the normal melting
temperature, which decrease with pressure. This observa-
tion contrasts with the classical MD findings presented in
Ref. [94], where the melting curve for the B2 phase increases
up to 135 GPa. The relatively low melting slope at mod-
erate pressures seems to be the common characteristic of
alkaline earth oxides and perovskites [98]. This study further
proposes a negative melting slope >140 GPa with a peak
temperature of 7800 K. Such a peak-structured melting curve
is previously reported for metals [99] and metallic hydro-
gen [100]. The unusual melting behavior in these metallic
elements was attributed to density crossover between solid
and liquid phases either due to the Fermi surface and BZ
interaction or to the electronic transition. To examine such
a mechanism, we studied electronic band structure and elec-
tronic DOS (e-DOS) for the B2 phase at several pressures,
Fig. 17. For the B1 phase of CaO, Paper I exemplifies the
bonding scenario on the expansion (negative pressure) side.
Closer inspection of Fig. 17 indicates that, with pressure,
the narrower oxygen 2p states (lowest band), oxygen 2s
states, and calcium 3p states get broader, which results in
a considerable structure in e-DOS. The conduction states
show noticeable variation. The figure also shows the rise in
cation energy at the � point. Near 200 GPa of pressure, the
close proximity of 3d states of calcium through plausible
hybridization leads to the s → d electronic transition and
lowers the conduction band to cross the Fermi energy at
the BZ center. This insulator-to-metallic/semimetallic phase
transition causes the lowering of the melting temperature.
The situation is like heavily doped n-type semiconductors
[101]. In a recent work [102], the authors have employed the
DFT+U scheme under the Hartree-Fock method to demon-
strate the existence of pressure-induced localized partially
filled electronic states for elemental calcium during the SPT
from β-tin to the Cmmm phase. The authors attributed such
an electride state to a calcium 3d state and proposed that
the weak Coulomb interaction destabilizes the high-P sim-

ple cubic structure. The predicted transition pressure through
electronic band structure calculations and the improvised Lin-
demann’s law are different; we attribute this difference to the
use of the thermodynamic Grüneisen parameter in Eq. (8),
which involves the effect of temperature explicitly through
the second term. It is to be noted that the value of γth at
the transition point is still positive (= 0.883), indicating a
stable B2 phase; however, this nonmetal-to-metal/semimetal
(NM-M/SM) transition proposes the different electronic states
on either side of the melting maximum. Thus, according to the
Clausius-Clapeyron relation, the molar volume on the liquid
side is expected to be smaller and more compressible. This
proposition, however, invites careful experimental or ab initio
MD simulation investigation with a higher-order hybridized
exchange-correlation function for higher numerical accuracy.

IV. DISCUSSION

ECs are determined from measurements of the sound
velocities of acoustic phonons having the frequency range
0.01–0.1 THz. In this range, most materials have a time-
dependent relaxation mechanism. Because of their different
characteristics concerning temperature, pressure, and fre-
quency, investigations of elastic and anisotropic parameters
in combination provide a solid basis for investigating the
response of a material to external parameters. According to
Landau’s theory of the elastic expansion of the Gibbs free
energy G(P, T ;Q), the thermal agitation acts as an external
stress. If we identify the corresponding strain as an order pa-
rameter (Q), the crystal will respond to the external stress by
adjusting its structural state to the new equilibrium condition.
Such a relaxation indicates a reduction in energy. The process
of thermally distorting the crystal will have been made slightly
easier to appear softer than the crystal, which was not prone
to undergoing the SPT. Thus, the thermal stress modifies the
curvature of the free energy to bring the new equilibrium
state. The ‘shape’ of the free energy curve is given by the
inverse of susceptibility χ , defined as χ−1 = ∂2G

∂Q2 . Since the
susceptibility varies in competing phases, an indication of an
imminent SPT is often displayed by a decrease in one or more
ECs as the transition point is approached. The theory seems to
be valid, as Figs. 10, 11, and 13 all advocate that, at the SPT,
elastic (C′

44 and Young’s and shear moduli) and anisotropic
(A′) parameters become zero for the B1 phase. This further
confirms that the acoustic transverse phonons determine the
symmetry-breaking distortion that leads to zero ECs. The
dynamical effects (due to external pressure and temperature)
cause additional elastic softening in the vicinity of the transi-
tion point, and SPT pressure decreases with temperature. This
mechanical (= dynamical) origin of solid-solid phase transi-
tion is exemplified in phonon dynamical quantities, like PDC,
mode Grüneisen parameter, and enthalpy. Since Lindemann’s
law is still applicable through the thermal relaxation mech-
anism, the solid-liquid phase transition is also mechanical.
However, at higher pressures, the overlap between s and d
orbitals and the proposed electronic transition lowers the con-
duction band below the Fermi energy at the BZ center. This
NM-M/SM phase transition causes a smaller molar volume on
the liquid side, which lowers the melting temperature at higher
pressure. Since estimated NM-M/SM transition pressure and
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temperature falls in the solidus region close to the core-mantle
boundary, this is an essential finding because the structural
phase transformations are responsible for the discontinuities
in the mantle. At the phase boundary, breaking and recon-
struction of bonds occur, and unstable phonons and other
anharmonic effects may be operative, which are all functions
of temperature and pressure. These intrinsic phenomena drive
the geochemistry (e.g., formation energy and enthalpy) and,
in turn, govern the formation/decomposition of CaPv and the
heat transport mechanism.

V. SUMMARY AND CONCLUSIONS

In conjunction with anharmonic lattice contribution, QH
lattice dynamics is utilized to compute the volume thermal
expansion of the B2 phase of CaO. The structural phase di-
agram of CaO at high-P, T is computed and compared with
the existing data. From the phonon dynamics viewpoint, the
B1 phase is stable up to 67 GPa pressure, while the B2 phase
is unstable at equilibrium and attains pressure-driven stability
at and beyond 67 GPa. The thermodynamic (enthalpy-based)
root also advocates the exact inference. The above observation
is also supported by the fact that the mode Grüneisen param-
eter of the B1 phase has negative values >67 GPa. Elastic
moduli of both phases are in excellent agreement with the
existing experimental and theoretical data. For the B1 phase,
when P < 180 GPa, Ci j are all positive, indicating elastic
stability, but beyond 180 GPa, C44 < 0 shows the instability
of the B1 phase. That is, elastically, the B1 phase is stable
up to 180 GPa. This apparent conflict can be addressed as fol-
lows. The shear instability (C44 = 0) follows the B1-B2 phase
transition along the specific reaction path of the homoge-
neous deformation, which involves an activation barrier. The
large discrepancy between the transition pressures predicted
by elastic and thermodynamic criteria can be interpreted as
the presence of a substantial activation barrier to a particular
transition route [103]. The pressure correction term rectifies it.

Here, C′
44 of the B1 phase softens beyond 10 GPa and drops to

zero between 60 and 52 GPa for 0 and 3000 K, respectively.
In contrast, for the B2 phase, C′

44 increases strongly with pres-
sure. The anisotropy of CaO increases with pressure in the B1
structure, drops significantly at the B1-B2 transition point, and
decreases gradually. These observations and the discussion in
the preceding paragraph confirm that the solid-solid B1-B2
phase transition is dynamical and governed by the softening
of shear modes. Further, the proposed self-consistent iterative
scheme of relaxing the thermal stress via the temperature-
dependent Grüneisen parameter improves the conventional
Lindemann’s law and gives an accurate melting curve for
CaO. We conclude that the proposed iterative scheme thus
minimizes the thermal instability along the melting line and
brings it in better agreement with the MD simulated melting
diagram. This also confirms that the anharmonicity intro-
duced through the perturbative expansion of vibrational free
energy in the largest-order of temperature is sufficient for
accurate computation of thermal properties. Electronic band
structure calculation verifies the predicted negative melting
slope >140 GPa. It advocates that the calcium behaves like a
transition metal and exhibits the overlap of the empty d band
with s orbitals at high pressures and shows electride character.
This NM-M/SM phase transition lowers the conduction band
energy below the Fermi energy at the � point of the BZ.
Different electronic states on solid and liquid sides are respon-
sible for lowering the melting temperature with pressure.
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