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First-principles thermal equation of state of fcc iridium
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The thermal equation of states for fcc iridium (Ir) is obtained from first-principles molecular dynamics up to
3000 K and 540 GPa. The equation of state (EoS) is globally fitted to a simplified free-energy model and various
parameters are derived. The theoretical principal Hugoniot is compared with shock wave experiments, where
discrepancy suggests formation of new Ir phases. A few representative EoS parameters, such as bulk modulus
KT , thermal expansivity α, Grüneisen parameter γ , constant pressure capacity CP, and Debye temperature �D,
are computed to compare with experimental data.
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I. INTRODUCTION

Iridium (Ir) is a 5d transition metal of the platinum group.
It is the second-densest metal with a density of 22.56 g/cm3

at ambient condition, only slightly lower by about 0.12%
than the densest metal osmium (Os). It has the largest shear
modulus, G = 210 GPa, among the face-centered cubic (fcc)
metals. The solid Ir remains in the fcc structure up to the
melting point of 2719 K [1]. Due to its prominent thermophys-
ical and mechanical properties and high corrosion resistance,
it is used in many technological applications, such as cru-
cibles, thermocouples, spark plugs, aircraft engine parts, and
deep water pipes. The lack of phase transitions, simple fcc
structure, high melting temperature, and nonreactivity make
it ideal for experiments as a heater, absorber, or standard
for example in diamond-anvil cell (DAC) experiments, and
ideal for studying effects of compression on noble metals.
Our understanding of the properties of Ir is still limited, and
fundamental research on it remains of great interest.

With the advances in laboratory technologies, extreme con-
ditions (P > 200 GPa, T > 2000 K) become more and more
amenable to study. Fundamental to all studies at extreme
conditions is the equation of state (EoS) that relates P,V, T ,
and U or F , where the symbols of P,V, T,U , and F stand for
pressure, volume, temperature, internal energy, and Helmholtz
free energy. The earliest investigation of iridium EoS dates
back to 1937 by Bridgman up to 7 GPa [2,3], followed by
work of Schock and Johnson [4] and then of Akella [5] up
to 30 GPa. Cerenius and Dubrovinsky [6] measured the com-
pressibility of Ir using DAC up to 65 GPa. Later, Cynn et al.
found that Ir has the second-lowest compressibility of any
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element after Os from their DAC experiment up to 65 GPa,
which was corroborated by first-principles calculations [7].

For the EoS diagrams, zero-temperature first-principles
EoS can be supplemented with finite-temperature vibrational
entropies from the phonon dispersions. Phonon frequencies
can be calculated from finite differences, or with the den-
sity functional perturbation theory (DFPT) [8]. Thanks to the
development in the density functional theory toolkit, theoreti-
cal EoS for Ir appeared in several experimental works [7,9–
12]. However, these theoretical EoS’s were limited to low
temperatures (around 300 K) using static calculations fitted
to the Birch-Murnaghan (BM) EoS [13]. Anharmonic lattice
vibrations were considered in Ref. [9], but the focus was the
phase diagram and phase stability. Anzellini et al. studied Ir
up to 80 GPa and 3100 K combining in situ synchrotron x-ray
diffraction using laser-heating DACs and density functional
theory calculations [14]. A comprehensive study covering a
larger range of temperatures and pressures has not been per-
formed. Indeed, studying other phases would be interesting,
but in applications as a standard in experiments, we focus on
the fcc phase. In this work, we aim to provide the EoS for
fcc Ir up to 3000 K and 540 GPa in first-principles molecular
dynamics (FPMD).

II. THEORETICAL EoS FROM FPMD

First-principles methods have been widely adopted in the
simulation of condensed phases where no phenomenologi-
cal parameters are needed. They give access to a space of
thermodynamic conditions, which are hard to reach for exper-
imental efforts and can be used to help calibrate experiments,
where, for example temperature data are not sometimes avail-
able at the desired conditions. FPMD takes into account
anharmonic vibrations of ions directly at finite temperatures
through thermostatting. The electronic free energy is given
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FIG. 1. Static equations of state from GBRV pseudopotential
plane waves (QE) and LAPW (elk) calculation are compared. The
Vinet EoS was used to fit the energy-volume curve. Inset fig-
ure shows the pressure difference and the maximum is less than
10 GPa.

by the Mermin-Kohn-Sham density functional theory (DFT)
[15,16]. FPMD becomes the most used tool for predicting the
thermal EoS, subject to the exchange-correlation free-energy
functional approximations [17–19]. Classical molecular dy-
namics is suitable for high temperatures above the Debye
temperature as it includes anharmonicity exactly, unlike other
approaches. At lower temperature deviations from the P-V-T
equation of state are small, but heat capacities and high-order
properties such as thermal expansivity which show strong
quantum effects at temperature below the Debye temperature
are indeed less accurate.

A. FPMD details

First, we computed the static EoS of Ir at zero tempera-
ture. We used Quantum Espresso (ver. 6.7) throughout this
work [20]. We used the scalar-relativistic Garrity-Bennett-
Rabe-Vanderbilt (GBRV) ultrasoft pseudopotential [21] with
the Perdew-Burke-Ernzerhof (PBE) exchange-correlation (xc)
functional [22,23]. The electronic configuration for the pseu-
dopotential is [Xe]5p6.05d8.5. EoS was derived by fitting the
energy-volume curve in the 3rd-order BM equation. To val-
idate the range of applicability of the pseudopotential, we
performed similar calculations in the linearized augmented
plane wave (LAPW) code Elk [24] and the above two P-V
curves agree well up to 550 GPa (see Fig. 1).

For the FPMD calculation, we prepared a cubic box
containing 108 atoms in the fcc structure. The energy cut-
offs for plane waves and density are 80 Ry and 320
Ry, respectively. Energy is converged within 5 meV per
atom. Only the � point was sampled. The bands are oc-
cupied according to the Fermi-Dirac distribution at each
temperature, and the number of bands is large enough
to guarantee the occupation number is smaller than 10−7

for the highest occupied state. Early studies showed that
the spin-orbit coupling does not affect the EoS and hence
we used spin-unpolarized DFT neglecting spin-orbit cou-
pling. Then conditions at a combination of lattice constants
a/a0 = 0.86, 0.88, 0.90, 0.92, 0.96, 1.00 (a0 = 3.801 Å) and

temperatures T = 300, 1000, 1500, 2000, 2500, 3000 K were
used in the simulations (see conditions in Table I). The time
step is 20 a.u. (0.9676 fs). The equilibrated time steps are
more than 2000 to get the statistical means and standard devi-
ations, which give less than 1% standard deviation. The ionic
temperature is regulated by the stochastic-velocity rescaling
thermostat [25] and no quantum corrections to the ionic mo-
tion are included.

B. Free-energy model

We fit the Helmholtz free energy (F ) as a function of V and
T , F (V, T ). In FPMD, we have direct access to the variables
of volume (V ), temperature (T ), pressure (P), and internal
energy (U ). Cohen and Gülseren [26] studied the thermal
EoS of tantalum (Ta) in full-potential LAPW and mixed-
basis pseudopotential methods. An accurate high-temperature
global EoS was formed from the T = 0 K Vinet isotherm
and the thermal free energy was fitted by the polynomial
expansion in V and T (see Eq. (11) in Ref. [26]). De Koker
and Stixrude [27] computed the free energy of MgO periclase
and MgSiO3 perovskite using FPMD, where the excess free
energy was fitted in a similar expansion. Incorporating the
Debye model [28], the total free energy is approximated by
the polynomial expansion up to order Ni, Nj ,

F (V, T ) =
Ni,Nj∑
i, j=0

Ai jT
i(V − 2

3 ) j + F0. (1)

Neglecting the zero-point motion, F0 = kBT [−D3(x) +
3 ln(1 − e−x )], where a dimensionless parameter x = �D

T with
Debye temperature �D. kB is the Boltzmann constant. D3(x)
is the third-order Debye function (see Appendix B). Ai j are
fitting coefficients yet to be determined. For comparison,
we mention the classical model, where F0 = −3kBT ln T ,
with T ln T giving the proper classical behavior at low tem-
peratures. That is, CV = 3kB and S = −∞ at 0 K. The
Debye temperature �D cannot be determined from the
U (T,V ), P(T,V ) data from the classical molecular dynamics,
so we obtain �D from the root-mean-squared (RMS) displace-
ments (see below). For simplicity, the Debye temperature at
P = 0 GPa, T =300 K is used.

III. RESULTS

We obtained the equilibrated quantities from FPMD, where
U, P includes the ionic kinetic energy and ideal gas pressure,
respectively. We subtracted each internal energy by the global
minimum, as only the energy difference matters. The pres-
sure and internal energy are P = −( ∂F

∂V )T ,U = F + T S =
F − T ( ∂F

∂T )V . (U, P) data are grouped as a pair and fitted
together to avoid bias between these two quantities. The fitting
was performed using the weighted least-squares fit with the
lm function including offset in the R language. Internal en-
ergy U and pressure P were fitted simultaneously to F (V, T ).
w = 1/�2 is set for the weight, where � is the standard
deviation of U and P. We fitted Eq. (1) with Ni = 2, Nj = 3.
We analyzed the MD trajectories using the code VMD, and
computed the RMSD for each run. From this we can obtain

014106-2



FIRST-PRINCIPLES THERMAL EQUATION OF STATE OF … PHYSICAL REVIEW B 107, 014106 (2023)

TABLE I. Pressure P and internal energy per atom U and their standard deviations of the means Perr and Uerr are extracted from FPMD
simulations of fcc Ir for a given temperature T and atomic volume V (or the mass density ρ). The global minimum of U is underlined.

T (K) V (bohr3) ρ (g/cm3) P (GPa) Perr (GPa) U (Ry) Uerr (Ry)

300 61.01 35.31 527.6 0.01 −181.353 0.00004
300 63.14 34.12 451.6 0.01 −181.423 0.00004
300 67.54 31.89 326.1 0.02 −181.538 0.00005
300 72.14 29.86 229.5 0.01 −181.624 0.00004
300 81.97 26.28 99.3 0.02 −181.729 0.00005
300 92.65 23.25 25.0 0.03 −181.770 0.00006

1000 61.01 35.31 531.3 0.04 −181.339 0.00012
1000 63.14 34.12 455.3 0.06 −181.410 0.00021
1000 67.54 31.89 330.0 0.04 −181.524 0.00014
1000 72.14 29.86 233.4 0.06 −181.611 0.00017
1000 81.97 26.28 103.5 0.06 −181.715 0.00016
1000 92.65 23.25 29.5 0.07 −181.756 0.00018

1500 61.01 35.31 533.9 0.08 −181.329 0.00039
1500 63.14 34.12 458.0 0.06 −181.400 0.00022
1500 67.54 31.89 332.8 0.07 −181.514 0.00021
1500 72.14 29.86 236.6 0.09 −181.600 0.00033
1500 81.97 26.28 106.4 0.09 −181.705 0.00027
1500 92.65 23.25 32.6 0.13 −181.746 0.00034

2000 61.01 35.31 536.9 0.10 −181.318 0.00037
2000 63.14 34.12 461.0 0.08 −181.389 0.00027
2000 67.54 31.89 335.6 0.08 −181.504 0.00027
2000 72.14 29.86 239.2 0.11 −181.591 0.00034
2000 81.97 26.28 109.4 0.17 −181.694 0.00054
2000 92.65 23.25 35.6 0.22 −181.735 0.00076

2500 61.01 35.31 539.5 0.14 −181.308 0.00038
2500 63.14 34.12 463.7 0.14 −181.379 0.00051
2500 67.54 31.89 338.6 0.10 −181.493 0.00032
2500 72.14 29.86 242.3 0.17 −181.579 0.00058
2500 81.97 26.28 112.5 0.15 −181.683 0.00046
2500 92.65 23.25 38.7 0.19 −181.725 0.00053

3000 61.01 35.31 542.5 0.11 −181.298 0.00037
3000 63.14 34.12 466.6 0.20 −181.368 0.00072
3000 67.54 31.89 341.1 0.16 −181.484 0.00057
3000 72.14 29.86 245.6 0.22 −181.568 0.00075
3000 81.97 26.28 115.1 0.23 −181.674 0.00068
3000 92.65 23.25 41.7 0.45 −181.714 0.00141

the effective Debye temperature �D using

〈u2〉 = 3h2

4π2MkB�D

(
D1(�D/T )

�D/T
+ 1

4

)
, (2)

where �u, M, h are the displacement vector, the ion mass, the
Planck constant, and D1 is the first-order Debye function. The
quantum correction term 1

4 shall be omitted in the classical
treatment. Since the phonon density of states is not exactly
Debye-like, this is the effective Debye temperature for the
second moment of the vibrational density of states (VDOS),
not exactly equal to the thermodynamic Debye temperature
[29]. The residual is the deviation between the target function
and the sample mean. From Fig. 2, we observe that the resid-
uals are randomly distributed across the volume range. The
absolute value of residuals for U and P are less than 0.002
Ry and 1.0 GPa (except for the data point at 3000 K). For the
internal energy, a global minimum Umin is subtracted from the
data set. On the scale of half Ry, the internal energy is well

represented. As for the pressure, we computed the pressure
differences with respect to the T = 300 K reference and the
fitted curves aligned with the data set. Only the T = 3000 K
fit is slightly off. The resultant fitting coefficients in atomic
units for both the Debye model and the classical model are
tabulated (see Table II). The statistical summary from the lm
function is included in Appendix A (see Fig. 12).

A. P-V-T EoS

The equilibrium atomic volume (P = 0 GPa) at 300 K is
14.559 Å3, 2.9% larger than the experimental value 14.145
Å3. The overestimation of the lattice constants is expected for
the PBE exchange-correlation functional. Experimental P-V
curves of the 300 K isotherm are readily compared with our
theoretical predictions. Pressures measured by Akella et al.
[5] are underestimated for compression (see Fig. 3), �V/V0

larger than 0.05 with �V = V0 − V . Overall the theoretical
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FIG. 2. The residuals of the fit to Eq. (1) for the EoS of fcc iridium are shown in (a) and (b). �U = U − Umin, where Umin is the minimum
in the data set underlined in Table I. The fitted curves are compared against the data set in (c) and (d). �U and thermal pressure P − P300K

from the fit align well against the data set.

300 K isotherm agrees well with the experiments within the
uncertainty especially when the compression is smaller than
0.15 (P < 70 GPa) [6,10,30]. In contrast, the 3rd-order BM
fit done by Monteseguro et al. [10] sits along our 1000 K
isotherm for compression >0.15, and reflects the inadequacy
of BM EoS at high compression. For comparison, we have

also included the FPMD and experimental study of Anzellini
et al. [14]. Their P-V-T curves (both theory and experiments)
below 80 GPa are obtained using the EoSFit7 package with
ingredients such as the third-order BM EoS for the isothermal
part. Their FPMD used the local density approximations and
smaller energy cutoff (300 eV). The isotherm of 0 K com-

TABLE II. Coefficient matrix A in atomic units for the choice of F0, the Debye model, and the classical model. The root mean squared
errors (RMS) in the fitting for the pressure P (in GPa) and the internal energy U (in mRy) are listed.

Ai j P RMS (GPa) U RMS (mRy)

Debye model 1.904 −62.84 88.81 8175 0.5380 0.706
0 0.008698 −0.1175 0.5574

6.681 × 10−09 −3.752 × 10−07 6.321 × 10−06 −3.439 × 10−05

Classical model 1.902 −62.83 88.68 8176 0.5378 0.661
0 0.008676 −0.1171 0.5549

6.567 × 10−09 −3.667 × 10−07 6.166 × 10−06 −3.347 × 10−05
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FIG. 3. Theoretical and experimental EoS’s of fcc iridium are
compared. The DAC experimental data for Yusenko [30], Montese-
guro [10], Cerenius [6], and Akella [5] were compared at 300 K,
where the BM EoS’s were available. Experimental and theoreti-
cal data from Anzellini [14] are included (pink, green, and yellow
lines). The shock wave data (red cross) of Al’tshuler were taken
from Ref. [10]. Room temperature isotherm of Khishchenko shock
experiments [34] agrees very well against our FPMD results.

pared well against our 300 K curve at low compression but
not at high compression (compression >0.1), and similarly
for the isotherms of 1000 K and 3000 K. The shock wave
experiment by Al’tshuler et al. [31–33] exhibits quite distinct
behavior in the P-V curve. Around compression of 0.1, the
temperature is pinned slightly above the isotherm of 1000 K
and at compression of 0.22 the temperature is close to the
3000 K isotherm. The high compression pressure (≈600 GPa)
of Al’tshuler et al. was mistakenly reported in Ref. [10].
The recent shock wave experimental work by Khishchenko
[34] is also compared. We observe that the room tempera-
ture isotherm of recent work by Khishchenko aligns almost

FIG. 4. The thermal pressure of fcc iridium is roughly linear in T .

perfectly with our EoS data. The data by Monteseguro et al.
run along our 1000 K isotherm for compression over 0.1. It
is well known that dynamic compression experiments lead
to a temperature rise. Contrary to the claim that the tem-
perature effect is negligible by Monteseguro et al. [10], we
believe that the temperature increase (not measured) along
the shock compression P-V curve is significant from our pre-
dicted EoS. Thermal pressure measures the pressure change
upon temperature increase at constant volume, Pth(V, T ) =
P(V, T ) − P(V, T0). The thermal pressure is quite linear in T
given that αKT (α and KT are the thermal expansivity and the
bulk modulus) is constant in the classical regime (above the
Debye temperature), expressed as

Pth(V, T ) =
∫ T

T0

dT

(
∂P

∂T

)
V

=
∫ T

T0

dT αKT . (3)

An oversimplified linear equation (see Fig. 4) could be given
to the thermal pressure Pth(T ) = λT , with λ = 0.0056 GPa/K
for the equilibrium volume. One could also see that the vol-
ume dependence is weak from the bottom right panel of
Fig. 2.

The equilibrium bulk modulus B0 (or inverse compressibil-
ity at room temperature and zero pressure) is an important
parameter in the EoS formula, such as the Vinet EoS [35,36].
The fitted bulk modulus is compared against earlier studies

TABLE III. Experimental equilibrium volume V0 (Å3 per atom), bulk modulus B0 (GPa), and B′
0 at room temperature are compared against

reported theoretical results. Data and method are briefly summarized, and the original references are given.

V0 B0

Method description (Å3/at) (GPa) B′
0 References

Exp. data fitted to 3rd-order BM EoS 14.120 339 5.3 Monteseguro et al. [10]
Exp. data fitted to 3rd-order BM EoS 14.145 383 3.1 Cynn et al. [7]
Exp. data fitted to Cerenius and Dubrovinsky [6]

2nd-order BM EoS, with B′
0 = 4 14.173 (exp. value) 354 4.0

3rd-order BM EoS, without constraint 14.173 (exp. value) 306 6.8
DFT data fitted to BM EoS Park et al. [37], Tables 1 and 2

PAW LDA 13.925 399
PAW GGA 14.524 344

FPMD data fitted to 3rd-order BM EoS 14.150 366 5.0 Burakovsky et al. [9]
FPMD data fitted to our EoS 14.559 361 5.3 This work
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FIG. 5. The principle Hugoniot curve from our theoretical EoS
(solid black) of fcc Ir is compared against the shockwave experi-
mental data (symbols). Round green is for the STAR Hugoniot [41],
square blue for the LANL Hugoniot [42], and diamond orange for
Al’tshuler [31,32], respectively. Computed temperature from Eq. (4)
is shown in red. The dashed extension is beyond the simulation
domain.

(see Table III). We note that Cerenius and Dubrovinsky [6]
obtained similar bulk modulus, 354 GPa versus 306 GPa,
by fitting the second-order BM EoS with constraint B′

0 = 4
or third-order BM EoS without constraint, both using exper-
imental equilibrium volume. Park et al. obtained the bulk
modulus of 399 GPa and 344 GPa for the LDA and GGA
functional in DFT, respectively [37]. We note that B0 from
our fit is close to the accepted value of about 365 GPa and ev-
idently smaller than Cynn’s value 383 GPa [7]. The parameter
B′

0 from our model is 5.3.

B. Shock compression

High-pressure, high-temperature conditions are generated
by laser heating [38] or resistive heating [39] in a DAC or by
laser or gas gun [40] driven shock compression. Strong shocks
obey the Rankine-Hugoniot,

U − U0 + 1

2
(P + P0)(V − V0) = 0. (4)

Since the analytical expression for U, P as a function of V, T
is known, for each volume V , we solve Eq. (4) by searching
its root T given the experimental value V0, T0.

We compared our predicted principle Hugoniot with avail-
able shock experimental data from several facilities [41,43]
(Fig. 5). Our theoretical principle Hugoniot agrees well with
that from earlier data of Al’tshuler and LANL March, as well
as more recent data of STAR Hugoniot, for P < 200 GPa.
Above 200 GPa, our predicted pressure is higher than that of
LANL and STAR but lower than Al’tshuler’s. Our theoretical
Hugoniot below 3000 K (shock temperature) is fairly reliable
which corresponds to pressure less than 200 GPa. The shock
temperature, calculated as the solution to Eq. (4), is shown.

C. Equation of state parameters

Thermal EoS parameters such as thermal expansivity α,
isothermal compressibility βT , Grüneisen parameter γ , and
the heat capacity CV and CP are obtained by differentiation

FIG. 6. Parameter αKT as a function of temperature for various
pressures.

and algebraic manipulation of Eq. (1). We now discuss some
of these parameters. As expected from the thermal pressure,
αKT is weakly dependent on the volume and temperature (see
Fig. 6). The Grüneisen parameter

γ = V

(
∂P

∂U

)
V

= V
αKT

CV
(5)

is another important parameter. It is used in the Mie-
Grüneisen EoS, where γ is assumed independent of tempera-
ture. The span of γ as a function of temperature reduces when
the pressure increases (see Fig. 7). For high compressions, it
is indeed fairly temperature independent. The volumetric ther-
mal expansivity α = −1/V (∂V/∂T )P for isotropic materials
is three times the linear thermal expansivity coefficient αL,
α = 3αL. α in Fig. 8 is essentially temperature independent
but rather volume sensitive. Our theoretical prediction is be-
low the reported experimental value [44], but it is noted that
around room temperature, our theory prediction gives the right
thermal expansion coefficient. The expansivity has downsized
by a factor of 4 when the pressure goes to 300 GPa. The
heat capacity at high pressures is almost linear above 500
K; see Fig. 9. The higher the temperature, the slope of CP

is smaller. At 0 GPa, the predicted value 25.68 J K−1 mol−1

FIG. 7. Grüneisen parameter γ as a function of temperature for
various pressures.
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FIG. 8. The volumetric thermal expansivity α of fcc iridium as a
function of pressure at various temperatures. Halvorson and Wimber
measured the linear thermal expansion as αt = a0 + a1t + a2t2 +
a3t3 with a0 = 6.167 × 10−6, a1 = 3.038 × 10−9, a2 = −0.8448 ×
10−12, a3 = 0.5852 × 10−15, for t expressed in ◦C [44] at ambient
pressure (see inset solid line), where one can show α = 3(L0/Lt )αt

for isotropic materials with reference length L0.

is fairly accurate and only 2.3% larger than the experimental
heat capacity 25.10 J K−1 mol−1 [45], given that we used the
formula CP = CV (1 + T αγ ) (see Appendix A) with errors in
CV , α, and γ .

The RMSD is a critical quantity for the analysis of the
phonon vibrations. Moseley et al. [46] presented temperature-

FIG. 9. Constant pressure heat capacity CP as a function of tem-
perature (top panel) and pressure (bottom panel). Experimental value
at ambient condition is 25.10 J K−1 mol−1 [45]. The classical model
(blue dash-dotted) for 0 GPa starts to deviate for T below 500 K,
and approaches the classical limit as T → 0 K. Inset shows the
constant volume heat capacity CV . Heat capacity largely reduces
when pressure goes up.

FIG. 10. RMSD as a function of temperature. Experimental data
were obtained by Moseley et al. [46] for constant pressure.

dependent inelastic neutron scattering (INS) experiments as
well as quasiharmonic density functional theory calculations
to study the thermodynamic properties of Ir. Our FPMD
RMSD at 300 K (see Fig. 10) agrees particularly well with
their experimental findings. Their reported 〈u2〉 at higher tem-
peratures (T = 673 K and 823 K; see Table I of Ref. [46]),
however, are higher than our FPMD predictions. This is rea-
sonable since our NVT ensembles at these temperatures lead
to higher pressure and confined vibrations. It is worth noting
that their phonon density of states (PDOS) integrates to 1,
and is not fitted well at higher energies. Further investiga-
tion of PDOS with a FPMD simulation to compare against
the experiments may give insight to the anharmonic effects.
Debye temperatures of isochores using Eq. (2) exhibit weak
temperature dependence (see Fig. 11).

FIG. 11. Debye temperature �D as a function of temperature.
Zero-point motion is not included to obtain the Debye temperature.
In the high-temperature, classical region, our RMSDs are classical
from classical FPMD (Fig. 10), but when an effective classical Debye
temperature is derived to model the RMSD, there is a large change
with decreasing temperature to quantum regime in the Debye model.
A 4th-order polynomial fit is done only for higher temperature due
to the classical treatment to the ions.
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IV. CONCLUSIONS

We have performed a series of FPMD simulations for the
fcc Ir at conditions up to 3000 K and 540 GPa. By using a
simplified model for the free energy as a function of tem-
perature and volume and the statistical average quantities
internal energy and pressure (U, P), the thermal EoS is ob-
tained by globally fitting to the model. We have compared
previous experimental EoS’s and provided the thermal EoS up
to 3000 K and 540 GPa. The P-V-T curve reasonably agrees
with the fitted BM EoS at low compression but differs at
high compression. Our first-principles EoS accords with the
most recent shock wave experiment work by Khishchenko.
We find that αKT and the thermal pressure are quite constant
from their dependence on temperature and which turns out to
be true for a wide range of materials. We have shown some
representative derived thermal parameters against available
experiments and found agreements and discrepancies. Further
work might resolve these discrepancies.
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APPENDIX A: THERMODYNAMIC RELATIONS

Once the Helmholtz free energy F = F (V, T ) is known
as a function of volume (V ) and temperature (T ), the fol-
lowing thermodynamical quantities can be obtained from
it [47]:

P = −
(

∂F

∂V

)
T

, (A1)

S = −
(

∂F

∂T

)
V

, (A2)

KT = β−1
T = −V

(
∂P

∂V

)
T

= V

(
∂2F

∂V 2

)
T

, (A3)

FIG. 12. The fit summary plot from the lm function in R.
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CV = T

(
∂S

∂T

)
V

= −T

(
∂2F

∂T 2

)
V

, (A4)

αKT = −
(

∂2F

∂T ∂V

)
, (A5)

γ = V

(
∂P

∂U

)
V

= V
αKT

CV
, (A6)

CP

CV
= KS

KT
= 1 + T αγ , (A7)

U = F + T S, (A8)

where pressure, entropy, isothermal compressibility (its in-
verse is the bulk modulus KT ), constant volume molar heat
capacity, volumetric expansion coefficient, Grüneisen param-
eter, and internal energy are denoted by P, S, βT ,CV , α, γ ,U .
CP is the constant pressure molar heat capacity. The parameter
B′

0 (or K ′
0 = ∂K

∂P |P=0) can thus be computed using the above
relations:

K ′ = ∂K

∂P

=
(

∂K

∂T

)
V

(
∂T

∂P

)
V

+
(

∂K

∂V

)
T

(
∂V

∂P

)
T

=
(

∂K

∂T

)
V

1(
∂P
∂T

)
V

+
(

∂K

∂V

)
T

1(
∂P
∂V

)
T

=
(

∂K

∂T

)
V

1(
∂P
∂T

)
V

−
(

∂K

∂V

)
T

V

KT
. (A9)

APPENDIX B: DEBYE MODEL

The Helmholtz free energy F of a vibrating lattice at vol-
ume V and temperature T can be approximated as

F (V, T ) = E (V ) + Fvib(V, T ) + Fel (V, T ), (B1)

where Fvib is the vibrating energy of the lattice and Fel is the
thermal electronic free energy which is typically negligible.
Moruzzi et al. [28] proposed an empirical Debye model with

Fvib = kBT [−D3(x) + 3 ln(1 − e−x )] + 9
8 kB�D, (B2)

with Debye temperature �D and dimensionless parameter
x = �D

T . The last term is the zero-point energy. D3(x) is the
third-order Debye function. The nth-order Debye function is
defined as

Dn(x) =
∫ x

0

t n

et − 1
dt, x � 0, (B3)

where n, a non-negative integer, is the order of the Debye
function. The vibrational entropy is

Svib = 4kBD(x) − 3kB ln(1 − e−x ) . (B4)

Neglecting the zero-point motion, the vibrational internal en-
ergy Uvib thus can be obtained:

Uvib = Fvib + T Svib = 3kBT D(x) . (B5)
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