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One-dimensional topological superconductivity based entirely on phase control
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Topological superconductivity in one dimension requires time-reversal symmetry breaking, but at the same
time, it is hindered by external magnetic fields. We offer a general prescription for inducing topological su-
perconductivity in planar superconductor-normal-superconductor-normal-superconductor (SNSNS) Josephson
junctions without applying any magnetic fields on the junctions. Our platform relies on two key ingredients: the
three parallel superconductors form two superconductor-normal-superconductor junctions with phase winding,
and the Fermi velocities for the two spin branches transverse to the junction must be different from one another.
The two phase differences among the three superconductors define a parameter plane which includes large
topological regions. We analytically derive the critical curves where the topological phase transitions occur and
corroborate the result with a numerical calculation based on a tight-binding model. We further propose material
platforms with unequal Fermi velocities, establishing the experimental feasibility of our approach.
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Introduction. Topological superconductivity is a novel
phase of matter with fascinating edge physics [1–4]. In one
dimension (1D), topological superconductors host Majorana
zero modes at their ends, which possess exotic exchange
properties [5]. In experimental setups, attempts to engineer
topological superconductors rely on proximity-coupling to
nontopological s-wave superconductors and employing strong
spin-orbit coupling (SOC) to separate the two spin species.
Furthermore, time-reversal symmetry has to be broken to lift
the Kramers degeneracy. When judiciously combined, these
three ingredients—conventional superconductivity, a spin-
rotation mechanism and time-reversal symmetry breaking—
make the low-lying energy band effectively spinless whereas
maintaining superconducting pairing, thus, giving rise to spin-
less topological superconductivity.

Much effort has been devoted to inducing topological
superconductivity in various experimental platforms [6,7].
One of the first proposals [8] utilized the surface of
topological insulators [9,10] in proximity to a superconduc-
tor. Other prominent proposed Majorana platforms include
semiconductor-ferromagnet heterostructures [11], quantum
wells with an in-plane magnetic field [12], and chains of
magnetic adatoms on superconductors [13,14]. Early on,
semiconductor-superconductor nanowires were put forward
as an accessible platform [15,16]. Nanowires have since then
been vigorously studied: Theoretical extensions of the original
models were made to include current biasing [17], disor-
der [18,19], electrostatics [20], full-shell nanowires [21,22],
as well as electron-electron interactions [23–25]. On the
experimental side, several groups have reported possible sig-
natures of Majorana zero modes in proximitized nanowires
[22,26–31], but they are not entirely definitive [18,32,33].

The experimental drawbacks of the nanowire platform is
the need for large magnetic fields, which hinder supercon-
ductivity and create unwanted subgap states [34,35], and the

sensitivity to the chemical potential, which requires delicate
gating [36]. An important advancement came in the form
of planar phase-biased Josephson junctions [37–40] [also
known as superconductor-normal-superconductor or (SNS)
junctions]. There, time-reversal symmetry is broken by both
an in-plane Zeeman field and a superconducting phase bias,
which define a two-dimensional parameter plane. Large re-
gions of this parameter plane are topological, including, in
principle, regions with weak magnetic fields. In the wire ge-
ometry, one typically assumes that the level spacing between
the transverse modes d is larger than the induced supercon-
ducting gap �. In contrast, in the planar geometry d � � so
that many modes participate in the formation of the topolog-
ical state, and, therefore, the boundaries of the topological
regions depend only weakly on the system’s chemical po-
tential [38,41]. Several experimental results indeed show the
potential and versatility of this platform [42–46]. However, to
get an appreciable topological gap, one still needs to apply
significant magnetic fields.

Our goal in this paper is to induce topological supercon-
ductivity in a planar system, using only phase biasing and
without applying any Zeeman field. First steps in this direc-
tion were previously taken [8,47–51] (for a recent review see
Ref. [52]). Here we provide a straightforward recipe based on
simple principles which are sufficient to achieve this goal and
propose materials suitable for realizing our recipe.

Two key points allow us to accomplish this objective. The
first is the introduction of two phase differences by including
three superconductors in our system. With these two phase
differences, we show that phase winding can drive the sys-
tem into a topological phase. The second pivotal element
is unequal Fermi velocities for the two spin branches in
the direction transverse to the junction. The combination of
these two ingredients can replace the external Zeeman field
altogether.
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FIG. 1. (a) Phase-biased superconductor-normal-superconductor
normal-superconductor (SNSNS) junction (superconducting regions
are gray and normal regions are blue). The two outer supercon-
ductors are semi-infinite in the transverse direction y, and their
superconducting order parameter � is, in general, different than the
one of the middle superconductor �′. At kx = 0 this reduces to a
one-dimensional problem, whose zero-energy crossings correspond
to topological phase transitions. (b) Transverse spectrum of the
junction (dashed lines) in a model including next-nearest-neighbor
hopping (see the Supplemental Material [53]). At the Fermi energy
(dashed black line), there are four Fermi points. The Fermi velocities
at the “outer” branch (purple squares) and in the “inner” branch
(green dots) are not identical. Solid lines correspond to the linearized
spectra.

Phase winding and unequal Fermi velocities. In one-
dimensional superconducting systems where time-reversal
symmetry is broken and translational invariance holds, a tran-
sition between trivial and topological phases occurs when
there is a single gap closing at zero longitudinal momen-
tum (kx = 0). For a single Josephson junction, the closure
of the gap happens when a single pair of eigenstates of the
Bogoliubov–de Gennes Hamiltonian crosses zero energy [5]
as we tune the phase bias across the junction. Evidently, for
such a single gap closing to occur, spin symmetry must be
broken. Indeed, the application of the Zeeman field separates
between the gap closing curves of the two spin branches in the
parameter space, thereby, separating trivial and topological
regions [37,38]. We now show that when the two branches
have different velocities, and the single Josephson junction is
replaced by two junctions in series, the Zeeman field may be
replaced by a second phase difference.

We first consider a SNS junction between two su-
perconductors whose order parameters are �e±iθ . If the
superconducting gap � is much smaller than the Fermi energy
EF, then, at θ = π/2 where the phase difference across the
junction is π , a double gap closing occurs, with four states
at zero energy. Starting from this point, we introduce a third
superconductor in the middle of the junction with an order pa-
rameter �′eiφ , see Fig. 1(a), and search for single gap-closing
curves in θ -φ space. The regions between such curves are
topological.

To this end, we construct a simple model describing
a SNSNS geometry with two linearly dispersing branches

FIG. 2. Phase diagram for the SNSNS geometry of Fig. 1, de-
rived from Eq. (1). The two values ξ j = v j/�

′ originate from the
unequal transverse Fermi velocities v1 �= v2. The light and dark blue
curves correspond to zero-energy crossings at kx = 0 for WS/ξ1 =
0.5 and WS/ξ2 = 2, respectively. Since each of these crossings is
nondegenerate, it corresponds to a topological phase transition, and,
therefore, the area between the curves (shaded) harbors a topological
superconducting state. The black lines define the region where a
vortex is present.

j = 1, 2 with the normal-state Hamiltonian H±
0, j = ±iv j∂y

where the ± indicates the two opposite directions of motion
across the junction, see Fig. 1(b), and we set h̄ = 1 (a similar
system was studied in Refs. [54,55]). As we study below,
under certain conditions, spin-orbit coupling may make the
velocities v1, v2 unequal, which will be important in what fol-
lows. At kx = 0, this two-dimensional (2D) system along the
y direction becomes effectively one dimensional, and finding
the bound states involves a standard calculation whose details
are given in Sec. SI of the Supplemental Material [53]. We
find that for the jth branch there is a single gap closing along
a line on the θ -φ plane defined by

cos θ + tanh

(
WS�

′

v j

)
cos φ = 0, (1)

where WS is the width of the middle superconductor.
Several aspects of Eq. (1) are noteworthy. First, we see

that the position of the gap-closing transition within the θ -φ
plane is determined by the dimensionless ratio WS/ξ j , where
ξ j = v j/�

′ is the coherence length of the middle supercon-
ductor for branch j. When the middle superconductor is
absent (WS = 0), the transition occurs for both branches at
θ = π/2 + πn (here n is an integer). When the middle su-
perconductor is very wide, the system may be seen as two
disconnected junctions, and a gap closing takes place when
the phase difference across one junction is φ ± θ = π + 2πn.
In between, the position of the gap closing creates a curve on
the θ -φ plane. When the velocities in the middle supercon-
ductor v1, v2 are unequal, the gap-closing curves for the two
branches are different [see Eq. (1)], and constitute topological
class D phase transitions. The topological region they define
is maximized when, without loss of generality, ξ1 � WS and
ξ2 � WS (see Fig. 2, and the discussion in Sec. SIII of the
Supplemental Material [53]). Interestingly, as we show in
Sec. SI of the Supplemental Material [53], Eq. (1), which
determines the phase boundaries, is independent of the width
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and velocities of the normal regions. This independence has
important practical consequences since, generally, a narrow
normal part leads to a relatively large gap for the An-
dreev states away from the transitions. In previous proposals
[37,38,56], other considerations did not allow for arbitrarily
narrow normal parts.

Although our analysis assumed the absence of disorder,
the emerging picture suggests a qualitative criterion for its
effect. As we saw, in order to obtain a well-separated single
gap closing, one branch should traverse the entire middle
superconductor, whereas the other should be reflected back
from that superconductor. To this end, it is required that disor-
der will be weak enough such that no significant interbranch
scattering would occur on a scale of WS. The absence of a
Zeeman field should increase the robustness of our platform to
potential impurities, which will not hinder the proximity effect
as in existing Majorana platforms. In addition, we require that
smooth potential fluctuations are sufficiently weak to keep the
velocities unequal. We also find in Sec. SVIII of the Supple-
mental Material [53] that nonperfect normal-superconductor
interfaces do not alter the picture significantly.

Our analysis, which focused on the case of two branches,
may easily be generalized to situations where there are
more branches. This could happen, for example, due to having
more than one subband in the z direction or due to having
more than two bands with states at the Fermi energy. With
many branches there would be many single-gap closings, and,
therefore, many transitions between trivial and topological
regions on the θ -φ plane. A well-separated single-gap closing
requires a Fermi velocity that is significantly different from
the other Fermi velocities.

Remarkably, for all values of WS/ξ the curves defined by
Eq. (1) and the topological regions they induce correspond
to phase configurations in which the phase winds by 2π

(in agreement with Ref. [57]). As shown previously [50], a
2π -phase winding occurs when g= (cos θ + cos φ) cos θ < 0
(see the Supplemental Material [53]). By Eq. (1),

g = − tanh

(
WS

ξ j

)[
1 − tanh

(
WS

ξ j

)]
cos2 φ. (2)

Since 0 < tanh(WS/ξ j ) < 1, Eq. (2) always implies a phase
winding.

Obtaining unequal Fermi velocities for the two spin
branches. Following the above observations, we now turn to
search for setups in which the Fermi velocities for the two spin
branches are unequal. We begin by discussing several material
platforms where the band structure naturally has such an im-
balance and continue by discussing how it may be artificially
created.

Monolayers of transition-metal dichalcogenides (TMDs)
[58–63] constitute a platform that is particularly suitable for
our purposes, for two reasons. First, due to the strong spin-
orbit coupling in TMDs, it is quite easy to find directions
along which the Fermi velocities distinguish between the spin
branches. In TaS2, for example, we found a velocity imbal-
ance as large as v</v> = 0.7 using an effective six-band
Hamiltonian [64] (here v> is the larger velocity of the
two, and v< is the smaller one). Moreover, we used a
well-studied six-band tight-binding model [65] of MX2

(M = Mo, W; X = S, Se, Te) to show that these TMDs also
support similar velocity imbalances.

Second, the SOC in the TMDs is of the Ising type in
which the spins are polarized in the out-of-plane direction
with the sign of polarization depending on the momentum.
This property endows TMDs their giant critical field in the
superconducting state, but it also makes them unsuitable for
the setups of Refs. [37,38] where the SOC suppresses the
spins’ sensitivity to a Zeeman field. Since our scheme makes
no use of a Zeeman field, this difficulty is alleviated. The
remarkable combination of intrinsic gate-controlled super-
conductivity and unequal Fermi velocities in monolayers of
WTe2, for example, could open the door to topological super-
conductivity in a single material system without the need to
proximity couple it to an external superconductor.

Beyond TMDs, calculations for quasi-one-dimensional
wires defined by gates operating on HgTe quantum wells
[66] show a similar velocity imbalance (see the Supplemental
Material [53]). Given the velocity imbalance, our theory pro-
vides a practical guide to designing the device geometry to
optimize the stability of the topological phase (see the Sup-
plemental Material [53]).

Inducing unequal Fermi velocities: general considera-
tions. To analyze possible sources for velocity imbalance,
it is instructive to start from one-dimensional systems. In a
1D ring constrained to have only nearest-neighbor hopping,
the most general spin-orbit coupling leads to the disper-
sion E±(k) of the two spin branches being rigidly shifted
along the k axis, E±(k) = E (k ± kSO) [67]. This may be
understood by realizing that spin-orbit coupling introduces
a spin-dependent Aharonov-Casher (AC) flux into the loop
defined by the ring [68]. Then, the Fermi velocities (defined
by v± = ∂E±(k)/∂k) of the two spin branches are necessarily
identical. The introduction of longer-range hopping, such as
between next-nearest neighbors, expands the number of loops
threaded by AC fluxes. Spin-orbit coupling then has a richer
effect on the spectrum, which, in general, leads to unequal
Fermi velocities.

As we now show, in two dimensions, nearest-neighbor
hopping is sufficient to generate unequal Fermi velocities of
the two branches when projected on to a certain direction
The most general 2D band Hamiltonian of a monoatomic unit
cell which is time-reversal symmetric and limited to nearest-
neighbor hopping is

H2D(k) = −
∑

i

ti cos (k · ai ) −
∑
i,α

λi
α sin (k · ai )σα, (3)

where ai (i = 1, 2) are the lattice’s unit vectors, and α =
x, y, z are Pauli matrix indices. We are interested in the dis-
persion and the velocities for kx = 0. The x direction lies
along the junction, and the orientations of the vectors ai are
left for tuning. If we choose the orientation of the lattice
such that a1,y/a2,y = n, the 2D Hamiltonian H2D(kx = 0, ky )
is identical to a 1D Hamiltonian with lattice constant a1,y, and
hopping amplitude to distances of a1,y and na1,y, i.e., further
neighbor hopping. For n = 0, 1, the problem maps onto the
1D ring with only nearest-neighbor coupling with identical
Fermi velocities to both branches, whereas for n �= 0, 1, the
velocities are generically unequal. This mapping may easily
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FIG. 3. Tight-binding simulation of the SNSNS junction of
Fig. 1 at kx = 0, showing the phase diagram as a function of the two
phases θ and φ. The gray dots are the locations of the zero-energy
crossings as calculated by the tight-binding simulation. The light and
dark blue curves are fits of these points according to the analytical
formula Eq. (1). We observe good agreement between the formula
and the simulation (cf. Fig. 2), which also enables us to extract
the two effective coherence lengths ξ1, ξ2. The inset: bound-state
spectrum as a function of θ , the phase of the middle superconductor
for φ = π . The zero-energy crossings split along θ , rather than be-
ing degenerate. The resulting topological region is marked in gray.
The simulation was performed according to Eq. (3) with the pa-
rameters t1 = t2 = 1, λ1,y = λ2,x = 1.2 (all other λi,α = 0’s), μ = 3,
� = �′ = 0.1, WN = 0, WS = 80. The left and right superconductors
are each 200 sites wide.

be generalized to the case a1,y/a2,y = n/m (with integers m, n
and m > 0) and to 2D Hamiltonians that include long-range
hopping amplitudes. Tight-binding calculations supporting
this analysis are shown in Fig. 3.

We note, however, that for the angle dependence of the
velocity to be manifest, we typically need to go beyond the
second-order-in-k expansion of Eq. (3). At that order, the
band structure for each angle is parabolic, and spin-orbit
coupling results in a mere rigid shift of the parabolas. The
parabolic approximation ceases to hold at large electronic
densities, i.e., interelectron distance that is comparable to
the lattice constant. Such densities are uncommon in semi-
conducting heterostructure-based two-dimensional electronic
systems. Two different mechanisms may lead to unequal
Fermi velocities of the two spin branches even at low densi-
ties. The first requires more than one subband in the z direction
of the 2D electron gas with spin-orbit coupling strength
depending on z [50], and the second requires a periodic
potential [51].

The first mechanism may be understood by considering
a heterostructure defined by a confining potential V (z). In
the absence of spin-orbit coupling, the confining potential
defines spin-degenerate subbands in the z direction with the
first two characterized by confinement energies 0, δE and by
the real wave-functions χ1(z), χ2(z). The dispersion of each
subband is quadratic. At low densities all higher subbands
may be neglected, and we can project the spin-orbit coupling
to the subspace defined by the two lowest subbands. Rashba
SOC takes the form HR = α(z)k × σ · ẑ. Taking for simplicity
kx = 0 and projecting HR to the subspace of the two lowest

subbands we get due to the spin, a 4 × 4 Hamiltonian,

H =
(

k2
y

2m∗ 0

0
k2

y

2m∗ + δE

)
σ0 +

(
α11 α12

α12 α22

)
kyσx, (4)

in which m∗ is the effective electron mass and αi j ≡∫
dz χi(z)α(z)χ j (z). For z-independent α we have α12 = 0.

The subbands are then decoupled, and they are spin split
to two shifted parabolas with equal velocities. When α de-
pends on z the two subbands are coupled, and the velocities
become unequal [69]. Details are given in Sec. SVII of the
Supplemental Material [53].

A second mechanism for inducing unequal Fermi veloci-
ties is combining Rashba SOC with a periodic potential along
the junction (in the x direction). A potential with wave-vector
q mixes the states at kx = 0, which do not experience SOC
with states at kx = ±q where SOC cannot be gauged away.
Generically this leads to unequal Fermi velocities of the trans-
verse modes. As a minimal model which demonstrates this
possibility, we consider three superconducting pads deposited
on top of a spin-orbit-coupled 2D electron gas. We apply a
periodic modulation to the chemical potential of the middle
superconductor μ(x) = μ0 + δμ cos(2πqx). Using a tight-
binding discretization, we numerically calculate the spectrum
and the topological invariant [70] for some integer values of
q and find a topological phase transition (see Sec. SVI of the
Supplemental Material [53]).

Outlook. Our work suggests a purely phase-controlled
setup that induces topological superconductivity in an SNSNS
devices, composed of two Josephson junctions in series.
Our mechanism requires two conditions: superconducting
phase winding and unequal Fermi velocities for the two
electron branches. We find that the winding of the phase,
which guarantees a net current flow through the two junc-
tions, is a necessary condition for the topological state
to form.

Unequal Fermi velocities in our setup are a consequence
of spin-orbit coupling. We pointed out several examples of
materials in which band-structure calculations predict un-
equal Fermi velocities for the two spin branches. Then, by
studying microscopic models, we showed how unequal Fermi
velocities may be generated at low densities, characteristic
of semiconducting heterostructures. Remarkably, a common
thread to the models we studied here, and those of earlier sug-
gestions [50,51], is the essential role played by closed loops
traversed by electrons and holes in which a spin-dependent
Aharonov-Casher phase is accumulated. In the full-shell mod-
els [22,50], the closed trajectories are along the azimuthal
cylinder direction; in the periodic potential case these are
in-plane-closed orbits; and in the tight-binding model closed
trajectories along a triangle in a basic unit cell will accumu-
late a nontrivial Aharonov-Casher phase. It seems that the
combination of a discrete vortex in the three superconductors,
superimposed with an Aharonov-Casher phase in closed tra-
jectories leading to unequal Fermi velocities, is necessary to
replace the Zeeman field in phase-only recipes for topological
superconductivity.

The ubiquity of materials and engineered devices having
unequal Fermi velocities makes our proposal within reach of
current experiments. The elimination of any applied Zeeman
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field should greatly aid in achieving reliable experimental
results. Furthermore, the inherent periodicity of the phases
will help distinguish the topological effect from trivial ones,
and reliably map out the phase diagram (see Fig. S2 of the
Supplemental Material [53]).

The code used for simulating the models and generating
the plots in this Letter is available in Ref. [71].
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