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Higher-order topological crystalline phases in low-dimensional interacting quantum systems represent a
challenging and largely unexplored research topic. Here, we derive a Hamiltonian describing fermions interacting
through correlated hopping processes that break chiral invariance, but preserve both inversion and time-reversal
symmetries. In this way, we show that our one-dimensional model gives rise to an interacting second-order
topological insulating phase that supports gapped edge states. The topological nature of such an interacting
phase turns out to be revealed by both long-range order of a nonlocal string correlation function and by even
degeneracy of the entanglement spectrum. For strong interactions we instead find that the topological crystalline
phase is destroyed and replaced by a singlet superconducting phase. The latter, characterized by local fermionic
pairing, turns out to appear both in a homogeneous and in a phase separated form. Relevantly, the derived
one-dimensional model and the second-order topological insulator can be explored and investigated in atomic
quantum simulators.
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Introduction. Symmetries represent a fundamental tool to
characterize quantum systems [1]. The concept of sponta-
neous symmetry breaking has indeed allowed to define the
large majority of states of matter by means of specific local
order parameters [2]. Escaping from this classification, the
recently discovered symmetry protected topological (SPT)
states of matter are gaining intense attention [3–6]. SPT
phases can be deeply understood at the single-particle level,
where exact solutions can be derived [7–9]. Specifically for
one-dimensional (1D) systems, it has been initially demon-
strated that chiral symmetry represents a strict requirement
in order to achieve robust topological insulating states [7].
Such symmetry can formally occur when time-reversal and
particle-hole symmetries are simultaneously either fulfilled
or absent. Recently, a class of topological gapped phases
characterized by crystalline symmetries has revealed further
interesting features related to the presence of space-group
symmetries [10–14]. More precisely, it has been unveiled
in noninteracting models that the inversion symmetry can
still allow the conservation of topological insulating prop-
erties even when particle-hole and chiral invariance are not
fulfilled [14–20]. The key role of inversion symmetry has
been further explored in high-dimensional systems in the
context of fragile topology both in free [21–29] and in in-
teracting systems [30–35]. Moreover, it has been shown that
the combination of inversion and time reversal symmetries
plays a central role in various kinds of higher-order topo-
logical insulators (HOTIs) in high dimensionality [27,36–
45].

Topological states of matter are much less understood in
the presence of interactions. In the one-dimensional case, a
systematic classification of possible SPT phases has been
given in Refs. [6,46–52]. On one hand, numerical methods
have revealed a plethora of interacting SPT insulators [53–63],
superconductors [64–69], and critical regimes [70–73]. On
the other hand, effective quantum field theories have been
employed to unveil the topological features of Hubbard-like
models in the low-energy regime [74–78]. Nevertheless, low-
dimensional higher-order interacting topological crystalline
phases remain an unexplored playground. Crucially, atomic
quantum simulators have allowed to shed further light on
this challenging topic by experimentally realizing interacting
topological matter [79–82]. Nevertheless, the experimental
implementation of both single-particle and interacting higher-
order topological phases remains an unexplored playground.

The impressive accuracy in Hamiltonian engineering
and measurement protocols further places ultracold atomic
platforms among the most efficient ways to investigate
symmetry breaking quantum states. As prominent exam-
ples, specific designs of the interacting processes have
allowed to realize phases with broken translational [83–88],
time-reversal [89,90], and spin-rotational [91] symmetry.
Moreover, different schemes employed in ultracold atomic
quantum simulators make it possible to design a peculiar
kind of interaction: the correlated hopping (CH) process, also
called the bond-charge interaction [92–98]. Specifically for
fermionic systems, CH is of great relevance as it breaks the
particle-hole (p-h) symmetry but preserves the time-reversal
invariance. The role of such an interaction was originally
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investigated in the context of hole superconductivity [99],
while more recently it has been realized that a large
variety of phenomena including Peierls instability [100],
nanoscale phase separation [101], quantum many-body scar
states [102,103], and lattice gauge theories [104–106] can be
explored in quantum many-body systems characterized by the
presence of CH.

Motivated by the fact that higher-order one-dimensional
interacting topological crystalline phases with broken chi-
ral symmetry remain both theoretically and experimentally
largely unexplored, we derive a new model of ultracold
fermions in optical lattice that supports the appearance of an
interacting generalization of a second-order topological insu-
lator in one dimension [27]. Notice that in 1D single-particle
second-order topological phases, namely, obstructed-atomic
insulators [107], there exists a mismatch between the atomic
and Wannier centers of the given unit cell. In the presence
of interactions, the concept of location of the Wannier func-
tions is not well defined anymore. Thus, we define interacting
second-order topological insulators in one dimension as fully
interacting phases with gapped edge states and identify them
through different theoretical tools, such as nonlocal string
correlation and entanglement spectrum. In our model, we
consider fermions tunneling in a dimerized lattice geometry
and interacting through CH processes. By means of density-
matrix-renormalization-group (DMRG) calculations [108],
we reveal that such a model supports the presence of an
interacting second-order topological insulator with gapped
edge states and broken chiral symmetry. Furthermore, we find
that when the CH is strong, the topological properties disap-
pear and a topologically trivial superconducting phase takes
place. The latter is characterized by fermionic singlet states,
therefore representing an example of Luther-Emery supercon-
ductivity [109]. Noticeably, we confirm the presence of such a
phase transition both by DMRG and by an analytical treatment
based on slave-boson mapping. Our results further point out
that a larger strength of the CH allows to achieve a regime of
singlet superconductivity associated with an inhomogeneous
density distribution as unveiled by the infinite compressibility.
In order to complement the equilibrium physics discussed
above, we show that the interacting second-order topological
insulator remains stable even in out-of-equilibrium schemes
where the chiral symmetry is broken by performing a Hamil-
tonian quench. Finally, we discuss how our results can be
probed in the ongoing experimental platforms based on ul-
tracold atoms in optical lattice.

Model. As depicted in Fig. 1, we investigate a model
consisting of N fermions described by the usual creation (an-
nihilation) operators c†

i,σ (ci,σ ), where σ =↑,↓ labels the the
two possible fermionic internal states and i refers to the ith
site of a dimerized one-dimensional lattice of length L. Such
a Hamiltonian reads as

H =
∑
i,σ

{−[J + δJ (−1)i](c†
i,σ ci+1,σ + H.c.)

+ X [J + δJ (−1)i )(ni,σ̄ + ni+1,σ̄ )(c†
i,σ ci+1,σ + H.c.]},

(1)

where we fix the particle density n̄ = N/L = 2N↑/L =
2N↓/L = 1 with

∑
i ni↑(↓) = N↑(↓). The terms in the first line,
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FIG. 1. Depiction of the model and DMRG density profile ni

obtained by fixing N = 2N↑ = 2N↓ = L = 100, δJ/J = 0.4, and dif-
ferent values of X/J . In order to break the ground state degeneracy
here and in all the other figures, we apply chemical potentials of the
order of 10−2J with opposite signs in the first and last sites.

J − δJ (J + δJ ), represent the single particle tunneling proba-
bility between two lattice sites connected by odd (even) links.
The interaction between fermions is instead captured by the
term X (J − δJ ) [X (J + δJ )] describing correlated hoppings
between two sites connected by an odd (even) link. More
precisely, this last term takes into account the system energy
variation when a fermion tunnels from/to an already occupied
site. In real space, p-h symmetry acts on the operators ci,σ as
follows [110]:

ci,σ → (−1)ic†
i,σ , (2)

such that p-h:H(X ) → H(−X ). It is straightforward to see
that CH does not break inversion symmetry I: ci → c−i. The
model in Eq. (1) at X = 0 is the well-known Su-Schrieffer-
Heeger (SSH) Hamiltonian [111]. At half filling n̄ = 1, the
latter is chiral symmetric as both p-h and time-reversal sym-
metries are fulfilled. In addition to this, for δJ > 0 it can
be shown that a first-order topological insulator of the BDI
class [9] protected by chiral symmetry and hosting gapless de-
generate topological edge states occur. It is worth noting that,
as shown in different previous cases [112–120], the topolog-
ical insulating regime of the SSH model remains stable even
in the presence of interacting terms that preserve the chiral
symmetry. However, as previously specified, the correlated
hopping processes do not fulfill this last criterion since for
0 < |X/J| < 1, particle-hole symmetry and thus chiral sym-
metry are broken. For this reason, it is relevant to understand
whether the Hamiltonian Eq. (1) can still support the presence
of protected topological edge states.

Second-Order Topological Crystalline Insulator. We be-
gin our analysis by fixing the fermionic density n̄ = 1 and
δJ = 0.4 such that for X = 0 the ground state is a topological
insulator protected by chiral symmetry. In Fig. 1, we compute
the density profile ni = ∑

σ ni,σ and notice the presence of
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FIG. 2. (a) String order correlation function Eq. (3) extracted at
|2i + 1 − 2 j| = 40 considering only the 80 central sites. (b) Entan-
glement spectrum ζ = λN

1 − λN
2 + λN

3 − λN
4 extracted by considering

a system bipartition equal to L/2. (c) Singlet superconducting cor-
relator Eq. (8) extracted at |i − j| = 80. (d) Compressibility Eq. (9)
extracted by considering variations in the number of particles equal
to 2 and 4. The results refer to a configuration with N = 2N↑ =
2N↓ = L = 100, δJ/J = 0.4, and different values of X/J .

three very different regimes. For large X/J a peculiar global
and local modulation in the fermionic distribution occurs. This
last behavior is lost at intermediate value of X/J , where a
symmetric particle accumulation takes place at the edges and
the density distribution in the bulk is lower than one. Interest-
ingly, for smaller strength of the CH interaction, our results
show the presence of antisymmetric fermionic accumulation
at the edges of the system. Furthermore, we find that in the
bulk of the chain the density profile ni = 1, thus being com-
patible with topologically gapped bulk excitations. As already
mentioned, this last scenario also characterizes the X = 0
case, where the system is a first-order topological insulator
protected by chiral symmetry. As strict probes to understand
whether a topological insulating regime exists even for broken
chiral symmetry, i.e., when X/J �= 0, in Fig. 2 we plot the
nonlocal string correlation function capturing the topological
order of the SSH model [73,114,121,122]

OS =
⎡
⎣−4

〈
Sc

2i+1 exp

⎡
⎣ıπ

2 j−1∑
k=2i+2

Sc
k

⎤
⎦Sc

2 j

〉⎤⎦ (3)

and the entanglement spectrum [3,8,123,124]

ρA =
∑
N,n

λN
n ρN

n , (4)

where ρA is the density matrix of a system bipartition A and
ρN

n describes a pure state of N particles with corresponding
eigenvalues λN

n , namely, the entanglement spectrum (ES). In
particular, the long-range order of uniquely Eq. (3) reflects

the peculiar nonlocal nature of topological gapped bulk exci-
tations, and the even degeneracy of Eq. (4) captured by the
vanishing value of ζ = λN

1 − λN
2 + λN

3 − λN
4 witnesses the de-

generacy of the topological edge states. As shown in the upper
panels of Fig. 2, the two aforementioned requirements are
totally fulfilled and thus unambiguously reveal the existence
of a topological insulator not invariant under chiral symmetry,
i.e., a second-order topological insulating phase [27]. The
appearance of such a topological phase is explained by the fact
that the Hamiltonian in Eq. (1) consists of alternating bonds
being centers of inversion and thus invariant under inversion
symmetry. As a consequence of this crystalline symmetry, our
topological phase can be seen as an interacting version of a
single-particle obstructed-atomic insulator [107] in which its
corresponding Wannier centers cannot be continuously moved
to match with the particle positions while obeying inversion
symmetry and without closing the gap. This implies that even
in the absence of chiral symmetry, the corresponding topolog-
ical invariant in the bulk remains quantized. The results in
Fig. 2 clarify that such a topological crystalline state is robust
for X/J � 0.5, and we checked that such a value remains
stable for different choices of δJ > 0. Indeed, by further
increasing the CH interaction strength, both the long-range
order of OS and the vanishing value of ζ are lost, therefore
signaling that a phase transition between a gapped topological
and a trivial state has occurred. In order to confirm the dis-
appearance of the topological insulating state, we perform a
mapping of the model Eq. (1) following the scheme derived
in Ref. [125], where the case of δ = 0 and finite on-site repul-
sion has been treated by employing a slave-boson formalism,
holding exactly at X/J = 1, to lower X/J . In particular, we
first perform a standard slave-boson mapping, introducing the
fermionic spinful operators fiσ which create single spinful
fermions out of empty and doubly occupied sites. Then, we
exploit the property that the average number of empty and
doubly occupied sites is the same and assume antiferromag-
netic ordering of both charge and spin degrees of freedom. In
this case the spin index can be disregarded so that fiσ → fi,
and Eq. (1) can be rewritten as

Heff = −X
∑

i

[1 + (−)iδJ]( f †
i fi+1 + γ f †

i f †
i+1 + H.c.) ,

(5)

where γ = J−X
X , and fi, f †

i are ladder operators which
create/destroy spinless fermions out of empty and doubly
occupied sites. The spectrum of Heff is obtained by rotating
its Fourier transform into

H̃eff = ±X
∑
k∈BZ

	±
k

(
β

†
k βk − 1

2

)
, (6)

with βk, β
†
k being the ladder operators for the Bogolubov

fermionic quasiparticles and ±	±
k the dispersion relations for

the four bands. Explicitly,

	±
k = 2[(1 + γ 2)(1 + (δJ )2] ±

± 2γ δJ + [1 − (δJ )2](1 − γ 2) cos k)1/2 . (7)

Here, for γ = 0 (i.e., X/J = 1) we recognize the spectrum
of the integrable case [126]. Moreover, the two values γ = 1
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and δJ = 1 turn out to be critical. Indeed, Heff can be exactly
mapped onto a (staggered) anisotropic XY model, which at
γ = 1 (i.e., X/J = 0.5) is known to exhibit a commensurate-
incommensurate transition, in agreement with our DMRG
results in Fig. 2. More precisely, such a transition reflects
the closing of the topological gap and the opening of a spin
gap. Our DMRG results show indeed that this trivial phase is
characterized by a quasi-long-range order of

CSS = 〈c†
i,σ c†

i,σ̄ c j,σ̄ c j,σ 〉, (8)

which can be produced uniquely by a finite spin gap. In
particular, the above behavior is a well-established signature
of the appearance of superconducting states where fermions
with opposite spin are paired and form bounded singlets.
Noticeably, such a singlet superconductor phase is analogous
to that occurring, for instance, in the attractive Hubbard model
and in the more general Luther-Emery liquid phase [109] of
the sine-Gordon model [127]. While such a superconducting
order persists in the whole region 0.5 < X/J < 1, we notice
that around X/J ≈ 2/3 a regime characterized by vanishing
inverse compressibility

K−1 = n̄2 ∂2E0

∂ n̄2
(9)

takes place, where E0 is the ground state energy. In particular,
vanishing K−1 usually signals phase separated states. As also
shown in Fig. 1 and in analogy with Ref. [101], here the
single fermions move in a nonhomogeneous background of
empty and doubly occupied sites, forming phase separated
droplets of nanoscale size. It is worth noting that the pres-
ence of such an inhomogeneous superconducting state can be
predicted by considering the integrable limit δJ = 0 X/J = 1.
Here, indeed, the nanosize structures descend from the two
low-energy bands in (7) which acquire different bandwidths
as soon as X/J �= 1. As a consequence, it becomes convenient
to fill more levels in one band than in the other, and these two
effectively different fillings fix the scale of the microscopic
modulation as shown in Fig. 1.

Sudden Quench Dynamics. As SPT phases are supposed
to be unstable with respect to perturbations that break space-
group symmetries, here we further underline the intriguing
features of the derived second-order topological insulator by
performing a quench dynamics procedure. In particular, at the
initial time t = 0 we calculate the ground state of Eq. (1)
with δJ > 0 and X = 0. As already discussed, the latter is
known to be a first-order topological insulator protected by
chiral symmetry. We then let this state evolve with Hamilto-
nian Eq. (1) with different values of X �= 0 which, as already
pointed out, break the chiral symmetry. Our time-dependent
DMRG calculations [128] in Fig. 3, show that the topo-
logical string order parameter in Eq. (3) evolves towards a
finite value when the ratio X/J supports the presence of the
topological crystalline insulator derived in the previous para-
graph. This result enforces even further our outcomes and,
in particular, it shows that although the chiral symmetry is
broken, the inversion symmetry is crucial to stabilizing the
underlying second-order topological phase. Indeed, when X/J
becomes larger and the crystalline order cannot be maintained
at the ground state level, Os evolves towards a vanishing
value, therefore signaling the absence of topological order.

0 2 4 6 8 10
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X/J=0.3

X/J=0.6
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t
FIG. 3. . Time evolution of the string correlation function Eq. (3).

The state at time t = 0 is obtained by considering Eq. (1) at X = 0
and δJ/J = 0.4. We evolve such a state with the same model Eq. (1)
by fixing δJ/J = 0.4 and different values of X/J . The time is in units
of J−1 and we consider N = 2N↑ = 2N↓ = L = 32.

We further stress that, as shown, for instance, in Ising [129]
and Bose-Hubbard [130] Hamiltonians, this quench proce-
dure describes the case of ideal Floquet evolution of crucial
relevance for the experimental implementation of the model
in Eq. (1).

Experimental Implementation and Detection. As experi-
ments in solid state devices have, at the moment, explored
noninteracting higher-order topological phases, here we dis-
cuss how ultracold atomic systems have the potential to
explore interacting one-dimensional second-order topological
phases. More precisely, our model and results can be imple-
mented and tested with the ongoing experimental platforms
based on ultracold mixtures of fermionic atoms in optical lat-
tice. Here, Floquet schemes in mixtures of ultracold fermions
have indeed already allowed to engineer a tunable correlated
hopping process [97,98,106]. At the same time, an effective
lattice dimerization can be realized by means of either a su-
peroptical lattice [82,131] or optical tweezers arrays [132].
Finally, quantum gas microscopes have made it possible to
perform precise measurements of topological string correla-
tion functions [81,133,134] to detect the symmetry protected
topological phase. It thus appears natural to state that an
efficient and accurate quantum simulation of our results can be
realized and the interacting second-order topological insulator
investigated.

Conclusions. In this paper we shed light on the fasci-
nating topic of higher-order topological states of matter in
one-dimensional interacting quantum systems. In particular,
we have introduced and studied a model where a specifically
designed interaction can give rise to a second-order insulating
phase. As we have clearly shown, even in the presence of
the interaction described by correlated hopping processes,
the combination of inversion and time-reversal symmetries
can indeed protect the topological nature of the insulating
states characterized by long-range order of nonlocal string
correlation function and even degeneracy of the entangle-
ment spectrum. Relevantly, we have also discussed how our
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results can be tested with the last generation of atomic quan-
tum simulators by using fermionic mixtures in optical lattice.
To our knowledge, our work contains the first proposal for
the quantum simulation of an interacting second-order one-
dimensional topological phase with gapped edge states. As
a natural perspective, we believe that the investigation of
the correlated hopping interaction in two-dimensional HOTIs
and fragile topological insulators might reveal further relevant
features of topological crystalline phases.
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