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In most superconductors, optical excitations require impurity scattering or the presence of multiple bands.
This is because in clean single-band superconductors, the combination of particle-hole and inversion symmetries
prevents momentum-conserving transitions. In this Letter we show how the flow of supercurrent can lead to
new contributions to optical conductivity. As the supercurrent breaks inversion symmetry, transitions across
the superconducting gap become allowed even in clean superconductors and dominate over impurity-induced
contributions for energies comparable to the gap width. The response is dependent on the nature of the underlying
normal state as well as on the type of superconducting order. Use of an external magnetic field to produce
a screening supercurrent with controllable magnitude and direction, enables a detailed investigation of the
superconducting state, allowing determination of the gap symmetry in unconventional superconductors for which
other techniques have not been practicable.
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Introduction. Optical measurements are well established
as one of the most fundamental experimental techniques for
studies of quantum materials [1,2]. Properties, such as re-
flectivity and transmissivity can shed light on the electronic
structure of solids and enable characterization of ordered
phases in many systems [3]. In particular, optical measure-
ments can give insight into the nature of the superconducting
state, for example, by determination of the superconducting
gap size [4–6]. On the theoretical level, optical properties
can be characterized by the optical conductivity σ (ω), which
can be obtained from microscopic considerations. In the case
of superconductors, such a description has been provided by
Mattis and Bardeen [7], who have analyzed the problem in
the dirty limit where the superconducting coherence length
ξ0 is much larger than the mean free path l . In this limit
the optical response largely follows the normal-state Drude
conductivity for h̄ω � 2�, where � is the magnitude of the
superconducting order parameter. However, the real part of
σ (ω) becomes suppressed for smaller frequencies and van-
ishes for h̄ω � 2�. This theory, together with its extensions
to arbitrary purity [8,9], has been very successful in explaining
the optical properties of many superconductors.

The reasons for the considerable success of Mattis-Bardeen
results even beyond the dirty limit have recently been eluci-
dated in a theory for optical transitions of clean multiband
superconductors [10]. Those authors have shown that due to a
combination of inversion and particle-hole symmetries, a se-
lection rule forbids momentum-conserving optical transitions
across the superconducting gap in simple single-band super-
conductors. They have also shown that when multiple bands
are present, some transitions become allowed, giving rise to

new optical conductivity contributions that can dominate over
Mattis-Bardeen terms in very clean systems (l � ξ0), such
as FeSe. Moreover, it can be shown that when a supercon-
ductor breaks inversion symmetry, optical transitions become
allowed and the material will exhibit a variety of linear and
nonlinear optical effects [11]. Although intrinsic inversion-
breaking superconductors are rare, another opportunity for
breaking inversion opens up when we consider supercurrent
flow through the material as currents are known to strongly
affect the optical properties of other materials, such as Dirac
and Weyl semimetals [12].

In this Letter, we investigate the effect of an inversion-
breaking supercurrent on the optical conductivity of supercon-
ductors. We demonstrate that optical transitions are possible
even in clean single-band superconductors when a supercur-
rent flow is introduced. By treating optical conductivity at
the linear-response level, we show that the predicted signal
depends on the nature of the normal state as well as the type
of superconducting order. This is corroborated by the compar-
ison of supercurrent-induced responses between single-band
and Dirac fermion systems, and between s-wave and d-wave
pairings. The predicted optical response dominates over that
of Mattis-Bardeen theory for photon energies in the vicinity of
the superconducting gap edge. As the supercurrent flow can be
established and controlled by applying an external magnetic
field through the Meissner effect, this approach introduces
a control knob that can modify an optical response of a su-
perconductor in an experimental setting without requiring the
system to be driven far from equilibrium. Combining these
factors leads to a promising tool for investigation of the su-
perconducting state.
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supercurrent

FIG. 1. The effect of the supercurrent on quasiparticle disper-
sion. In the absence of the supercurrent, transitions across the
superconducting gap are forbidden. However, inversion breaking due
to the current flow enables transitions that contribute to interband
optical conductivity. Blue and red colors indicate degree of superpo-
sition between particle and holelike states.

Supercurrent and the excitation spectrum. When a super-
current flow is introduced in a superconductor, the Cooper
pairs in the condensate acquire finite momentum 2q. As a
result, the dispersion of quasiparticle excitations now includes
a term corresponding to a Doppler shift [13],

E (k) =
√

ξ 2
k + �2 + vk · q, (1)

with ξk = εk − μ, where εk is the particle dispersion in the
normal state, μ is the chemical potential, � is the super-
conducting order parameter, and vk = ∂εk/∂k is the group
velocity. As the Cooper pair momentum 2q is determined
by the direction of the supercurrent, the quasiparticle energy
increases or decreases, depending whether it moves parallel
or antiparallel to the current. Therefore, supercurrent flow in-
troduces anisotropy into the quasiparticle dispersion, leading
in simple cases to tilting of the spectrum. This is presented
in Fig. 1, which shows the Bogoliubov–de Gennes (BdG)
spectrum around the superconducting gap. When the Cooper
pair momentum exceeds a critical value, Eq. (1) allows for
zero-energy excitations. This leads to the appearance of a
segmented Fermi surface, which has recently been observed
in thin films of three-dimensional (3D) topological insula-
tors under proximity effect [14] and can lead to topological
phase transition [15,16]. A related phenomenon in which the
Doppler effect plays a role is the Volovik effect [17] where
the supercurrent in vortices leads to changes in the density of
states. This effect has been discussed and detected in optical
measurements previously [18–20]. However, in our case we
are concerned with small in-plane magnetic fields that do not
lead to formation of vortices. Supercurrent-induced effects
were also explored in the context of infrared activation of the
Higgs mode in superconductors [21,22].

The supercurrent flow can arise either due to an explicit
transport current or due to an external applied magnetic
field [23]. In the latter case as a result of the Meissner effect,
a screening supercurrent develops at the surface of the super-
conductor. This screening supercurrent is directly connected
to the magnetic vector potential A via the London equation,

jS = −nSe2

m
A, (2)

where nS is the superfluid density, e is the electron charge,
and m is the electron mass. The behavior of A at the surface
of a superconductor can be determined by combining London
and Maxwell equations. Assuming that the boundary of the
superconductor is on the z = 0 plane and the supercurrent

flows along x̂ in the London gauge (∇ · A = 0), the vector
potential will only have a nonzero x component. At the surface
the vector potential can, thus, be determined to be Ax(z =
0) = BextλL, where Bext is the magnitude of the external mag-
netic field, which is pointing along ŷ [B(z > 0) = Bextŷ], and
λL is the London penetration depth. Therefore, in order to
obtain a larger Cooper pair momentum 2q = 2eBextλL due to
the external magnetic field, one should increase the external
magnetic field and use superconductors with longer λL. With
Cooper pair momentum and supercurrent present, the inver-
sion symmetry is broken, and we can now investigate the new
contributions to optical conductivity.

Superconductor models. In this Letter we focus on two
different models of superconductors that exemplify the dif-
ferent aspects of supercurrent-enabled optical conductivity.
To study these types of superconductors, we employ the
BdG formalism to calculate the Matsubara Green’s func-
tions as discussed below. We obtain results for a single-band
spin degenerate s-wave superconductor and for a Dirac
fermion under proximity effect from a s-wave superconductor.
The results can also be extended to d-wave supercon-
ductors as shown in the Supplemental Material [24] (see,
also, Refs. [25,26] therein). The mean-field Hamiltonian
is assumed to arise from an interacting Hamiltonian H =∑

kσ ξkc†
kσ ckσ + ∑

λqc†
k+qσ c†

k′−qσ ′ck′σ ′ckσ , leading to a gap
equation at zero temperature,

�k = −
∑

p

λk−p
�p

2
√

ξ 2
p + �2

p

. (3)

In the s-wave case, the interaction strength is momentum
independent, λp = λ, and in consequence the superconducting
order parameter is also momentum independent, �k = �.

In each case, the influence of the supercurrent is introduced
by including the vector potential using minimal coupling
ki → ki + qiτz, where τz = ±1 for particle and hole sectors
of the mean-field BdG Hamiltonian. In all of the following
calculations we will assume that the supercurrent, and, thus,
the Cooper pair momentum, is directed along the x axis and so
q = qxx̂. In the case of our analytical solution for the optical
conductivity of proximitized Dirac fermions, we do not solve
for the superconducting order parameter self-consistently
when supercurrent is present. Still, for small supercurrents
this should not introduce qualitative differences [27], which
we also verify numerically in the tight-binding model.

The most generic model of a superconductor that we con-
sider consists of a single spin-degenerate tight-binding band
with nearest-neighbor hopping t on a square lattice with unit
lattice constant at chemical potential μ with a superconduct-
ing gap �,

HTB
BdG(k) = {t[2 − cos(kx ) − cos(ky)] − μ}τz + �τx. (4)

Such a simple model can, nevertheless, fully demonstrate the
supercurrent-induced optical conductivity.

For the purpose of an analytical derivation, we also con-
sider a Dirac fermion with s-wave superconducting order
parameter,

HD
BdG(k) = (h̄vkxsy − h̄vkysx − μ)τz + �τx, (5)
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FIG. 2. Feynman diagrams in Matsubara formalism. (a) Current-
current correlation function evaluated using a bubble diagram with a
vertex correction to ensure satisfaction of Ward identities. (b) Self-
consistent equation for the vertex correction. The straight lines
indicate propagators in the Matsubara formalism, and the wiggly line
indicates the interaction that leads to superconducting pairing.

where si’s are Pauli matrices representing the spin degree
of freedom. This model can describe the surface state of
a 3D topological insulator under the proximity effect from
a conventional superconductor as in the case of the recent
experiment reporting observation of a segmented Fermi sur-
face [14]. In such a scenario, the Fermi energy is placed high
above the Dirac point, and so for small photon energies, we
can focus only on the upper Dirac cone around the supercon-
ducting gap. This allows us to treat this system as effectively
a single-band superconductor with a helical spin texture [24].

Formalism. To obtain the optical conductivity σab(ω) we
work within linear response using the Kubo formula in the
Matsubara formalism adapted to the BdG approach. This
corresponds to evaluation of the current-current correlation
function as depicted in Fig. 2(a). Expressed in terms of Mat-
subara Green’s functions this gives [28]


ab(iωn)

= − 1

βV

∑
k,ikr

Tr ja
0 G0(k, ikr + iωn)�b(iωn)G0(k, ikr ),

(6)

where ja
0 is the component of the bare current operator for

the BdG Hamiltonian as described below, �b is the current
operator with the vertex correction included, and G0(k, ikn) =
(ikn − HBdG)−1 is the Matsubara Green’s function for the BdG
Hamiltonian. We are focusing here on the transitions across
the superconducting gap in the AC regime, but σ (ω) will also
have a DC component given by δ(ω). Using Eq. (6) we can
obtain the real (dissipative) part of the optical conductivity by
analytic continuation,

Re σab(ω) = 1

ω
Im 
ab(ω + iη). (7)

The vertex correction � is crucial in the consideration of
optical responses in the presence of the supercurrent as it
ensures the satisfaction of Ward identities and, in turn, that
the obtained results are physical. Indeed, calculating the un-
corrected current-current correlation function for the case of
supercurrent flow in a system with a parabolic band yields
a nonzero result [24]. However, since the system with a
parabolic band is Galilean invariant, the current operator is
proportional to momentum j0 ∼ k, which means it commutes
with the full interacting Hamiltonian [ ja

0 , H] = 0. Therefore,
no nontrivial optical response is possible. In order to rec-
tify this issue, we include the vertex correction at the ladder

approximation level, which constitutes an appropriate con-
serving approximation for the superconductivity treated at the
mean-field level [29,30]. Such a vertex correction is depicted
in Fig. 2(b) and corresponds to the following self-consistent
equation:

�a(iωn)

= ja
0 − λ

βV

∑
k,ikr

τzG0(k, ikr + iωn)�a(iωn)G0(k, ikr )τz.

(8)

For the s-wave case since the interaction strength is momen-
tum independent, the correction to the vertex is only a function
of frequency, constant in momentum space.

The bare current operators in each of the models are calcu-
lated including an infinitesimal vector potential perturbation
δA in the normal-state Hamiltonians in particle-hole space
according to minimal coupling rule k → k − eδAτz, where
τz = ±1 for particle and hole sectors of the BdG Hamiltonian.
By taking an appropriate derivative we arrive at the current
operator in a given direction,

ja
0 = −∂HBdG(k − eδAτz )

∂δAa

∣∣∣∣∣
δA=0, �=0

. (9)

Optical conductivity results. We can now employ the for-
malism described above to obtain the real part of the optical
conductivity. Since the s-wave superconductors have no Fermi
surface for small Cooper pair momenta, only the interband
contribution is relevant to their optical conductivity at T =
0. We begin with the proximitized Dirac fermion as the
analytical result allows for gaining better insight into the
phenomenon. In this case we obtain the result including the
vertex correction [24],

Re σ D
aa(ω) = e2

h

π

4

�

μ

h̄2v2q2
x�

h̄2ω2
√

h̄2ω2 − 4�2
�(ω − 2�), (10)

with a = x, y, which means the optical conductivity for the
Dirac fermion case is equal in the directions parallel and
perpendicular to the supercurrent. This expression, presented
in Fig. 3(a), highlights several important characteristics of
supercurrent-induced optical conductivity. First of all, since
the supercurrent in this case only tilts the dispersion of quasi-
particles, the energy separation of the two BdG branches
of the spectrum at a given momentum k remains the same.
Therefore, the minimal photon energy at which a transition
can occur is still 2�, and optical conductivity remains zero
for smaller energies. Moreover, the optical conductivity also
has a 1/

√
h̄ω − 2� singularity at the gap boundary, which

will correspond to a peak in experimentally relevant scenarios.
The origin of this singularity is related to the density of states
of a BCS superconductor, which contains precisely this type
of singularity at the gap edges. Finally, Re σ D

aa(ω) depends
quadratically on the Cooper pair momentum q.

In the case of a tight-binding band described by Eq. (4)
we cannot obtain an analytical result and have to rely on nu-
merical calculation for the current-current correlation function
with vertex correction as shown in Fig. 3(b). In numeri-
cal calculations we have used t = 1, μ = 0.9, λ = −1, and
qx = 0.025. As mentioned above, approximating the band
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FIG. 3. Real part of the two-dimensional (2D) optical conduc-
tivity in a superconductor carrying supercurrent. (a) Analytical
expression for σaa(ω) for the s-wave superconductor with a 2D Dirac
fermion dispersion. As s-wave superconductors are fully gapped for
small Cooper pair momentum, the optical conductivity only carries
the interband contribution and remains gapped for h̄ω < 2�. (b) Nu-
merical results for σxx (ω) calculated using tight-binding model for
a 2D layer. The solid line shows the 1/(ω2

√
ω2 − 4�2) dependence

that can be inferred from the analytical calculation without the vertex
correction.

as parabolic would lead to no nontrivial optical responses
due to Galilean invariance. Nevertheless, calculation using
bare current vertices can give additional insight into the
functional form of frequency dependence, leaving the exact
prefactor (dependent on the deviation from parabolic dis-
persion) to be determined numerically. As discussed in the
Supplemental Material [24], the frequency dependence is
∼1/(ω2

√
ω2 − 4�2) and can be precisely fitted to the numer-

ical results as demonstrated in Fig. 3(b). This means that the
results for the tight-binding band share similarities with the
Dirac fermion case, stemming from the same s-wave type
of order parameter. Those features are the presence of the
singularity at the gap edge and the absence of optical ab-
sorption inside of the gap. However, in contrast to the Dirac
fermion case, here the optical conductivity in the direction
perpendicular to the supercurrent (σyy) vanishes. This illus-
trates the impact of the normal-state dispersion on the detailed
characteristics of supercurrent-induced optical conductivity.

Discussion. As presented above, the characteristics of
supercurrent-induced optical conductivity vary considerably
depending both on the nature of the underlying normal state
as well as the type of the superconducting order parameter.
As a consequence, optical conductivity with a supercurrent
present may serve as an important tool for characterizing
the superconducting state. In particular, as the supercurrent
flow can be introduced by applying external magnetic field
and utilizing the Meissner effect, the anisotropies of both the
normal state dispersion as well as the superconducting gap
can be investigated using a vector magnet. As was shown in
the Bi2Te3/NbSe2 system [14], applying only 20 mT of the
in-plane field was sufficient to realize Doppler energy shift
comparable to the superconducting gap. At the same time, that
experiment has demonstrated that the screening supercurrent
effects are sensitive to the magnetic-field direction. Therefore,
similar effects may be visible in the optical conductivity mea-
surements. This could enable disentangling the various Fermi
pockets that contribute to superconductivity in materials, such
as some iron-based superconductors where superconductivity

FIG. 4. Optical conductivity for superconducting Dirac surface
state with the parameters chosen to describe the surface state of
CaKFe4As4 at T = 1 K with � = 5 mev, v = 105m/s and μ =
20 meV with l/ξ0 = 8 for the supercurrent that closes half of the su-
perconducting gap. The yellow dotted line shows the corresponding
theoretical Mattis-Bardeen contribution of the proximitized 2D Dirac
surface state from impurity scattering, the red dashed line shows
the supercurrent-induced part, and the blue solid line shows both
contributions combined.

in bulk bands and Dirac surface states coincides. Moreover,
since the characteristics of current-induced optical conductiv-
ity depend on the nature of the order parameter (e.g., d-wave
superconductors due to the nodal order parameter will have a
nonzero contribution inside the gap and a different singular
behavior [24]), this method could also elucidate the nature
of the superconducting state of various materials, including
the recently studied moiré superconductors, such as twisted
bilayer and trilayer graphene [31,32].

To estimate the visibility of the proposed effect, it is neces-
sary to evaluate it in comparison to the Mattis-Bardeen optical
conductivity σ MB that arises purely from impurity effects.
As an example, we compare the theoretical estimates of the
supercurrent-induced and impurity-driven optical conductiv-
ity for a clean Dirac surface state of an iron superconductor.
We choose the parameters for the calculation based on the
angle-resolved photoemission spectroscopy measurements of
CaKFe4As4 [33]. Although the superconducting behavior of
iron superconductors is, in general, quite complex [34], the
surface behavior should still be observable, even though it
may be superimposed on top of the signal arising from the
bulk superconductivity. Such surface results may, for example,
be resolved due to the isotropic behavior of the conductivity
components. The results of the comparison are presented in
Fig. 4. The supercurrent-induced effect dominates over σ MB

in the vicinity of the superconducting gap. This is the region
where the difference between the two sources of interband
transitions is the most apparent: whereas σ MB follows a Drude
tail for large ω, it gets suppressed at the gap edge. In contrast,
supercurrent flow introduces singular behavior of σ (ω) at the
gap edge, leading to the appearance of a sharp peak. More-
over, in real materials the optical conductivity will depend on
the direction of the supercurrent with respect to the crystalline
axes due to the corrections to the dispersion, such as hexago-
nal warping [35]. Since both the magnitude of the peak as well
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as the anisotropy of optical conductivity can be controlled by
the direction of the current (and, in turn, the direction of the
external magnetic field), it is possible to clearly distinguish
current-enabled and impurity effects.

We can also compare the magnitude of the predicted ef-
fect to the present experiments on optical conductivity of
superconductors. One such experiment investigated recently
the supercurrent-induced Higgs mode activation [22]. In that
experiment, the excess optical conductivity attributed to the
supercurrent flow in the NbN superconductor thin film was
estimated to be on the order of 100 (� cm)−1 and is peaked
for ω = 2�. In a 3D model, the current-induced optical con-
ductivity is qualitatively similar to the 2D cases, but the value
is rescaled by the Fermi wave-vector kF to account for dimen-
sionality [24]. As kF of NbN has been measured to be about
1.45 Å−1 [36], a 2D value of conductivity equal to 0.02 e2/h
corresponds to about 110 (� cm)−1, right in line with the ex-
perimentally measured value. This means that the magnitude
of the proposed effect is well within the experimental reach
and may have very well already been observed. However,
convincingly separating our quasiparticle-based mechanism
from one based on the Higgs mode in that experiment requires
more detailed studies. Nevertheless, this demonstrates the ex-
perimental viability of the phenomenon we predict, enabling
its application for investigation of the superconducting state.

To summarize, we have shown that introducing supercur-
rent flow in a superconductor, either through applying an
external magnetic field or by direct transport current, can
significantly affect its optical properties at photon energies
close to the superconducting gap magnitude. The effect is
generic, appearing independently of the nature of the normal
states as well as of the pairing symmetry, yet it is sensitive
to both of these important material characteristics. As such,
supercurrent-driven optical conductivity may become a valu-
able tool in investigations of novel superconductors.

Note added. We thank L. Fu and P. Crowley for bringing
our attention to the issue of Galilean invariance and its impact
on the optical response. They have recently studied the optical
response of s-wave superconductors with supercurrent using a
different formalism than ours, and our results are in agreement
in that case [37].
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