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Superconductivity in the uniform electron gas: Irrelevance of the Kohn-Luttinger mechanism
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We study the Cooper instability in jellium model in the controlled regime of small to intermediate values
of the Coulomb parameter rs � 2. We confirm that superconductivity naturally emerges from purely repulsive
interactions described by the Kukkonen-Overhauser vertex function. By employing the implicit renormalization
approach and the discrete Lehmann representation we reveal that even in the small-rs limit, the dominant
mechanism behind Cooper instability is based on dynamic screening of the Coulomb interaction—accurately
captured by the random phase approximation, whereas the Kohn-Luttinger contribution is negligibly small and,
thus, not relevant.
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Introduction. Conventional BCS theory predicts Cooper in-
stability at low temperature in a Fermi liquid with weak short
range attractive coupling between the low-energy electrons,
typically originating from the electron-phonon interaction
(EPI). With the discovery of unconventional superconduct-
ing systems, such as d-wave cuprate superconductors [1–4],
s+− Fe-based superconductors [5–8], multilayer graphene
systems [9–12], etc., alternative theories of Cooper instability
have been drawing great research interest. In the past decades,
a number of different mechanisms were proposed for the
pairing instability in systems where the EPI alone was not suf-
ficient to explain the data [13–17]. Some of them are based on
purely repulsive bare electron-electron interactions [13–15].
In this work, we revisit superconducting properties of the
uniform electron gas (jellium model) where pairing instability
originates from purely repulsive Coulomb interparticle inter-
actions and Fermi energy is the only relevant energy scale
(all other energy scales are emergent). Our prime focus is the
quantitative study of two canonical scenarios emerging from
renormalized interactions: the Kohn-Luttinger (KL) mecha-
nism based on the 2kF singularity (where kF is the Fermi
momentum) and the dynamic screening mechanism.

In 1965, Kohn and Luttinger argued that for any weak
short-range repulsive interaction, the two-particle effective
interaction induced by many-body effects always becomes
attractive at large enough orbital momenta � � 1, and could
lead to Cooper instability [13]. They used the same analy-
sis to estimate an effective Cooper channel coupling for the
static screened Coulomb interaction. The KL mechanism has
motivated a series of theoretical attempts to explain uncon-
ventional superconducting systems [18–21], and is widely
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believed to be the dominant mechanism leading to super-
conductivity in jellium at small rs. However, a thorough
investigation of the dominant mechanism leading to su-
perconductivity in this system is still missing: (i) the KL
approach is based on the static screened potential, which is
an uncontrolled approximation; (ii) we are not aware of any
precise numerical study of the KL mechanism because it only
emerges at large � and leads to extremely small values of Tc;
(iii) whenever Cooper instability is observed in the simulation,
one needs to differentiate between different scenarios behind
it by revealing and evaluating their contributions separately.
Therefore, whether the KL mechanism ever becomes dom-
inant in the uniform electron gas in the high-density limit
rs → 0 is still an unsolved fundamental question.

It has been known for decades that dynamic screening of
the Coulomb interaction could also induce the pairing instabil-
ity in jellium. Early work by Tolmachev and Bogoliubov [22]
demonstrated that even if the Cooper channel coupling is
repulsive at all frequencies, after its high-frequency part is
renormalized to a smaller value the net result might be an
attractive low-frequency effective potential. Later, Takada and
others calculated the critical temperatures Tc of jellium numer-
ically using various forms of dynamically screened Coulomb
interaction [14,15,23,24]. Subsequent studies also reported
that dynamic screening plays an important role in the super-
conductivity of metallic hydrogen and alkali metals [25,26] as
well as in the dilute electron gas [16]. The superconducting
phase diagram produced by Takada [24] stated that jellium
enters a normal phase at rs < 2.0, in contradiction with the
KL prediction. Apparently, the values of Tc at large � were too
small to be resolved and, therefore, were ignored for practical
purposes. Because of this limitation, the KL and dynamic
screening mechanisms have never been quantitatively com-
pared to each other, despite their coexistence in the uniform
electron gas.

To determine which mechanism is dominant and under
what conditions, we study the Cooper instability in the con-
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trolled regime of small to intermediate values of rs � 2. The
particle-particle irreducible four-point vertex is approximated
with the Kukkonen-Overhauser (KO) ansatz [27], which be-
comes exact in the high-density limit rs → 0. We compare
contributions from both mechanisms in two different ways. In
the first protocol, we compute the largest eigenvalues, λ(T ),
of the gap equation down to T/EF = 10−6 (below we use
Fermi energy EF as the unit of energy). We then remove the
q = 2kF singularity in the polarization function, on which the
KL mechanism is based, and measure the relative change of
the eigenvalue, η(T ) = δλ/λ. Finally, we estimate the mag-
nitude of η(Tc), which represents the relative contribution of
the KL mechanism. This perturbative treatment is justified if
η(T ) is small, which turns out to be always the case. The
second protocol is based on the implicit renormalization (IR)
approach [28]. By integrating out the high-frequency/energy
degrees of freedom the IR approach solves a new eigenvalue
problem for which the largest eigenvalue, λ̄(T ), is also equal
to unity at T = Tc. The crucial advantage of looking at λ̄(T )
instead of λ(T ) is that its temperature dependence is a linear
function of ln(T ) for a properly chosen energy separation
scale and, thus, can be accurately extrapolated to Tc from T �
Tc. Computational costs are further dramatically reduced by
employing the discrete Lehmann representation (DLR) [29].
This combination of methods is what allows us to determine
the superconducting channel �c with the highest value of Tc at
rs = 0.33, 0.5, 1, 2; otherwise, the problem cannot be solved
using standard techniques. By computing the critical values
of orbital channels, �KL(rs), when the KL mechanism first
induces an attractive Cooper channel coupling, and comparing
the asymptotic behavior of �c and �KL at small rs we determine
what mechanism is dominating in the high-density limit.

Within the first protocol we find the KL mechanism con-
tribution remains extremely small, and therefore irrelevant,
for any value of rs when the transition temperatures exceed
10−106

. The second protocol reveals that the Cooper instability
in jellium takes place at all values of rs tested. More impor-
tantly, the dominant channel �c increases much slower than
the critical channel of the KL mechanism, �KL, as rs decreases,
indicating that in the high-density limit superconductivity is
induced by the dynamic screening effects accurately captured
by the random phase approximation, well before the KL
mechanism could have any impact.

Model. Jellium model is defined by the Hamiltonian

H =
∑
kσ

εka†
kσ akσ + 1

2

q �=0∑
q,k,k′,σ,σ ′

Vq a†
k+qσ a†

k′−qσ ′ak′σ ′akσ , (1)

with a†
kσ the creation operator of an electron with momentum

k and spin σ =↑,↓, dispersion εk = k2

2me
− μ, and Coulomb

potential Vq = 4πe2

q2 . The dimensionless coupling parameter

(the Wigner-Seitz radius) is given by rs = 1
a0

( 3
4πn )

1
3 , where

n is the number density and a0 is the Bohr radius. The gap
function equation reads

λ(T )	ωn,k = −T
∑

m

∫
dp

(2π )d
�ωn,k

ωm,pGωm,pG−ωm,−p	ωm,p.

(2)

FIG. 1. Second-order diagrams contributing to the particle-
particle irreducible four-point vertex � in the KL analysis. Only the
first bubble diagram is resummed within the RPA approach, while all
three diagrams are resummed in the KO formulation. In the small-rs

limit, the contributions of the diagrams (b) and (c) might prove
appreciable only if the Kohn-Luttinger mechanism is the leading
channel of Cooper instability; otherwise, the leading contribution is
accurately captured by RPA.

Here � is the particle-particle irreducible four-point vertex, G
is the single particle Green’s function, 	 is the gap function,
and λ is its eigenvalue. The key approximation used in this
work is the Kukkonen-Overhauser ansatz [27,30] for �:

V KO
�σ �σ ′ (ω, q) = Vq + V+(q)2Q+(ω, q)

+ V−(q)2Q−(ω, q)�σ · �σ ′, (3)

with

Q±(ω, q) = − �0(ω, q)

1 + V±(ω, q)�0(ω, q)
, (4)

V+ = (1 − G+)V, V− = −G−V. (5)

It is defined in terms of the polarization function �0 (based
on the convolution of bare Green’s functions) and local field
factors G±(q). When G±(q) are set to zero, the KO interaction
reduces to the random phase approximation (RPA). The local
field factors encode the many-body exchange and correlation
effects beyond RPA. For direct comparison with previous
work by Takada we adopt the same ansatz for G±(q) [23,24]
and take the functional form of �0 to be that at T = 0:

�0(q, ω) 	 mkF

2π2
P

(
q

2kF
,

mω

qkF

)
, (6)

P(z, u) = 1 + 1 − z2 + u2

4z
ln

(1 + z)2 + u2

(1 − z)2 + u2

− u tan−1 2u

u2 + z2 − z
. (7)

This is justified by the smallness of the critical tempera-
ture. The gap equation is decomposed into different orbital
channels, �, which are solved independently. The critical tem-
perature Tc in each channel corresponds to the point where
the largest eigenvalue λ(T ) equals unity. For every choice of
the vertex function considered in this work the single particle
self-energy was computed within the G0W0 approximation as
in [24].

Kohn-Luttinger mechanism. Cooper instability in the KL
theory is induced by the logarithmic singularity in the static
effective interaction at q = 2kF [13]. Within the second-order
perturbation theory it arises from diagrams shown in Fig. 1.
After projecting static � to the �th orbital channel,

W�(k, p, ω = 0) =
∫ 1

−1
P�(χ ) �(k, p, χ, ω = 0)dχ, (8)
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FIG. 2. Static KO vertex function on the Fermi surface
W�(kF , kF , ω = 0) at rs = 1.0. Dotted red line with circles represents
the original W� with clear KL oscillations decaying as �−4 (dot-dash
green and dashed blue fits). The solid black line with squares repre-
sents the regularized W�.

where χ = cos θ , with θ the angle between momenta k and
p, and P�(χ ) are Legendre polynomials, Kohn and Luttinger
found that in the large-� limit, W�(kF , kF , ω = 0) decays as
�−4 and oscillates between the odd and even values of �. The
attractive effective coupling at large enough odd � could then
give rise to Cooper instability.

The KL treatment silently ignores the dynamic nature of
screening despite the fact that at any finite frequency the
Coulomb potential cannot be screened at small momenta q 

ω/vF . Moreover, the singular nature of the Coulomb potential
at small q calls for proper resummation of diagrams shown in
Fig. 1 beyond the second-order perturbation theory. Clearly, a
more controlled analysis is necessary to quantitatively eval-
uate the relative importance of KL and dynamic screening
effects in the jellium model.

Resummation of diagrams shown in Fig. 1 is achieved
within the KO vertex function that provides an excellent
framework for thorough investigation of competing mecha-
nisms. To quantify the contribution of the q = 2kF singularity,
we introduce regularized �ε (q, ω) that differs from �ε (q, ω)
by the replacement (1 − z)2 + u2 → (1 − z)2 + u2 + ε(z)
with ε(z) = ε0e−4(z−1)2

. This modification is limited to the
vicinity of the 2kF singularity and ensures that changes in λ

are attributed to the KL mechanism. The value of ε0 = 0.001
was chosen by establishing when W�(kF , kF , ω = 0) for the
regularized KO interaction has its odd-even channel oscilla-
tions suppressed; see Fig. 2. Next, we study the effect of ε0 on
the gap equation eigenvalues λ�.

Implicit renormalization approach. It is impossible to solve
the gap equation directly when the critical temperature is
extremely low because the number of required Matsubara
frequency points is too large. Thus reliable extrapolation from
T � Tc is essential for determining where λ(T ) = 1. Such
an extrapolation can hardly be done for frequency-dependent
vertexes because λ(T ) turns out to be an unknown nonlinear
function of ln T . The implicit renormalization (IR) approach
proposed in Ref. [28] offers a solution to this problem. The
idea is to decompose the gap function into two complementary

FIG. 3. Temperature dependence of the eigenvalues λ̄(T ) for
RPA (red circles) and KO (black triangles) vertex functions at rs =
2.0 and � = 3. The linear fits of the RPA (red dotted line) and KO
(black dashed line) data are almost identical. The extrapolated value
of Tc = 2.71 × 10−20EF is extremely small.

parts, 	 = 	(1) + 	(2), with 	(1)
n = 0 for |ωn| > �c and

	(2)
n = 0 for |ωn| < �c, and solve an eigenvalue problem for

the low-energy part 	(1)
n only. (The integration of high-energy

degrees of freedom with the IR protocol is achieving the same
goal as the pseudopotential theory.) The new eigenvalue λ̄(T )
is expected to have a nearly perfect linear dependence on ln T
for a properly chosen energy scale separation. The IR ap-
proach allows us to accurately determine Tc as low as 10−20EF

by extrapolating λ̄(T ) from the 10−5 < T/EF < 10−3 inter-
val. Once the Tolmachev-McMillan logarithm [15,22,31] is
accounted for, the linear flow of λ̄(T ) illustrated in Fig. 3
provides direct access to the Coulomb pseudopotential μ∗ in a
given orbital channel �. Note that the difference between μ∗ of
the KO and RPA vertex functions is smaller than a few percent
for odd � at rs � 2.0 and even � for rs � 1.0. This indicates
that higher-order vertex corrections for considered values of
rs are negligible.

Discrete Lehmann representation. Even within the IR
protocol, solving the gap equation at exponentially low
temperature faces technical challenges because the vertex
function is a multidimensional object with nontrivial structure
in momentum and frequency. The key step is optimization of
frequency grids to store just enough information for accurate
interpolation of functions. Fortunately, for a given ultravio-
let cutoff ωmax and numerical accuracy ε, the required grids
are provided by the recently developed discrete Lehmann
representation [29,32], or DLR. The number of grid points
scales as O(ln(ωmax/T ) ln( 1

ε
)) and only 65 frequencies are

required to achieve accuracy ε = 10−10 at ωmax/T = 105. Fast
implementation of all key operations including Fourier trans-
forms, interpolation, and convolution are available within the
DLR [30]. By dramatically reducing memory and computa-
tional costs, the DLR grids allow us to simulate much lower
temperatures and compute extremely small Tc. Specifically,
we were able to determine the dominant superconducting
orbital channel �c at rs � 0.33.
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FIG. 4. Amplitudes of the relative eigenvalue oscillations,
|η�+1 − η�|, induced by regularization of the KO vertex at T =
10−5EF and rs = 0.5 (blue circles), rs = 1 (green squares), and rs =
2 (yellow triangles). Inset: relative eigenvalue changes η�. Data in
the main figure and inset involve scaling factors of 10−7 and 10−6,
respectively.

Results. In the Fig. 4 inset we show the relative change of
eigenvalues η = δλ/λ at T = 10−5EF when the KO function
is regularized. We observe that KL oscillations are superim-
posed on a slowly decaying background originating from the
vertex modification in finite vicinity of the q = 2kF point.
The contribution from singularity is best characterized by the
oscillation amplitude or the difference between the η� and
η�+1 values plotted in the lower panel of Fig. 4. We observe
that (i) the relative contribution of the KL mechanism is ∼10−7

and (ii) the oscillation is less pronounced for smaller rs. Both
facts indicate that the KL mechanism is irrelevant for super-
conducting properties of jellium.

Our conclusions do not change with temperature as ev-
idenced by simulation results shown in Fig. 5. The KL
contributions η�+1 − η� increase when temperature decreases,
but the rate is tiny and the curves tend to saturate. Even if
η�+1 − η� were to grow at a constant rate beyond T/EF =
10−6, they would be smaller than a few percent at T/EF =
10−106

, which is “zero” for all practical purposes.
Academically speaking, i.e., regardless of how small Tc is

in the rs → 0 limit, the KL mechanism is not ruled out by
results presented above because we cannot determine whether
η�+1 − η� ultimately saturate to small values that decrease
with rs. However, recall that the KL mechanism is attrac-
tive only at � � �KL, where �KL(rs) is the first channel with
W�(kF , kF , ω = 0) < 0. It has to be compared with the IR
solution for the dominant superconducting channel, �c(rs),
for dynamic KO vertex function (this can be done for 1/3 �
rs � 2). The comparison presented in Fig. 6 demonstrates that
�KL > �c for all rs and the difference keeps growing when
rs → 0. Thus superconductivity in the �c channel is induced
by the dynamical screening well before the KL mechanism
becomes viable, including the rs → 0 limit.

Conclusions. We studied superconductivity in the jellium
model for rs � 2 by solving the gap equation based on the
Kukkonen-Overhauser vertex function. We find that supercon-
ductivity emerges from repulsive Coulomb interactions due to

FIG. 5. Oscillation amplitudes as functions of log10(EF /T ) for
rs = 0.5 and � = 21 (blue squares), � = 23 (green circles), and
� = 25 (yellow triangles). When T/EF is reduced by one order of
magnitude, the amplitudes increase by less than 3 × 10−8 for � � 21
at T ∼ 10−6EF .

dynamic screening effects. The Kohn-Luttinger mechanism,
often assumed to be the prime reason behind Cooper instabil-
ity in the high-density limit, is not relevant for two reasons:
(i) for rs � 2, it contributes to the Cooper instability only at
orbital momenta � � �KL much larger than the dominant su-
perconducting channel �c selected by the dynamic screening
effect; (ii) for � � �KL, the relative contribution of the KL
mechanism is extremely small numerically and can be safely
ignored. Since at rs � 1 the physics of Cooper instability
is accurately captured by RPA, one may attempt to find an
analytic solution in the rs → 0 limit.

We solve the fundamental problem of Cooper instability
in jellium in the high-density limit and revise a popular,
yet incorrect, belief that the q = 2kF singularity is the key

FIG. 6. Dominant superconducting channel �c (green squares
connected by the dashed line) as a function of rs along with the
critical channel of the KL mechanism �KL (blue circles connected
by the dotted line).
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reason. Our approach offers a systematic way for stud-
ies of the Cooper instability in other correlated electronic
systems.

The symmetrized discrete Lehmann representation algo-
rithm is a registered Julia package [32,33].
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