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Stacking-induced magnetic frustration and spiral spin liquid
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Like the twisting control in magic-angle twisted bilayer graphene, the stacking control is another mechanical
approach to manipulate the fundamental properties of solids, especially the van der Waals materials. We explore
the stacking-induced magnetic frustration and the spiral spin liquid on a multilayer triangular lattice antifer-
romagnet where the system is built from ABC stacking with competing intralayer and interlayers couplings.
By combining the nematic bond theory and the self-consistent Gaussian approximation, we establish the phase
diagram for this ABC-stacked multilayer magnet. It is shown that the system supports a wide regime of spiral spin
liquid with multiple degenerate spiral lines in the reciprocal space, separating the low-temperature spiral order
and the high-temperature featureless paramagnet. The transition to the spiral order from the spiral spin liquid
regime is first order. We further show that the spiral-spin-liquid behavior persists even with small perturbations
such as further neighbor intralayer exchanges. The connection to the ABC-stacked magnets, the effects of Ising
or planar spin anisotropy, and the outlook on the stacking-engineered quantum magnets are discussed.
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Since the discovery of superconductivity [1], quantum
anomalous Hall effect [2], and other phenomena [3–11] in
twisted bilayer graphene, twistronics has emerged as an im-
portant and popular field in the study of two-dimensional
(2D) materials. The crystal twisting provides an important
control knob to manipulate the electronic properties of quan-
tum materials and also to induce exotic quantum phases of
matter in the underlying electronic systems. Like the more
popular twisting scheme, the stacking control is another useful
structural manipulation of the stacking orders of 2D materi-
als through rotation and translation between the layers. The
stacking procedure has been successfully used to manipu-
late the electronic and optical properties of layered van der
Waals (vdW) materials [12–15], and the application to the
2D magnetism has recently been explored [16–18]. Modern
fabrication techniques such as mechanical exfoliation [19–24]
and molecular beam epitaxy [25,26] make such a stacking
control of magnetism feasible. It was shown that the inter-
layer coupling depends strongly on the stacking, allowing
the manipulation of the magnetic properties of the stacked
magnets [16–18]. While existing works focus on the dif-
ferent magnetic orders resulting from the stacking, in this
Letter we explore the possibility of stacking-induced mag-
netic frustration as well as liquidlike fluctuating regimes from
frustration.

We start from the 2D magnet with the simplest frustrated
structure, i.e., the triangular lattice, and stack the triangular
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layers along the c direction to form a multilayer three-
dimensional (3D) system. The stacking order was known
to be crucial in determining the electronic states [27–30].
For multilayer graphene, it was shown that different (chiral)
stacking creates rather distinct low-energy descriptions for
the electron bands [31–33], and thus leads to distinct and
interesting electronic properties [12–14,34]. In the electronic
systems, the stacking order changes the electronic properties
by modifying the electron tunneling channels and the electron
interactions. In magnets, the stacking order of the magnetic
layers influences the lattice structure and then the magnetic
interaction. Among many different possible stacking orders,
we here choose an ABC stacking of the triangular layers.
This choice turns out to be one of the simplest stackings that
could generate magnetic frustration and nontrivial magnetic
physics. Clearly, the AA stacking is a simple uniform stacking
along the c direction and does not really lead to anything
interesting if only the nearest-neighbor (NN) interaction is
considered. The AB stacking, where the reference site of the
B layer is projected to the center of the triangular plaquette
on the A layer, generates interesting magnetic correlations
and belongs to the extensively studied bipartite lattices. The
ABC stacking in Fig. 1(a), that seemingly triples the crystal
unit cell, is in fact a 3D Bravais lattice. By creating a corner-
shared tetrahedral structure along the c axis, the ABC stacking
drastically enhances the magnetic frustration and can induce
a classical spin-liquid regime at low temperatures even for
Ising spins [35]. Together with the intralayer interaction from
the ABC-stacked structure, the interlayer interactions generate
rich and interesting magnetic behaviors including the subex-
tensive ground-state degeneracy, thermal order-by-disorder,
magnetic transition to spiral orders, thermal crossover, and
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FIG. 1. (a) The multilayer triangular lattice with the ABC stacking. The dashed line along the c direction indicates the projection of a site
from the top layer to the centers of unequivalent triangles within the lower two layers. The intralayer and interlayer interactions are denoted
by J1 and J⊥, respectively. The spiral manifolds (blue) and their projections (red) on the kx-ky plane are presented for (b) J⊥/J1 = 0.3, (c) 1.0,
(d) 1.5, and (e) 3.0. The BZ boundaries for a monolayer triangular lattice are plotted in gray.

spiral spin liquid (SSL) regimes. We reveal these behaviors
with the intralayer and interlayer Heisenberg interactions us-
ing a set of analytical techniques.

For each site of the ABC-stacking triangular multilayers,
there exist six NN sites within the same layer and three in
each of the two adjacent layers. Distinct from the AB-stacking
case, the triangular layer is no longer a mirror plane in the
ABC-stacked case. Instead, the lattice site becomes an in-
version center. The primitive lattice vectors are chosen as
a1 = (1, 0, 0), a2 = (−1/2,

√
3/2, 0), a3 = (1/2,

√
3/6, h),

where the interlayer separation h varies for different mate-
rials. In this Letter, we take a unit layer distance h = 1 for
convenience. Starting from the NN antiferromagnetic Heisen-
berg model on the triangular lattice, we incorporate the NN
interlayer spin interactions with the Hamiltonian

H = J1

∑
〈i j〉‖

Si · S j + J⊥
∑
〈i j〉⊥

Si · S j . (1)

Here 〈i j〉‖ and 〈i j〉⊥ refer to intra- and interlayer NN pairs,
respectively. The antiferromagnetic interactions are denoted
by J1 and J⊥ [see Fig. 1(a)]. In the decoupling limit where
J⊥/J1 = 0, the ground state on the monolayer triangular lat-
tice is the well-known 120◦ state. As we demonstrate below,
the ABC stacking drastically enhances the magnetic frustra-
tion and suppresses the magnetic ordering once the interlayer
coupling is considered.

I. ZERO-TEMPERATURE CLASSICAL GROUND STATES

By performing the Fourier transformation on the spin oper-
ator Si = 1√

Ns

∑
k Skeık·ri , the spin Hamiltonian can be recast

in the reciprocal space as H = ∑
k S−kJ (k)Sk, where Ns is

the total number of spins, J (k) = ∑
d i j

Ji jeık·d i j is the ex-
change interaction, and d i j ≡ ri − r j denotes the NN vectors
for both intra- and interlayer bonds. Following the recipe
of the Luttinger-Tisza method, this local unit-length con-
straint |Si| = 1 for each spin is softened and replaced by a
global one

∑
i |Si| = Ns. The classical ground state of the

spin Hamiltonian can be obtained by searching the minimum
eigenvalues of J (k) and verifying the satisfaction of the local
constraints. It is convenient to introduce a complex parameter
ξ (k) ≡ �(k)eıθ (k) = 1 + eık·a1 + eık·(a1+a2 ), where its modu-
lus and argument have been assigned to be �(k) and θ (k),
respectively. The exchange interaction is further rewritten as

J (k) = 1
2 J1[�(k)2 − 3] + J⊥�(k) cos[k · a3 − θ (k)]. (2)

At this stage, the minima of J (k) are simply characterized by
ξ (k) = −eık·a3 J⊥/J1. By solving the equation about ξ (k), the
propagation vectors of the eigenvalue minima form several 1D
manifolds in the reciprocal space for 0 < J⊥/J1 < 3 as shown
in Figs. 1(b)–1(d). In particular, a spin-spiral state can be
constructed through these propagation vectors and satisfies the
local constraints strictly. Therefore, the spiral manifolds with
a subextensive degeneracy from the Luttinger-Tisza method
are the physical ground states. They are responsible for the
formation of the SSL of the (ds, dc) = (1, 2) type [36,37] at
finite temperatures when thermal fluctuations are introduced.
Here ds and dc refer to the dimension and codimension of
spiral manifolds, respectively.

The degenerate spiral manifold evolves with J⊥/J1. In the
weak interlayer coupling regime where J⊥/J1 < 1, the spiral
manifolds manifest as six helices in Fig. 1(b). Their projec-
tions onto the kx-ky plane are comprised of six disconnected
contours around the K points in the Brillouin zone (BZ) for
the monolayer triangular system. As J⊥/J1 increases from 0
to 1, the helices and their projected contours expands concur-
rently. For J⊥/J1 = 1, the spiral manifolds cross each other
and become intersected lines in Fig. 1(c). The degeneracy of
the ground states reaches its maximum as well and indicates
the strongest magnetic frustration. In the strong interlayer
coupling regime with 1 < J⊥/J1 < 3, the degenerate spiral
manifold is further reduced into discrete and distort contours
as shown in Fig. 1(d). Their contours decrease with increasing
J⊥/J1. Finally, they shrink into the points at (0, 0,±π ) when
J⊥/J1 � 3. The ground state turns out to be the antiferromag-
netic (ferromagnetic) order between (within) the triangular
layers.

II. THERMAL ORDER BY DISORDER

As the temperature increases from absolute zero, the ther-
mal fluctuations enter into the system and could lift the
subextensive ground-state degeneracy. For weak thermal fluc-
tuations at low temperatures, this induces a discrepancy in the
entropy for the spin-spiral wave vector on the spiral manifold,
despite the fact that different spin spiral configurations share
the same energy. The one that possesses the highest entropy
would be stabilized. This mechanism for the establishment
of the long-range orders is known as the thermal order-by-
disorder [36,38–40]. To formulate this effect for our case, we
perform the low-temperature free energy and entropy calcula-
tion, and the details can be found in the Supplemental Material
(SM) [41]. In Fig. 2(a), we further depict the phase diagram
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FIG. 2. (a) The classical phase diagram for the J1-J⊥ Heisenberg model on an ABC-stacked triangular lattice. The crossover (first-order
phase transition) is outlined by the dashed (solid) line. (b) The distribution of free energy FQ on the spiral manifolds for J⊥/J1 = 0.5. The
NBT results of 〈S−k · Sk〉 in (c) the spiral ordered phase with T = 0.229, (d) the SSL regime with T = 0.429, and (e) the high-temperature
paramagnet with T = 1.589. The regions with the lower density are set to be more transparent. The arrows in (b) indicate the positions where
〈S−k · Sk〉 are highly concentrated on the spiral manifolds (blue). The system size is 50 × 50 × 50.

and mark the regimes of thermal order by disorder. The finite
temperature SSL regime is discussed in the later part of the
Letter.

We sketch the thermal order-by-disorder effect here. At
low temperatures, the thermal fluctuations of the spins are
around the ground-state manifold. To characterize the thermal
fluctuation of the spins, it is more convenient to parameterize
the fluctuating spins based on the spin configurations from
the ground-state manifold. For an arbitrary spin-spiral order
with wave vector Q, the spins would deviate from their or-
dered orientations S̄i = [cos(Q · ri ), sin(Q · ri ), 0] due to the
thermal fluctuations. This deviation can be described by a per-
pendicular vector φi as Si = φi + S̄i(1 − φ2

i )1/2, and |φi| 	 1
at very low temperatures. To capture the low-temperature
properties, it is sufficient to expand the Hamiltonian up to
the quadratic order of the in-plane and out-of-plane com-
ponents φi

i and φo
i with Hφ = ∑

i j J̃i jφ
o
i φ

o
j + J̃i j (S̄i · S̄ j )φi

iφ
i
j

and J̃i j = Ji j − δi jJ (Q). Under this approximation, the low-
temperature free energy is given by

FQ ∼ T
∫

k
ln WQ(k) + C, (3)

where WQ(k) = −J (Q) + ∑
d i j

Ji jeık·d i j cos(Q · d i j ) and C
is a constant. In Fig. 2(b), we plot the distribution of
Q-dependent free energy FQ on the spiral manifolds for
J⊥/J1 = 0.5. The relative strength of FQ is encoded into the
color gradient, and the darkest points represent the selected
wave vectors whose exact coordinates have been listed in the
SM [41].

III. THE FINITE-TEMPERATURE BEHAVIORS

Upon further increasing the temperatures, the selected spin
spiral orders via the thermal order by disorder would melt
under the strong thermal fluctuations. Before entering into a
featureless paramagnet, the SSL could be revived at inter-
mediate temperatures. To fully reveal the finite-temperature

behaviors, we here implement a nematic bond theory (NBT)
[42] and the conventional self-consistent Gaussian approx-
imation (SCGA) to construct the classical phase diagram,
which has been shown in Fig. 2(a). Both methods start from
the partition function in the form of an imaginary-time func-
tional integral

Z =
∫

D[S]D[χ ] e−βH e−ıβ
∑

i χi (|Si|2−1), (4)

where the Lagrange multiplier χi serves as an auxiliary field to
impose the local constraint and β is the inverse of temperature.

In the NBT framework, the auxiliary constraint field χk−k′

is divided into the static sector 
(T ) = ıχk=0 and the fluc-
tuating sector Xk,k′ = −ıχk−k′ (1 − δk,k′ ) after the Fourier
transformation. The separation of variables yields the action

S = β
∑
k,k′

S−k(Kk,k′ − Xk,k′ ) · Sk′ − βV 
(T ), (5)

where Kk,k′ ≡ K0,kδk,k′ = [J (k) + 
(T )]δk,k′ . An effective
partition function Z = ∫

d
 eβV 
(T )Z[
] can be obtained
after the integration over the spin components in the large-
N limit [41]. The effective action in Z[
] is in the
power of the field X. To integrate the fluctuating sector
X out, the self-consistent equations should be established
for the bare spin propagators 〈S−k · Sk〉 = (2β )−1NK−1

0,k and
the inverse constraint field propagators 〈χ−k χk〉−1 = D−1

0,k =
N/2

∑
k′ K−1

0,k+k′K−1
0,k′ . They are renormalized perturbatively by

the higher order X terms in Z[
] and thus dressed by the
a proper self-energy � and polarization �, respectively. The
resulting Dyson equations are

Keff,k = K0,k − �k, (6)

D−1
eff,k = D−1

0,k − �k. (7)

As suggested in Ref. [42], at the cost of omitting all vertex cor-
rections, the Dyson equations can be solved self-consistently
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FIG. 3. (a) Self-consistent equations for the self-energy � and
polarization �. (b) The derivative loop diagrams in the free-energy
density.

with

�k = −
∑
k′ �=0

K−1
eff,k−k′Deff,k′ , (8)

�k = D−1
0,k − N

2

∑
k′

K−1
eff,k+k′K−1

eff,k′ , (9)

and are depicted as the diagrams in Fig. 3(a). With these
approximations, the final integral in Z over the static
sector 
 can be evaluated at the saddle point where
NT/(2V )

∑
k K−1

eff,k = 1. The free-energy density, that in-
cludes the loop diagrams in Fig. 3(b), are derived explicitly
[41].

For the concerned parameter regime 0 < J⊥/J1 < 3 where
there exists a subextensive degeneracy, the concentrated
weights of spin structure factors 〈S−k · Sk〉, that are calculated
with the NBT, are found in the low-temperature regime at the
discrete momentum points, indicating the spin-spiral orders.
As shown in Fig. 2(c), the positions of these high weights
are identical to the results based on the entropy and the
thermal order-by-disorder calculations. Moreover, the free-
energy density manifests a first-order phase transition above
the ordered states at the temperatures shown in Fig. 2(a). The
distribution of 〈S−k · Sk〉 also changes drastically. Right above
the transition temperature TC , the pointlike concentrations
of 〈S−k · Sk〉 disappear immediately. Instead, there are clear
spectral weight enhancements around the spiral manifold,
and they decay rapidly away from it as shown in Fig. 2(d).
These features are characteristic to the SSL [36,37] and persist
within a broad temperature window [see Fig. 2(a)].

The SSL behaviors are gradually overwhelmed with the
prevailing thermal fluctuations. At higher temperatures, the
spectral weights of 〈S−k · Sk〉 tend to spread throughout
the whole BZ as shown in Fig. 2(e). Eventually, the spectral
peaks around the spiral manifolds would become indiscernible
when the system is deeply in the featureless paramagnet. The
system experiences a crossover from the SSL to the feature-
less paramagnet. In the description of the NBT, the fluctuating
sector Xk,k′ of the constraint field becomes insignificant and
can be neglected in Eq. (5). This simplification in the NBT
leads to the well-known SCGA, which can qualitatively de-
scribe this thermal crossover [41]. In the phase diagram of
Fig. 2(a), the crossover temperatures are outlined based on
the “smoothening” of the spectral peaks [41]. Physically, this
thermal crossover from higher temperatures to lower temper-
atures corresponds to the growth of the spin correlation. At
a temperature much above Curie temperature, all the spins
are fluctuating thermally and there is not much correlation
between the spins. At the order of the Curie temperature, the

spins become gradually correlated. At even lower tempera-
tures in the SSL regime, the spin correlation in the momentum
space reveals the structures of the degenerate spiral mani-
fold. In the SSL regime, the thermal fluctuations are mainly
around the spiral manifold, which may resemble the thermal
fluctuation near a critical point to some extent, and a semiuni-
versal thermodynamic property is expected. It is found that the
specific heat behaves like CV = c1 + c2T in the SSL regime,
where c1,2 are constants [41].

IV. SUBLEADING SPIN INTERACTIONS

While the thermal order-by-disorder and the entropy ef-
fect could lift the degeneracy of the spiral manifold at low
temperatures, it is well-known that other subleading spin
interactions could enter and break the degeneracy. For in-
stance, in the presence of the second- and third-nearest spin
interactions (denoted as J2 and J3, respectively), the spiral
manifolds only exist at a special point J2/J1 = 2J3/J1 and
0 < J⊥/J1 � 3 + 30J3/J1 [41]. While this effect is clearly im-
portant at low temperatures, especially in the relevant ACrO2

antiferromagnets [50], the more tempting question is about the
stability of the SSL regime that is connected to the degene-
rate spiral manifold. Or, more experimentally, can the
degenerate spiral manifold still manifest itself in the finite-
temperature spin correlation? Certainly, when the subleading
interaction is rather weak, this is expected. To what ex-
tent the spin correlation is modified by the subleading
interaction, however, depends on the several competing en-
ergy scales and could vary from material to material. It
is, therefore, more appropriate to simply demonstrate this
for the specific interactions that are relevant to certain
materials. We have performed the NBT calculations for
(J1, J2, J3, J⊥) = (1.0, 0.0, 0.13, 0.1) that are closely relevant
to the first-principles results for α-HCrO2 [50]. The spin-spiral
orders at low-temperatures are confirmed through the mag-
netic Bragg peak of 〈S−k · Sk〉 [see Fig. 4(a)]. A first-order
transition is evidenced at TC ≈ 0.470 [41].

The spectral weights of 〈S−k · Sk〉 become pronounced
along the degenerate spiral manifolds once the temperature
exceeds TC . Its specific thermal evolution, however, carries a
bit more structure. Within a narrow window TC < T � 0.573,
the most prominent weights appear near the ordered wave
vectors [indicated by arrows in Fig. 4(b)]. With increasing
temperature, two consecutive crossovers can be identified.
First, the inhomogeneity of 〈S−k · Sk〉 along the degenerate
spiral manifold is quickly flattened with the growing thermal
fluctuations. A more homogeneous distribution is recovered
when T � 0.573, as shown in Fig. 4(c). Finally, the system
undergoes another crossover into the featureless paramagnet,
as indicated by the spreading of 〈S−k · Sk〉 in Fig. 4(d).

V. DISCUSSION

The J1-J⊥ Heisenberg model for the SSL physics is quite
distinct from previous studies based on bipartite lattices
[37,51]. Due to the geometric frustrations that are naturally
induced by the ABC stacking, an infinitesimal interlayer cou-
pling is sufficient to spawn the SSL. For bipartite lattice
models, a finite interaction threshold is required for the SSL.
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For example, the criteria are J2/J1 > 1/6 for the honeycomb
lattice [52], J2/J1 > 1/8 for the diamond lattice [36], and
more strictly J2/J1 = 2J3/J1 > 1/4 for the square lattice [51].
This restriction may challenge the realization of SSLs because
further exchange interactions can be relatively weak in real
materials. The SSL condition 0 < J⊥/J1 < 3 for our model is
immediately realized once the stacking structure is fabricated
to a sufficient number of layers.

Even for few layers, the SSL physics is still expected.
When descending to a bilayer, our model is equivalent to a
J1-J2 Heisenberg model on a honeycomb lattice. Furthermore,
for even numbers of layers, the ABC-stacked triangular lattice
can be viewed as a multilayer honeycomb lattice still with the
ABC stacking despite a displacement of two sublattices along
the c direction. Very recently, a 2D SSL has been advocated
by neutron scattering measurements in a vdW honeycomb
magnet FeCl3 with the same stacking [53]. It is also immune
to intricate interlayer couplings. Although the interlayer spin
exchanges are different here, a similar SSL is promising, e.g.,
through appropriate stacking controls. The nature of a few-
layer version of our model is worthy of further study.

Besides the stacking fabrication of vdW materials, ABC-
stacked triangular multilayer magnets actually exist in nature.
There are a family of magnets with the formula AMX2 where
A is a monovalent metal, M is a trivalent metal such as
the transition metal ion Cr [50,54–57] or the rare-earth ion
[58–61], and X is a chalcogen, and the rhombohedral vdW
compounds MX 2 such as NiBr2 and NiI2 [62–66]. Both fam-
ilies of magnets could experience extra magnetic anisotropies
beyond the simple Heisenberg model. The simplest and com-
mon anisotropy for the transition metal ions such as Cr3+ and
Ni2+ ions is the single-ion spin anisotropy. In the presence of

the easy-plane anisotropy, it is still possible to construct the
spiral orders within the XY plane, and the SSL physics is still
expected. With the easy-axis spin anisotropy, one cannot con-
struct spiral orders with Ising spins and thus the ground-state
configurations are completely different. The thermal fluctua-
tions, however, could violate the Ising constraint and induce
the SSL regime [45,47]. Besides the characteristics as shown
in Figs. 2(c)–2(e), the spin structure factors could possess a re-
ciprocal kagomé-like structure from the competition between
frustration and spin stiffness [47]. The magnetic anisotropy
for the rare-earth chalcogenides AMX 2 is mainly the exchange
anisotropy from the strong spin-orbit coupling. Because of the
short-range orbitals of the 4 f electrons, the spin exchange is
most likely to be dominated by the intralayer interactions, and
the SSL physics due to the interlayer coupling is probably
less relevant over there. The mechanical control such as twist-
ing, bending, and stacking is an uprising control knob of the
physical properties of quantum materials. We hope our work
to stimulate some interest in the stacking control of quantum
magnets and materials.
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