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Invisible flat bands on a topological chiral edge
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We prove that invisible bands associated with zeros of the single-particle Green’s function exist ubiquitously
at topological interfaces of two-dimensional Chern insulators, dual to the chiral edge/domain-wall modes. We
verify this statement in a repulsive Hubbard model with a topological flat band, using real-space dynamical
mean-field theory to study the domain walls of its ferromagnetic ground state. Moreover, our numerical results
show that the chiral modes are split into branches due to the interaction and that the branches are connected by
invisible flat bands. Our work provides deeper insight into interacting topological systems.
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Introduction. Flat bands are sensitive to interaction due
to their vanishing bandwidth. For example, it is one of a
few rigorous theorems regarding the Hubbard model that,
along with flat bands, even the weakest interaction can in-
duce a ferromagnetic ground state [1–6]. Things become
even more interesting when the underlying flat bands have
nontrivial topology. Researchers have extensively studied
two-dimensional (2D) systems in which the interplay be-
tween flat Chern bands and interaction leads to quantum Hall
ferromagnets [7–9], non-Abelian fractional Chern insulators
[10–14], novel spin excitations [15,16], and topologically pro-
tected chiral valley channels [17]. Nevertheless, new physics
can emerge from this well-studied platform.

In this Letter, we report the emergence of invisible flat
bands in the domain-wall spectrum of a 2D quantum Hall
ferromagnet resulting from the interplay of the Hubbard inter-
action and the topological flat band. In a many-body fermionic
system, an invisible state associated with a certain character-
istic frequency is a special single-particle state being a null
vector of the single-particle Green’s function of the system at
that frequency. An invisible flat band is a collection of invisi-
ble states with different momenta and the same characteristic
frequency. The existence of invisible states was first studied by
Gurarie [18], who pointed out that a closed and noninteract-
ing system does not possess an invisible state, and predicted
that the existence of invisible states may alter the edge-bulk
correspondence of topological insulators in the way that the
topological invariant could possibly change without closing
the gap [18]. Despite the interesting properties of invisible
states, they are not well studied. In this Letter, we will present
two important results about them. One is a proof that invisible
bands exist ubiquitously at topological interfaces of 2D Chern
insulators, which implies that they can serve as topological
markers in such systems, and the other is the aforementioned
emergence of invisible flat bands.

We study the quantum Hall ferromagnet numerically by
using real-space dynamical mean-field theory (RDMFT) [19],
which can capture topological interfaces in interacting sys-
tems [20] and also invisible states as we need.

This Letter is arranged as follows. First, we briefly review
the basic concepts about the zeros of the Green’s function and

prove the existence of the invisible bands dual to the chiral
edge modes in 2D Chern insulators. Then we introduce an
interacting flat-band model, explain its ferromagnetic nature,
and present its mean-field (MF) domain-wall spectrum, which
is later compared with the RDMFT results to identify the
intrinsic interaction effect, i.e., the branching of the chiral
domain-wall mode and the emergence of the invisible flat
bands. Finally, we present an effective model to describe the
domain-wall physics.

Zeros of the Green’s function. In this Letter, the term
Green’s function refers to the zero-temperature single-particle
Green’s function of a fermionic many-body system with fixed
number of particles N , whose formula can be found in the
Supplemental Material (SM) [21]. For a fixed frequency ω,
the Green’s function Ĝ is a d-by-d matrix whose matrix
element Gi j is a Fourier component of the propagation am-
plitude between two single-particle states represented by i
and j, where d is the dimension of the single-particle Hilbert
space. The zeros of the Green’s function Ĝ are defined by
the roots ωm, m = 1, 2, . . . , n0, of the equation det Ĝ(ω) = 0.
The vanishing of the determinant means that there is one or
more null vectors of Ĝ(ωm), and we call the single-particle
states corresponding to these null vectors invisible states with
characteristic frequency ωm, because they are decoupled from
the rest of the single-particle states in terms of propagation
amplitudes. In principle, the invisible states can be detected
as long as Ĝ(ω) can be measured, e.g., by angle-resolved pho-
toemission spectroscopy (ARPES) for electronic systems or
by angle-resolved radio frequency spectroscopy for ultracold
atoms [22].

Gurarie [18] proved that the determinant takes the follow-
ing form:

det Ĝ(ω) =
∏n0

m=1 (ω − ωm)
∏np

m=1 (ω − εm)
, (1)

where the poles εm are the eigenenergies of the many-particle
Hamiltonian in the (N + 1)- and (N − 1)-particle space. He
also showed that ωm must be real numbers and np − n0 = d .
In a closed noninteracting system, we can easily calculate
the Green’s function and find np = d; hence n0 = 0, which
implies that zeros of the Green’s function can only exist in
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FIG. 1. (a) Some possible configurations of poles and zeros as
a function of λ, marked by red solid lines and blue dashed lines,
respectively. The period of λ is λT . (i) A loop consisting of a single
pole. (ii) A loop consisting of two poles and two zeros, forming a
zigzag path. (iii) A loop consisting of a single zero. On the line
ω = 0, we find n+

p = n−
p = 0 and n+

0 = n−
0 = 1, so Eq. (2) holds.

(b) Illustration of the ground state of H on a 2L × 2L lattice with
periodic boundary conditions filled with L2 particles for each spin
species. Sites half occupied by spin-up (down) particles are marked
by red (blue) disks. There are two ferromagnetic domains separated
by the domain walls. The arrows mark the domain-wall spin-current
channels. The dashed rectangular marks the subsystem we choose to
study the domain-wall physics.

open or interacting systems. Nevertheless, for any closed sys-
tem, we can treat any of its subsystems as an open system,
whose Green’s function ĝ is a submatrix of Ĝ. In this way,
we can obtain new zeros of ĝ, which are not necessarily zeros
of the full Green’s function Ĝ. Especially, if the subsystem is
chosen as a topological interface, the emerging invisible bands
associated with ĝ can carry information about the topology of
the system, as we will discuss in the following.

Before we show this, we need to prove an important equa-
tion describing the configurations of the ωm’s and εm’s in
an S1 parameter space of the system. Suppose the system
is parametrized by a real number λ so that det Ĝ(ω, λ) is a
continuous and periodic function of λ. Then we track the evo-
lution of a pole, say ε1(λ), by increasing λ from λ0. Because of
the periodicity of det Ĝ(ω, λ), ε1(λ) must either cease to exist
at some λ = λ1, or return to its initial value ε1(λ0) after λ is
swept over its whole period one or several times, otherwise,
we will end up with infinitely many poles at any λ. In the for-
mer case, because the difference between the number of poles
and zeros np − n0 = d is independent of λ, there must be one
more zero at λ1 − 0+ than at λ1 + 0+. Let us denote this zero
as ω1(λ). Because det Ĝ(ω, λ) is a continuous function of λ,
the pole and the zero must merge at λ1, i.e., ω1(λ1) = ε1(λ1).
Then, we track ω1(λ) by decreasing λ from λ1. Again, to avoid
the existence of infinitely many zeros, ω1(λ) ceases to exist
at some point λ = λ2, merging with either ε1(λ) or another
pole ε2(λ). In the latter case, we can continue tracking ε2(λ)
to another zero ω2(λ) and so on, and finally we will return
to ε1(λ0) and complete a loop consisting of pole and zero
branches. Note that every time a zero and a pole meet, the λ

direction of tracking reverses, so the path has a zigzag shape.
The key conclusion here is that any zero or pole is contained
in such a loop [see Fig. 1(a) for some examples]. Consider
now a line with fixed ω = �. The line could possibly cut
through one or several such loops and encounter poles and

zeros at certain values �i, i = 1, 2, . . . , i.e., f (λ = �i ) = �,
where f represents either a pole εm or a zero ωm. We say it is
a positive encounter at �i if f (�i + 0+) > � > f (�i − 0+)
and a negative encounter if f (�i + 0+) < � < f (�i − 0+).
Due to the loop structure, the following equation holds [21]:

n(+)
p − n(−)

p = n(+)
0 − n(−)

0 , (2)

where n(±)
p and n(±)

0 denote the number of positively (neg-
atively) encountered poles and zeros, respectively. This
equation describes a topological property of det Ĝ(ω, λ),
which holds for any system as long as λ lives in a S1 space.

Now, apply Eq. (2) to a 2D Chern insulator. Suppose the
system is periodic along the x direction and has a topological
interface in the y direction, e.g., an open boundary. In such
a system, we can parametrize the Green’s function Ĝ(ω, kx )
by kx, the momentum in the x direction. Instead of the whole
system, we now focus on the subsystem defined as a stripe
covering the topological interface. This subsystem has the
Green’s function ĝ(ω, kx ). Suppose the chemical potential sits
in a band gap. If the chemical potential is crossed by in total
C edge modes with the same chirality, which contribute C
poles to det ĝ(ω, kx ), Eq. (2) implies that there will also be
C invisible bands of ĝ(ω, kx ) crossing the chemical potential
with the same chirality, which establishes a one-to-one duality
between zeros and poles at topological interfaces of 2D Chern
insulators, with or without interaction. This is the first major
result of this Letter.

Moreover, in the presence of interaction, the chiral edge
modes can exhibit more sophisticated structures, e.g., they
can be split into branches with new invisible bands connecting
these branches of poles. Surprisingly, we find that these new
invisible bands are flat in the model which we study in the
following.

The model and the MF results. We study a 2D Hubbard
model with repulsive interaction U :

H =
∑

m,n,σ

hm,nc†
m,σ cn,σ + U

∑

m

nm,↑nm,↓, (3)

in which hm,n ≡ t exp(−|zm−zn|2
2 + i Im z∗

mzn), zm ≡ √
S(xm +

iym), 0 < S < π , where (xm, ym) are the integer coordinates
of the site m of a square lattice, and we set t = 1. The
noninteracting model, which has a zero-energy topological
flat band, was first discovered by Kapit and Mueller [23].
The topological flat band in the noninteracting model can
be regarded as the discrete lowest Landau level and can be
generalized to a family of topological flat bands [24–26]. For
simplicity, we focus on the case S = π/2, in which the non-
interacting model has only a flat lower band and a dispersive
upper band. We only consider the filling ratio 1/4. In this case,
the ground state of the interacting model with U > 0 is fully
ferromagnetic, i.e., all the spins are polarized and the flat band
for the polarized spin will be fully occupied. The energy of
such a state is zero because the flat band is at zero energy and
there is no interaction energy because of the polarization. A
zero-energy state must be the ground state of H because H
is positive semidefinite. The other ground states of H can be
obtained by the spin SU(2) symmetry.

Because the numbers of spin-up and spin-down particles
are conserved quantities, we can fix them and let them be
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FIG. 2. Green’s functions ĝ(ω, kx ) (subsystem) and Ĝ(ω, kx ) (full system) calculated by (a),(e) MF theory and (b)–(d),(f)–(h) RDMFT.
Panels (a)–(d) plot det ĝ to show the invisible bands [the darkest blue lines in (a)–(c)] and (e)–(h) plot the y-summed spectral densities to show
the poles (the darkest red lines), including the chiral domain-wall modes. The system size is 64 × 64 and U is set as 1.33 for MF and 2 for
RDMFT such that they produce the same gap 	 = 0.67. There are two ω ranges. The larger range includes all the bulk bands in MF results
and the smaller range resolves the details of domain-wall states.

equal. Now, the ground state is no longer homogeneous. The
lattice is split into two ferromagnetic domains to lower the
energy and the ground state seeks the shortest domain wall.
Consider a 2L × 2L lattice with periodic boundary conditions
in both directions. Then, there are L2 particles for each spin
species and the domain walls will be formed as shown in
Fig. 1(b).

Consider the MF theory for the spin-up single-particle
excitations of the ground state. The MF Hamiltonian is ob-
tained by treating the interaction term U

∑
m nm,↑nm,↓ as a

background potential U
∑

m nm,↑〈nm,↓〉, which removes the
entanglement between the two spin species. The MF theory
gives the correct ground-state energy only when U is small
compared to the gap between the two bands in the noninter-
acting model. Deep in the spin-up domain, the background
potential vanishes because no spin-down particle is present
and, deep in the spin-down domain, the potential becomes
U/2 because each site holds on average half of a spin-down
particle. As a result, apart from the contribution from the
domain walls, the MF spectrum is obtained by duplicating
the spectrum of the noninteracting model and shifting the
duplicate by 	 = U/2, which is the gap between the two flat
bands in the different domains. The topological bands will
contribute chiral modes to the domain wall and the domain
wall becomes a spin current channel [see Fig. 1(b)], which
is called quantum valley Hall effect in some works [27–30].
To visualize the domain-wall modes and their dual invisible
bands, we exactly diagonalize the MF Hamiltonian on a 64 ×
64 lattice with periodic boundary conditions, choose the sub-
system as a four-site-width stripe over the domain wall, and
calculate the determinant det ĝ(↑)(ω + 0+i, kx ) [Fig. 2(a)] and

the domain-wall spin-up spectral function
∑

y Im g(↑)
yy (ω +

0+i, kx ) [Fig. 2(e)], where the summation only takes values
of y within the subsystem. We see that cross-shaped invisible
bands appear, which makes Eq. (2) hold.

RDMFT analysis on interacting system. RDMFT is an
extension of the single-site DMFT to deal with inhomogeneity
in a correlated lattice system. It solves the lattice many-body
problem by reducing the full problem to a set of single im-
purity problems, one for each lattice site, with the impurity
Green’s function and self-energy being the same as those of
the respective site. These impurity problems are coupled via
the lattice Dyson equation,

[Ĝ(σ )(ω)]−1
m,n = ω + μ − hm,n − δm,n�

(σ )
n (ω), (4)

where μ is the chemical potential, hm,n is defined below
Eq. (3), and �(σ )

n (ω) is the site-dependent local self-energy,
while the nonlocal parts of the self-energy are neglected in the
approximation. We apply RDMFT to a lattice with 64 × 64
sites and periodic boundary conditions. Because RDMFT is
formulated in the grand canonical ensemble, the number of
spin-up or spin-down particles cannot be fixed. In order to
form two ferromagnetic domains and keep the numbers of
spin-up and spin-down particles equal, we initiate the RDMFT
iterations with a slightly biased chemical potential to attract
the spin-up (down) particles to the left (right) half of the
lattice, and the bias is removed after the first iteration. This
initial condition leads to a well converged solution from which
we read that the magnetization |〈nn,↑ − nn,↓〉| is 1

2 for site n in
each domain. We also find that the spectrum does not change
qualitatively when the interaction strength U varies; therefore,
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in the following we only present the results for U = 2. The
inverse temperature is set as β = 200, which makes the results
effectively characterize zero-temperature physics.

In Fig. 2(h), the x-momentum-integrated spin-up spec-
tral density

∑
kx

Im G(↑)
yy (ω + 0+i, kx ) calculated by RDMFT

clearly distinguishes the two domains. The flat bands survive
the interaction; however, the gap between them 	 = 0.67
is much smaller than the MF value U/2 = 1. The chemical
potential is chosen as half the gap, μ = 	/2 = 0.33. As a
result, in the spin-up domain, we have poles located at ω =
−μ corresponding to creating holes in the filled spin-up flat
band. And, in the spin-down domain, we have poles located
at ω = μ corresponding to creating spin-up particles in the
filled spin-down flat band. Further numerical results show that
	 is a monotonous function of U , 	 → U/2 when U → 0
and 	 < 	max ≈ 1.4 when U → ∞ [21], which means that
	 is always smaller than the band gap of the noninteracting
model, preventing a qualitative change of the spectrum. 	max

is verified by exact diagonalization (ED) of the Hamiltonian
on a 4 × 4 lattice and we find that the ED results agree sur-
prisingly well with RDMFT in the sense that, for any U , the
relative difference in 	 is about 1% [21].

The subsystem containing the domain wall is again chosen
as a four-site-width stripe. We show the RDMFT determinant
det ĝ(ω + 0+i, kx ) in Figs. 2(b)–2(d) and the RDMFT domain-
wall spin-up spectral function

∑
y Im g(↑)

yy (ω + 0+i, kx ) in
Fig. 2(f). Comparing Fig. 2(e) with Fig. 2(f), we find the
chiral domain-wall mode is split into multiple branches by
the interaction and these branches, as shown in Figs. 2(c) and
2(d), are connected by branches of invisible bands. The zigzag
path formed by the branches can be more clearly distinguished
by the argument of det ĝ(ω + 0+i, kx ) in Fig. 2(d). Strikingly,
these branches of invisible bands are flat. Note that any linear
superposition of invisible states in the invisible flat band is an
invisible state with the same characteristic frequency. More-
over, these invisible bands, as the manifestation of quantum
correlation, exist even in the full Green’s function. The exis-
tence of invisible flat bands is the other major result of this
Letter.

In Fig. 2(f), if we draw a line with a fixed ω ∈ (−	
2 , 	

2 ),
the line will encounter one and only one pole, which means
the bulk-edge correspondence is not broken by the interaction.
In Fig. 2(b), we see that the two cross-shaped major invisible
bands almost remain the same as those in the MF calculation,
being more stable than the chiral modes with respect to in-
teraction. In this sense, invisible bands may serve as a better
indicator for detecting interacting 2D Chern insulators.

Last but not least, by summing up the spin-up and the
spin-down spectral functions, we obtain Fig. 2(g) and find that
the spin-up and spin-down chiral modes connect smoothly
and form bands extending over the whole Brillouin zone.
This fact inspires us to depict the domain-wall states by a
1D single-particle model where the interaction is effectively

replaced by spin mixing, i.e., a spin-up particle can turn into a
spin-down one by hopping and vice versa. The effective model
is supposed to reproduce the branching in the domain-wall
spectrum. The simplest effective model contains two bands
ε±(k) associated with eigenstates |u+

k 〉 = α(k)| ↑〉 + β(k)| ↓〉
and |u−

k 〉 = β∗(k)| ↑〉 − α∗(k)| ↓〉, and it is straightforward
to generalize the two-band effective model to a multiband
one to account for more branches. The single-particle ef-
fective Hamiltonian is h(k) = ∑

δ=± εδ (k)|uδ
k〉〈uδ

k| and the
corresponding spin-up Green’s function is

g(↑)
eff (ω, k) = γ (k)

ω − ε+(k)
+ 1 − γ (k)

ω − ε−(k)
, (5)

where γ (k) = |α(k)|2. The poles ε±(k) are split into branches
when γ (k) = 0 or 1 in part of the Brillouin zone and the
invisible band connecting the poles is given by ω(k) =
γ (k)ε−(k) + [1 − γ (k)]ε+(k), existing in the region where
0 < γ (k) < 1 [21]. Apparently, it puts a strong constraint
on the Hamiltonian if we require this invisible band to be
flat.

Conclusion. Using RDMFT, we numerically study the fer-
romagnetic ground state and its domain walls of a repulsive
Hubbard model, in which the ferromagnetism comes from the
topological flat band of the underlying noninteracting model.
Our results show that the flat bands survive the interaction
and they contribute chiral modes to the domain walls because
of their nontrivial topology. The chiral modes are associated
with the poles of the Green’s function of the domain wall
ĝ. Moreover, ĝ also possesses zeros associated with invisible
bands. We analyze the configurations of zeros and poles of
Green’s functions and rigorously prove that there is a one-to-
one duality between the chiral modes and invisible bands at
topological interfaces of 2D Chern insulators. Therefore, the
invisible bands can also serve as indicators of nontrivial topol-
ogy. Our numerical results agree with this analysis, clearly
showing the invisible bands dual to the domain-wall modes.
Moreover, the RDMFT results show that the domain-wall
modes are split into branches, an effect which is not present
in the MF results, suggesting that the branching is intrinsi-
cally caused by quantum correlations. The branching can be
captured by a 1D effective model with spin mixing. Both
the numerical and analytical studies show that the branches
of domain-wall modes are connected by invisible bands and
RDMFT shows that these invisible bands are flat. The flatness
of these invisible bands puts strong constraints on the Hamil-
tonian and could be closely related to the flat bands in the
noninteracting model.
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