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The Dzyaloshinskii-Moriya interaction (DMI) in magnetic materials plays an important role in spintronics,
giving rise to chiral spin textures such as the nucleation and propagation of domain walls and skyrmions.
The necessary ingredient for the emergence of the DMI is the lack of inversion symmetry combined with
elements with strong spin-orbit coupling. We report on a first-principles investigation of generalized DMIs in
bulk centrosymmetric crystals with noncentrosymmetric local sublattices, where we consider a prototype family
of PT -symmetric antiferromagnets, including, Mn2Au, MnPd2 and MnCuAs in the tetragonal and orthorhombic
phases. We employ a Green’s function approach to calculate the interatomic relativistic exchange coupling which
can, in turn, determine the sublattice elements of the generalized fifth-order DMI tensor Dss′

αβ,γ . We demonstrate
that the breaking of the local mirror symmetry and the resulting local Rashba-type spin-momentum locking yield
local DMIs with opposite signs on the two antiparallel sublattices. We present numerical results and provide
analytical expressions for the magnon dispersion in the presence of the sublattice DMI and show that the intra-
(inter-) sublattice DMIs result in identical (opposite) contributions to the nonreciprocal components of the two
low-frequency antiferromagnetic magnon modes.
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Antiferromagnetic (AFM) materials have attracted a lot
of attention as potential candidates for active elements in
spintronic devices due to their weak sensitivity to magnetic
field perturbations, potential for miniaturization, and ultrafast
switching in the terahertz (THz) frequency range [1–5]. The
current-induced antidamping- and fieldlike spin-orbit torque
(SOT) has been employed to control and switch the Néel
vector in the two prototypical bulk centrosymmetric metallic
Mn2Au [6–8] and Dirac semimetal MnCuAs [9] antiferro-
magnets, thus demonstrating a viable approach to AFM-based
memories and providing a route to ultrafast spintronic devices.
On the other hand, the Néel vector can be detected using the
anisotropic magnetoresistance effect [1,4,9], optical methods
[10–12], the anomalous Hall effect in noncollinear antiferro-
magnets such as Mn3X (X = Ge, Sn, Ga, Ir) [13–15], and
the anisotropic spin Hall effect [16–18]. Another intriguing
topological antiferromagnet is the Dirac nodal line semimetal
MnPd2 in which reorientation of the Néel vector leads to
switching between the symmetry-protected degenerate state
and the gapped state associated with the dispersive Dirac
nodal line at the Fermi energy [18].

The AFM ordering in Mn2Au, CuMnAs, and MnPd2

breaks both the time-reversal symmetry T and the space in-
version symmetry P but preserves the PT product [6,9,18].
The breaking of the local space inversion on each sublattice
layer can be readily seen from Fig. 1(a), where, e.g., the
spin-up Mn layers are sandwiched between Au and spin-down
Mn layers. This results in the presence of Rashba-type spin-
momentum locking with opposite chirality [19–24] on the two
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magnetic Mn sublattices, which can, in turn, be employed
to induce Néel SOT and reorient the direction of the AFM
ordering [6,7,25]. Furthermore, ab initio calculations revealed
the emergence of toroidal moments [26] in the Mn2Au and
CuMnAs antiferromagnets and showed that their experimen-
tally reported SOT behaviors are consistent with the final
states aligning their toroidal moments parallel to the applied
electric current [26,27].

The Dzyaloshinskii-Moriya interaction (DMI) [28,29]
emerges in magnetic systems with artificially or intrinsically
broken inversion symmetry. This relativistic antisymmetric
exchange interaction results from the strong spin-orbit cou-
pling (SOC) and often favors noncollinear magnetic states,
thus leading to the formation of spin spirals or topologi-
cally nontrivial spin structures such as skyrmions [30–32].
In addition, the DMI results in a nonreciprocal dispersion for
long-wavelength spin waves [33], ω�q = ∑

αβ Dαβmαqβ ± ω0
�q,

where α, β = x, y, z, ω0
�q is an even function of the wave vector

�q, Dαβ represents the DMI tensor elements, and �m is the unit
vector along the net magnetization [34,35].

Due to the absence of a net magnetization in AFM mate-
rials, the Landau-Lifshitz-Gilbert (LLG) equation of motion
describing their low-energy spin dynamics must be extended
to include the sublattice dynamics of the antiparallel mag-
netic moments. Consequently, the intersublattice exchange
coupling λ between the two sublattices plays an important role
in the AFM resonance (AFMR) frequency, ω ≈ √

2Kλ/|Ms|
[36,37], resulting in the THz range dynamics. Here, K is
the magnetocrystalline anisotropy, and |Ms| is the ampli-
tude of the magnetic moment of each sublattice. Moreover,
even in the case of ferromagnets with two different mag-
netic elements, the sublattice dynamics result in spin nutation
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resonance [38]. Using first-principles calculations [37,39] it
was also suggested that in AFM materials, the intersublattice
spin exchange interaction results in a significant intersublat-
tice Gilbert damping that is expected to play a significant role
in the AFMR linewidth of the high-frequency AFMR modes.

While the DMI has been extensively studied both theoret-
ically [40–43] and experimentally [44–49] in ferromagnetic-
based bulk and interfacial systems and in multiferroic systems
[50–52] where it can give rise to weak canted ferromagnetism,
there have been very few investigations of the DMI in metal-
lic antiferromagnets [53]. Motivated by the crucial role of
the intersublattice dynamics in AFM materials [37,39], we
have developed a computational approach of the interatomic
relativistic exchange coupling [34,54] which allows us to
determine both the inter- and intrasublattice contributions to
the DMI in bulk PT -symmetric AFM systems. Interestingly,
we find that the breaking of the local mirror symmetry and
the resulting local Rashba-type spin-momentum locking with
opposite signs on the two sublattices yield local DMIs with
opposite signs on the corresponding AFM sublattices. We
investigate the effect of the sublattice DMIs on the AFM
magnon dispersion and demonstrate that although the net
DMI is zero, the sublattice DMIs result in nonreciprocal
magnon dispersion for both low-frequency (in-plane) and
high-frequency (out-of-plane) modes.

Theoretical formalism. For a system with multiple sub-
lattices, we introduce the general definition of the DMI
contribution to the magnetic energy in continuum theory,
described by the second-order expansion with respect to
the local magnetization orientation and its spatial gradient
[55–59], namely,

EGDMI
M =

∑
ss′αβγ

∫
dVDss′

αβ,γ ms
α

∂ms′
β

∂Rγ

. (1)

Here, s and s′ indicate the sublattice indices, α, β, γ = x, y, z,
the expansion coefficients Dss′

αβ,γ are the generalized DMI
(GDMI) tensor elements, and �ms is the unit vector along
the local magnetic moment orientation of the sth sublattice.
Using integration by parts in Eq. (1) yields that only the
antisymmetric DMI tensor elements, Dss′

αβ,γ = −Ds′s
βα,γ , con-

tribute to the DMI energy, which is often referred to as the
Lifshitz invariance relation. The higher-order terms in Eq. (1)
in the magnetization orientation can be incorporated into an
anisotropic contribution to the DMI tensor that violates the
Lifshitz invariance [60].

In systems with a single sublattice, s = s′ = 1, one can
ignore the upper indices s and s′ and use the Lifshitz invari-
ance to reduce the GDMI tensor rank to the second-order
conventional DMI tensor (i.e., a 3 × 3 matrix) through Dαβ =∑

γ γ ′ εαγ γ ′Dγ γ ′,β/2, where εαγ γ ′ represents the Levi-Civita
symbol [34]. However, for multisublattice systems it can be
shown that only the symmetric components of the GDMI in
sublattice space contribute to the conventional DMI, where
Dss′

αβ = ∑
γ γ ′ εαγ γ ′ (Dss′

γ γ ′,β + Ds′s
γ γ ′,β )/4. As we show below,

the antisymmetric intersublattice components of the GDMI
in PT -symmetric antiferromagnets (Dss′

αβ,γ − Ds′s
αβ,γ )/2 can

potentially be nonzero, which in turn necessitates the use of
GDMIs rather than the conventional DMIs.

The GDMI tensor elements are calculated using the rel-
ativistic exchange coupling, where the magnetic energy is
given by

EM = −1

2

∑
i j; �R �R′;αβ

Ji j,αβ

�R− �R′ m
i
α ( �R)m j

β ( �R′). (2)

Here, mi
α ( �R) is the α component of the unit vector along the

local magnetic moment of the ith atom in the unit cell at �R,
and Ji j,αβ

�R− �R′ is the exchange coupling between the two local
moments. The Fourier transform of the relativistic exchange
coupling can be written as

Jss′,αβ

�q =
∑

i∈s, j∈s′; �R
Ji j,αβ

�R ei �q·( �R+�ri−�r j ), (3)

where �ri and �r j are the positions of the ith and jth atoms in
the unit cell and �R denotes the vector connecting two different
unit cells. The GDMI tensor elements are then calculated from

Dss′
αβ,γ = 1

2VM
Im(∂Jss′,αβ

�q /∂qγ )|�q=	, (4)

where VM is the unit cell volume and 	 is the center of the
Brillouin zone.

Computation details. Structural relaxations were carried
using the Vienna Ab initio Simulation Package (VASP) [61,62]
within the generalized gradient approximation as parame-
terized by Perdew, Burke, and Ernzerhof (PBE) [63]. The
pseudopotential and wave functions are treated within the
projector augmented-wave method [64,65]. The plane wave
cutoff energy is 500 eV, and a 10 × 10 × 10 k-point mesh is
used in the three-dimensional Brillouin zone (BZ) sampling.
In order to examine the effect of the exchange correlation
functional on the equilibrium structural and magnetic prop-
erties we have carried out calculations employing the local
spin density approximation (LSDA) [66] as parameterized
by the Perdew and Zunger [67], PBE [63], LSDA+U and
PBE+U [68] functionals. The PBE functional was found to
yield the best agreement with experiment for the structural
properties of all AFM systems considered in this work and
hence was used to calculate the GDMI and magnetocrystalline
anisotropy (MCA).

The density functional theory calculations of the GDMI,
magnetocrystalline anisotropy energy, and intersublattice ex-
change constant for the bulk AFM materials were carried out
using the OPENMX [69–71] ab initio package. We adopted
the Troullier-Martins-type norm-conserving pseudopotentials
[72] with partial core correction and the PBE exchange corre-
lation functional [63]. We used a 24 × 24 × 24 k-point mesh
in the first BZ and an energy cutoff of 350 Ry for numerical
integrations in the real space grid.

Within the linear combination of the atomic orbital scheme,
the multiorbital Hamiltonian Ĥ �R describes the hopping of
electrons between unit cells separated by distance �R. The elec-
tronic Hamiltonian for a magnetic system [34] in real space
(which has the same form for both FM and AFM systems)
can be written as

Ĥ = Ĥ0 + ĤSOC +
∑

i �R
�̂i �R �mi( �R) · �̂σ, (5)
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where the bold symbols denote matrices in real space with
elements given by [F̂] �R, �R′ = F̂�R− �R′ (F̂ denotes any operator
in the Hamiltonian). Here, Ĥ0

�R is the paramagnetic (spin-

independent) term, ĤSOC
�R is the SOC term, and �̂i �R is the

atomistic exchange splitting matrix responsible for magnetism
of the ith atom. The position-dependent exchange coupling
can be determined by multiplying the total exchange cou-
pling matrix by the position operator �̂i �R = (1̂i �R�̂ + �̂1̂i �R)/2,
where 1̂i �R is the atomic position operator within the unit cell
at �R [diagonal matrix elements equal to 1 for atomic orbitals
of the (i, �R)th atom and zero otherwise]. Note that the SOC
and exchange splitting terms are even and odd with respect to
the time-reversal symmetry, respectively, which were, in turn,
used to decompose the total Hamiltonian into the correspond-
ing components.

The relativistic exchange coupling matrix elements are cal-
culated using the Green’s function method,

Ji,zz
0 =

∫
dE

2π
ImTr([�̂Ĝ + Ĝ�̂] �R=0σ̂

z1̂i ) f (E ), (6a)

Ji j,αβ

�R = 1

4π

∫
dE ImTr([�̂Ĝ] �R1̂iσ̂

α[�̂Ĝ]− �Rσ̂ β 1̂ j

+[Ĝ�̂] �R1̂iσ̂
α[Ĝ�̂]− �Rσ̂ β 1̂ j + [�̂Ĝ�̂] �R1̂iσ̂

α ˆ[G]− �Rσ̂ β 1̂ j

+ [Ĝ] �R1̂iσ̂
α[�̂Ĝ�̂]− �Rσ̂ β 1̂ j ) f (E ). (6b)

Here, [F̂ Ĝ] �R = 1
Nk

∑
�k F̂�kĜ�ke−i�k· �R (F̂ and Ĝ denote any two

operators in the integrand), Nk is the number of k points, f (E )
is the Fermi-Dirac distribution function, and

Ĝ�k = (EÔ�k − Ĥ�k )−1 (7)

is the Green’s function, where the Fourier transformed
Hamiltonian Ĥ�k = ∑

�R Ĥ �Rei�k· �R and, similarly, the overlap Ô�k
matrices are calculated using the linear combination of pseu-
doatomic orbital approach as implemented in the OPENMX

package [69–71]. The pseudoatomic orbitals are Mn6.0-
s3p2d1, Au7.0-s3p2d1, Cu6.0S-s3p2d1, As7.0-s3p2d1, and
Pd7.0-s3p2d1 (see [73] for details), where in the abbrevia-
tion of the basis functions, such as X5.0-s1p1, X denotes the
atomic element, 5.0 denotes the cutoff radius in the generation
by the confinement scheme, and s1p1 means that the calcula-
tions are carried out using one orbital for each of the s and
p atomic orbitals. In the calculation of the exchange coupling
the energy integration in Eq. (6a) was carried out using the
Matsubara summation approach with the poles obtained from
Ozaki’s continued fraction method of the Fermi-Dirac distri-
bution function [74]. The Fermi-Dirac distribution function
temperature was set at kBT = 25 meV, and 60 poles were
employed for the Matsubara summation.

The uniaxial MCA constants Kx
u and Ky

u are calculated
using the torque approach for single domain magnetization
[75].

Results and discussion. We find that the total GDMI
Dtot

αβ,γ = ∑
ss′ Dss′

αβ,γ vanishes for PT -symmetric materials
where the global mirror symmetry is preserved. Conse-
quently, the intra- and intersublattice tensor elements satisfy
D↑↑

αβ,γ = −D↓↓
αβ,γ and D↑↓

αβ,γ = −D↓↑
αβ,γ . The numerical results

of the relativistic exchange coupling reveal that the nonzero

relativistic GDMI tensor elements are of the form

Dss′
αβ,γ = −Ds′s

βα,γ = δαγ �Dss′
g · (�eβ × �eα ). (8)

Here, �Dss′
g are the sublattice matrix elements of the GDMI

vector, δαγ is the Kronecker delta, and �eα(β ) is the unit vec-
tor along the α (β ) direction. Throughout the remainder of
this Letter we denote the antisymmetric intersublattice GDMI
as �D↑↓

g,as. We also find that the Lifshitz invariance identity

Dss′
αβ,α = −Ds′s

βα,α is satisfied in the numerical calculations.
Note that, in the case of Néel-type DMIs the unit vector
�eβ points along the broken local mirror symmetry direction.
Therefore, for an AFM with broken local mirror symmetry
along, e.g., the z axis, the GDMI vector �Dss′

g lies in the xy
plane.

In addition to the fact that �D↑↓
g,as does not contribute to

the conventional DMI Dss′
αβ , it can also be shown that the

antisymmetric intersublattice GDMI elements do not origi-
nate from the antisymmetric interatomic exchange coupling
(i.e., interatomic DMI), where the magnetic energy can be
written as EDMI = ∑

i j
�di j · �mi × �mj (i, j denote atomic sites).

In this case, the corresponding contribution to the relativistic
exchange coupling for a system with broken mirror symmetry
along the z axis is given by Ji j,αβ

DMI = ∑
γ εαβγ dγ

i j , where �di j =
dN

ri j
�ez × �ri j/ri j and dN

ri j
is the atomistic Néel DMI strength

between two atoms separated by �ri j . The presence of the Levi-
Civita symbol in the relativistic exchange coupling results in
GDMI tensor elements that obey Dss′

αβ,γ = −Dss′
βα,γ , leading to

a symmetric contribution to the intersublattice GDMI vector,
�D↑↓

g = �D↓↑
g , which is absent in Eq. (8). This suggests that the

antisymmetric GDMI term in Eq. (8) originates from the off-
diagonal components of the anisotropic interatomic exchange
coupling and therefore should not be confused with the con-
ventional intersublattice DMI present in systems with broken
global mirror symmetry. The unconventional nature of the
intersublattice GDMI is further demonstrated below, where
we find that it varies quadratically with the SOC, in sharp
contrast to the linear SOC dependence of the conventional
DMI [28].

In addition to the nonzero matrix elements in Eq. (8), we
find finite values for Dss̄

αα,β , which are of nonrelativistic origin
and arise from the variation of the intersublattice exchange
coupling between successive Mn layers along the locally bro-
ken mirror symmetry direction. This can be understood using
a one-dimensional magnetic chain along the z axis with two
magnetic moments within the unit cell at the origin and the
relative position b/a, where a is the length of the unit cell.
Considering staggered intra- and intercell exchange interac-
tions, J1 and J2, respectively, and using Eqs. (3) and (4), we
find J12,zz

qz
= (J21,zz

qz
)∗ = e−iqzb(J1 + J2eiqza) and D12

zz,z ∝ (a −
b)J1 − bJ2. It should be noted that the last term appears in
the off-diagonal elements of the magnon Hamiltonian and
does not yield a nonreciprocal dispersion to the magnon band
structure.

Table I lists the calculated values of the relaxed lattice
constants, magnetic moment, uniaxial MCA, and sublattice
GDMI tensor elements �D↑↑

g and �D↑↓
g,as for Mn2Au (space

group I4/mmm), MnPd2 (space group Pnma), tetragonal Mn-
CuAs (space group P4/nmm), and orthorhombic MnCuAs
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TABLE I. Equilibrium lattice constants a, b, and c, magnetic moment of the Mn atom |MMn|, uniaxial magnetocrystalline anisotropy
energies Kx

u and Ky
u per formula unit, and intrasublattice ( �D↑↑

g = − �D↓↓
g ) and antisymmetric intersublattice ( �D↑↓

g,as) GDMI vectors for Mn2Au,
MnPd2, tetragonal MnCuAs, and orthorhombic MnCuAs. The numbers in parentheses denote the experimentally reported values.

a (Å) b (Å) c (Å) |MMn| (in units of μB) Kx,y
u ( meV

f.u. ) �D↑↑
g (mJ/m2) �D↑↓

g,as (μJ/m2)

Mn2Au 3.28 (3.32)a 3.28 (3.32)a 8.43 (8.53)a 3.5 −2.5, −2.5 (0.11, 0.11, 0) (130, 130, 0)
MnPd2 3.99 (4.03)b 5.49 (5.46)b 8.28 (8.13)b 3.88 −0.08, 0.05 (−0.11, 0, 0.2) (17, 0, −20)
Tetragonal MnCuAs 3.68 (3.8)c 3.68 (3.8)c 6.4 (6.3)c 3.4 −0.17, −0.17 (−1.13, −1.13, 0) (−10, −10, 0)
Orthorhombic MnCuAs 3.8 (3.86)d 6.45 (6.58)d 7.29 (7.3)d 3.6 −0.08, −0.11 (−0.41, −0.44, 0) (8, 3, 0)

aReference [76]; bRef. [77]; cRef. [78]; dRef. [79].

(space group Pnma). The corresponding broken local mir-
ror symmetry planes of the crystal structures are shown
in Figs. 1(a)–1(d), respectively. The numbers in parenthe-
ses denote the corresponding experimentally reported values.
Overall, there is good agreement for the lattice constants and
the magnetic moments. The negative MCAs suggest in-plane
magnetic anisotropy for all four compounds, which are also in
agreement with the experimental observations. Interestingly,
for Mn2Au, �D↑↑

g ≈ �D↑↓
g,as, while for the remaining antiferro-

magnets the intersublattice GDMI is much smaller than the
intrasublattice DMI.

The GDMI vectors for Mn2Au and tetragonal MnCuAs
are isotropic in the xy plane due to their tetragonal crystal
structure, while for orthorhombic MnCuAs the intrasublattice
GDMIs are slightly anisotropic. On the other hand, for MnPd2

the GDMI vector lies on the xz plane because the local mirror
symmetry is broken along the y axis, with the x and z compo-
nents having opposite signs.

FIG. 1. Crystal structures of collinear PT -symmetric antifer-
romagnets: (a) Mn2Au (space group I4/mmm), (b) MnPd2 (space
group Pnma), (c) tetragonal MnCuAs (space group P4/nmm), and
(d) orthorhombic MnCuAs (space group Pnma). The arrows denote
the direction of the magnetic moments, and the gray planes denote
the sublattice planes which break the local mirror symmetry.

In order to understand the underlying mechanism for the
sublattice-resolved GDMI in Mn2Au, where �D↑↑

g ≈ �D↑↓
g,as, we

show in Figs. 2(a) and 2(b) the x component of the intrasub-
lattice GDMI on the Mn↑ sublattice and the intersublattice
GDMI, respectively, as a function of chemical potential shift.
Turning on the SOC only for the Mn↓ (Au) layers results
in a negative (positive) contribution to �D↑↑

g · êx on the Mn↑
sublattice, while the SOC of the Mn↑ layer yields a rela-
tively negligible contribution. The opposite signs of the Mn↓
(dashed black curve) and Au (red curve) layer contributions
reduce in turn the total �D↑↑

g · êx. We find that the contribution
of the Mn↓ layer is relatively insensitive to chemical potential,
while that of the Au layer increases with decreasing chemical
potential due to the depletion of electrons from the fully
occupied Au d orbitals, resulting in sign reversal of the total
�D↑↑

g · êx with hole doping. On the other hand, the variation of
�D↑↓

g,as · êx with the chemical potential in Fig. 2(b) shows the
intersublattice GDMI originates primarily from the Au atoms
since the contributions from the two Mn sublattices cancel
out. Note that the relatively small difference between the total

-0.1 0 0.1E-EF (eV)
-1

0

1

-0.1 0 0.1E-EF (eV)
-0.2

0

0.2

-1 0 1
SOC Scaling Factor, 

-0.1

0

0.1

-1 0 1
SOC Scaling Factor, 

0

0.05

0.1

0.15(c)                                                (d)

(a)                                               (b)

FIG. 2. (a) Intrasublattice and (b) intersublattice bulk GDMI in
Mn2Au versus shift of the chemical potential. The intrasublattice
GDMI corresponds to the spin-up Mn atoms. The green, blue, and
red curves denote the layer-resolved DMIs when only the SOC of
the spin-up Mn, spin-down Mn, and Au atoms are turned on, respec-
tively. (c) Intrasublattice and (d) intersublattice GDMIs in Mn2Au
versus the SOC scaling factor.
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GDMI and the sum of the atom-resolved contributions is due
to the fact that the atomic decomposition is accurate only to
first-order perturbation in SOC.

In Figs. 2(c) and 2(d) we present the results for the
intra- and intersublattice GDMIs versus the SOC scaling fac-
tor which multiplies the second term of the Hamiltonian in
Eq. (5). We find that, as expected from an observable that
originates from the broken local mirror symmetry and lo-
cal Rashba-type spin-momentum locking, the intrasublattice
GDMI is to the lowest order a linear function of SOC. In sharp
contrast, the intersublattice GDMI exhibits an even depen-
dence on the SOC which is uncharacteristic of the DMI and
resembles the quadratic SOC dependence of the anisotropic
exchange coupling. The absence of a conventional contribu-
tion to the intersublattice GDMI can be understood by the fact
that the two sublattices are connected through a local mirror
symmetry operation.

Magnon dispersion. In the absence of an external magnetic
field, the atomistic spin dynamics are governed by the LLG
equation of motion for magnetization dynamics around the
equilibrium configuration, �ms

0( �R) = ms
z�ez,

Ms

2

∂ �ms( �R)

∂t
= − �ms( �R) × �B �R,s

eff , (9)

where ms
z = ±1 and the effective magnetic field experienced

by the sublattice s at position �R is given by

�B �R,s
eff = Js,zz

0 �ez +
∑

s′ �R′αβ

Jss′,αβ

�R− �R′ ms′
α ( �R′)�eβ, (10)

with α, β = x, y. The magnon dispersion can be obtained by
solving the linearized LLG equation around the equilibrium
magnetization direction ms

z and Fourier transforming both in
time and space,

Ms

2
iωms

x,�q = ms
z

∑
s′α

Jss′,αy
�q ms′

α,�q − ms
y,�qJs,zz

0 , (11a)

Ms

2
iωms

y,�q = ms
x,�qJs,zz

0 − ms
z

∑
s′α

Jss′,αx
�q ms′

α,�q. (11b)

It should be noted that in order to observe effects of a
Néel-type DMI on the magnon dispersion, the direction of the
equilibrium magnetic moments should be perpendicular to the
direction of broken local mirror symmetry. A generalization
of the above to an arbitrary orientation for the equilibrium
magnetization direction is straightforward. The magnon band
structure ω�q along the high-symmetry directions for Mn2Au
with Néel ordering pointed along the x axis is displayed in
Fig. 3(a) , with the corresponding nonreciprocal component
ωnr

�q = (ω�q − ω−�q)/2 shown in Fig. 3(b). The dashed blue
(solid red) dispersion curves correspond to the out-of-plane
(in-plane) mode. Similar to the ferromagnetic case, the slope
of the nonreciprocal magnon dispersion at the 	 point yields
the DMI. A nonzero value for the nonreciprocal magnon
dispersion can be seen for magnons propagating along the Y
direction, which is perpendicular to both the Néel ordering
orientation and the broken local mirror symmetry axis (i.e., z
axis).

The different slopes of the two modes at 	 can be un-
derstood using the analytical expression for the magnon

FIG. 3. (a) Magnon dispersion for Mn2Au along high-symmetry
directions with the Néel ordering vector along x; (b) corre-
sponding nonreciprocal component, ωnr

�q = (ω�q − ω−�q )/2, versus
high-symmetry directions. The solid blue (dash-dotted red) curves
correspond to the in-plane (out-of-plane) mode. Inset: Brillouin zone
and the corresponding high-symmetry directions.

dispersion which can be obtained by the eigenfrequencies of
the 4 × 4 matrix given by Eqs. (11a) and (11b), which are of
the form

1
2 |Ms|ω±

�q = Im
(
J↑↑,xy

�q
) ± Im

(
J↑↓,xy

�q,as

) + ω0,±
�q , (12)

where, in the derivation we used, J↓↑,xy
�q,as = −J↑↓,xy

�q,as , J↓↓,xy
�q =

−J↑↑,xy
�q , and

(ω0,±
�q )2 = (

J↑↑,xx
�q − J↑,zz

0 ∓ J↑↓,xx
�q

)

× (
J↑↑,yy

�q − J↑,zz
0 ± J↑↓,yy

�q
)

(13)

is an even function of �q and at �q = 	 yields Kittel’s AFMR
expression [36,37]. The identical contribution of the intra-
sublattice GDMI, Im(J↑↑,xy

�q ), to both magnon modes can be
readily seen in the limit of independent sublattice dynam-
ics, whereby the two sublattices and the two corresponding
magnon modes are assumed to be completely indepen-
dent, with the nonreciprocal components given by ωs,nr

�q =∑
αβ Dss

αβms
αqβ [34]. Since the magnetic moments of the two

sublattices are antiparallel, m↑
α = −m↓

α , and the intrasublattice
GDMI tensor elements have opposite signs, D↑↑

αβ = −D↓↓
αβ , we

obtain ω
↑,nr
�q = ω

↓,nr
�q . This is in contrast to the effect of the

total DMI (D↑↑
αβ + D↓↓

αβ )/2, which is nonzero in systems with
broken global mirror symmetry and results in the shift of the
two magnons in opposite directions and their hybridization
at the 	 point [80]. It is also worth noting that in the ab-
sence of MCA where the dispersion is given by ω0

�q ∝ |�q|,
the nonreciprocal component of the magnon dispersion, e.g.,
ωnr

�q ∝ qx, resulting from the alternating intrasublattice DMI

D↑↑ = −D↓↓ does not shift the position of the minima of
the magnon dispersion at the 	 point but instead yields an
asymmetric change in the slopes of the magnon dispersion
propagating along opposite directions, resulting in an anti-
symmetric V-shaped dispersion.

L220404-5
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In summary, a first principles study based on the Green’s
function approach was presented for the DMI of a family
of AFM materials with broken local mirror symmetry, in-
cluding Mn2Au, MnCuAs, and MnPd2, which allowed the
separation of the intra- and intersublattice contributions to the
generalized DMI. For the prototype Mn2Au we elucidated the
atomistic origin of the sublattice GDMI by turning on the
SOC on specific atoms. We demonstrated that the intrasub-
lattice GDMI of the Mn↑ sublattice arises from the interplay
of the Au and spin-down Mn↓ atom-resolved contributions,
which have opposite signs for a wide range of the chemical
potential shift. On the other hand, the source of the intersub-
lattice GDMI is due solely to the Au atoms. Furthermore, we
showed that the intrasublattice GDMI, which is the dominant
component, has a linear dependence on SOC and contributes

equally to both in-plane and out-of-plane magnon modes. In
contrast, the intersublattice GDMI tensor elements depend
quadratically on the SOC, and although they share the same
microscopic origin as the anisotropic exchange coupling, they
make a nonreciprocal contribution to the magnon dispersion.
Our theoretical predictions of the difference in nonrecip-
rocal magnon dispersion for the two modes can be used
to measure the sublattice components of the GDMI tensor
elements.
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