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Controllable topological edge mode in an optically excited exciton-polariton lattice
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We propose an all-optical scheme of topological lasing and switching based on the Aubry-André-Harper
(AAH) model of an exciton-polariton chain. We theoretically show that the phase parameter of the optical
potential, with a tunable effective quasimomentum, allows the system to exhibit nontrivial topological properties
which are attributed to higher dimensions. The topological modes emerging within the bulk band gaps are
spatially localized at the edges of the polariton lattice, and their topological properties are characterized by
the nonzero Chern numbers of the bulk bands. Polariton lasing in topological edge modes exhibits a higher
efficiency and better robustness than in bulk modes, and can be switched between two opposite edges of the
lattice by nonresonant excitation, which paves a way for topologically protected optical circuits.
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The search for novel optical structures to engineer and
manipulate the flow of light is a central frontier in photonics.
The introduction of topological concepts in recent years has
provided a very efficient route for such studies [1,2]. Topolog-
ically protected photonic edge states supported at the exteriors
of insulating bulk systems are of particular interest, as they
enable some unique phenomena, such as robust topological
single-mode lasing immune to scattering and disorder [3–5].
The combination of the topological properties and the flex-
ibility of engineering and measuring the band structures in
photonic systems underpins potential applications in design-
ing compact, low-loss, and functional photonic chips.

Recently, growing attention has been drawn to introducing
some excellent properties of matter into topological photonic
structures [6–9]. Among them, microcavity exciton polari-
tons, quasiparticles arising from the strong coupling between
excitons and cavity photons [10], provide unprecedented flex-
ibility to explore topological phenomena [11–26] and to
innovate semiconductor topological lasers [27–30]. Benefit-
ing from the hybrid nature, polaritons exhibit lower-threshold
single-state condensation, non-Hermitian optical gain and
loss, Coulomb interactions, and magnetic responses. By
imprinting different lattice potential landscapes, novel phe-
nomena of topological polariton lasing have been proposed,
such as the one-dimensional (1D) Su-Schrieffer-Heeger
(SSH) model [16,29,30], and two-dimensional (2D) models
analogous to quantum Hall [11], quantum spin Hall [19,22],
and quantum valley Hall effects [31]. These developments
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have attracted considerable attention for energy-efficient and
scattering-free polariton lasers.

As a further step, accesses to manipulate the topological
lasing between distinct states will further enrich the appli-
cation of topological polariton lasers in optical circuits. In
some recent configurations, the propagation direction of a
unidirectional topological polariton flow can be reversed, for
example, by inverting the magnetic field in a 2D Chern in-
sulator [11], or by inverting the polarization of the circularly
polarized pumping at each site in a coupled elliptical micropil-
lar chain [32]. The polarization can also switch a topological
phase from nontrivial to trivial in a perovskite zigzag chain,
taking advantage of the birefringence of the gain material [33].
These existing schemes require elaborate nanofabrication, a
high external magnetic field, or specific material properties,
limiting the realization of devices. To achieve topological
polariton lasers with the capability of switching, a simple and
convenient way, e.g., all-optical operation, is highly desired.

Motivation can be drawn from the realm of condensed
matter, where the phase of a periodic lattice can serve as
a degree of freedom to manipulate the topological nature.
For example, a topological charge pumping scheme called
Thouless pumping utilizes the phase of a 1D periodic potential
to adiabatically transport an electron gas from one end to
the other, similar to the Archimedes screw pumping water
via a rotating spiral tube [34–36]. There is a paradigmatic
1D Hamiltonian with an extra phase parameter called the
Aubry-André-Harper (AAH) model [37–39], which has di-
agonal and/or off-diagonal cosinusoidal modulated potentials,
and plays an important role in investigating the topological
phases and Anderson localization in condensed matter and
optics [40]. However, as a versatile quantum simulator, the
AAH model has been overlooked in exciton polaritons.

In this Letter, based on the AAH model, we propose an all-
optical scheme to implement fast switching of the topological
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FIG. 1. A 1D polariton lattice generated by optical excitation.
(a) Schematic of the experimental setup to generate the optical lat-
tice. Two periodic laser patterns created by two different double slits
are shone on the 1D microcavity from the front side and back side,
respectively. (b), (c) Spatial distribution of the created laser pattern,
which can be described by Eq. (1) with φ = 0.40π and φ = 0.60π ,
respectively. The white dashed rectangle indicates one unit cell of the
lattice, where the size of the unit cell and the distance between two
sites are described by D and d , respectively. Here, λ = D

d = 5.

polariton lasing between different edges in a 1D microcavity.
The notation “all optical” implies that the potential landscape
of polaritons could be fully induced by the optical excita-
tion with a shaped pump laser. By systematically calculating
the band structures and eigenstates using a continuum model
described by a driven-dissipative Gross-Pitaevskii (GP) equa-
tion, we show that the polariton system indeed exhibits edge
states that span the band gaps with the varying of the initial
phase φ in the cosinusoidal modulation. On a fundamental
level, the x-dependent phase of the cosinusoidal modulation
induces an effective hopping along a synthetic y′ direction,
which is similar to the threading of magnetic flux through a
2D surface that generates the quantum Hall effect [34], and
leads to the topological state located at a single edge with
certain φ. This is phenomenally similar with the 1D non-
Hermitian skin effect, and in contrast with the SSH model
where the topological states distribute symmetrically at the
two opposite edges. We thus obtain nonzero Chern numbers of
bulk bands surrounding the edge modes in a 2D Hamiltonian,
which ensure the topological properties of the edge states.
One of the key advantages of our results is to implement con-
venient topological polariton lasers by a nonresonant pump
with the capability of ultrafast switching between different
edges. The underlying topological properties maintain the
power efficiency and robust single-mode nature of the edge-
state coherent lasing before and after the switching between
different edges, even in the presence of disorder and defects,
which is essential for optical circuits and is promising for
future polaritonic applications in information processing and
quantum computation.

We consider a 1D exciton-polariton lattice depicted
schematically in Fig. 1(a), which could be all-optically in-
duced by a shaped nonresonant pump. Specifically, the 1D
microcavity is excited from the front side and back side
simultaneously by two periodically patterned lasers with dif-
ferent periods. The pattern with a smaller period introduces
the lattice sites, which is further modulated by an additional
cosinusoidal profile provided by the pattern with a larger

period. The pump profile could be generated, for example,
by two Young’s double slits with different slit widths [41],
or by a spatial light modulator [42,43]. The resulting spatial
distribution can be described as

P(x, y) =
∑

n

P0

[
cos2

(
π

λ
n + φ

)
+ δ

]
e−( x−xn

r0
)2−( y−yn

r0
)2

, (1)

where the pump intensity is defined as P0. We set the dimen-
sionless minimum of the pattern δ = 0.11, and the Gaussian
radius r0 = 2 μm. The location of each site is described by the
coordinates xn, yn. The period of the cosinusoidal modulation
λ originates from the ratio of the lattice constants of the two
incident periodic laser beams (λ = D/d). In our calculation,
we consider the case of λ = 5, implying five sites in a unit
cell, as indicated by the dashed rectangle in Fig. 1(b). The
phase difference between the two optical lattices is described
by φ. Practically, φ can be adiabatically tuned in the range
between 0 and π by moving one of the two double slits
along the x direction, which shifts the relevant positions of
the two periodic patterns. Therefore, the pump profile and its
translational symmetry can be continuously manipulated by
φ. For example, Figs. 1(b) and 1(c) show two different optical
lattices with φ = 0.40π and φ = 0.60π , which are central
asymmetric and symmetric, respectively. Such a beam profile
exhibits geometric similarity with the AAH model.

The evolution of the polariton wave function � in the 1D
optical lattice can be well described by the driven-dissipative
GP equation [44–46]

ih̄
∂�

∂t
=

[
− h̄2∇2

2m
+ h̄gRP

+ ih̄

2
(RP − γP ) + (gP − iα)|�|2

]
�. (2)

Here, the effective mass of the lower polaritons is m = 1.7 ×
10−5me, with me being the free-electron mass. The linear
decay rate of polaritons and the nonlinear polariton-polariton
interaction strength are denoted as γP and gP, respectively.
Physically, the nonresonant optical pump P in Eq. (1) cre-
ates an incoherent exciton reservoir and contributes to the
polariton dynamics in two aspects: acting as a particle source
to compensate losses and providing an effective potential.
The prefactors R and gR quantify the injection rate of polari-
tons and the optical potential, respectively. They are effective
parameters that take into account the contributions of the
reservoir excitons, which have the same spatial profile as
P. In writing these, we have assumed that the reservoir dy-
namics is fast, which is relevant to the experiments [41].
In this sense, the excitons are approximated in the steady
state, where the exciton depletion due to scattering into the
polaritons also reduces the gain process of polaritons, result-
ing in a dynamic equilibrium of the occupation between the
excitonic and polaritonic states. This gain saturation effect
introduces an imaginary nonlinearity in the model, where the
reservoir-related feedback coefficient is described by α [45].
This simplified GP equation was successfully used to describe
polariton condensation in many topological structures, e.g., in
an all-optically induced SSH lattice [25] and in a 1D zigzag
non-Hermitian chain [32]. To demonstrate the validity of the
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FIG. 2. Band diagram. (a) Band structure of a finite chain under incoherent excitation as a function of φ. Each eigenstate of the band
is color coded according to the imaginary part with magenta corresponding to the lowest decay and cyan corresponding to the larger decay.
(b)–(d) are the real space distributions of the eigenstates labeled by red and black circles in (a), with φ of the lattice corresponding to 0.40π ,
0.60π , and 0.80π , respectively. Polaritons at states (b) and (d) are spatially localized at the opposite edges of the lattice. In contrast, polaritons
at states (c) extend over the lattice. (e) and (f) Energy-resolved momentum-space polariton dispersions with φ = 0.40π and φ = 0.60π ,
respectively. The white dashed lines highlight the edge state emerging in the gap of the bulk bands, whose real space distribution is shown in
(b). (g) A parameter defined by Berry curvature in Fφ = 1

2π i

∫
BZ dkxFkx ,φ , corresponding to the eighth band in (a), is plotted as a function of φ.

P0 = 90 μm−2 ps−1, gR = 0.080 μm2, R = 0.059 μm2, and γP = 2 ps−1.

above approximations, we show in the Supplemental Material
that our results can be reproduced without these approxima-
tions by an explicit account of the exciton dynamics [47]. All
the parameters used in the following calculations are from the
realistic systems.

Before solving the full nonlinear problem, it is instructive
to obtain the band structures of linearized modes by neglecting
the nonlinear terms in Eq. (2). This treatment is valid provided
the regimes of interest are not too far above the condensation
threshold, and it fails when the blueshift caused by the inter-
actions exceeds the band gaps. Considering an optical lattice
with 40 sites, we use the eigenfunction expansion method
to obtain the matrix elements of the Hamiltonian, where the
expansion basis vectors are chosen to be sinusoidal to ensure
that the wave function � vanishes at the boundaries. The
complex energy spectrum E with respect to the phase φ is
given in Fig. 2(a). Under the modulation of the potential
landscape, energy gaps are opened within the bulk bands. In
particular, there are modes crossing the gaps. The phase φ acts
as an effective quasimomentum ky′ in a synthetic y′ dimension.
Accompanied by their nonzero effective group velocities in
this synthetic direction, vy′ ∼ ∂E/∂φ, these modes exhibit
strong spatial localization in the x direction, either at the left or
at the right edge of the lattice. For example, the two states of
φ = 0.40π and φ = 0.80π , labeled by the two red circles in
Fig. 2(a), have negative and positive effective group velocities,
respectively, corresponding to the right and left edge states, as
shown in Figs. 2(b) and 2(d). In contrast, when φ = 0.60π

with vy′ = 0, the wave function of the corresponding eigen-
state labeled by the black circle in Fig. 2(a), extends over the
lattice, as shown by Fig. 2(c).

To provide better guidance for future experiments, we
further investigate the momentum-space dispersion of the
modes by Fourier transforming the eigenstates, which can
be measured by angle-resolved reflectance or photolumi-
nescence spectroscopy. The momentum-space spectra of the
states with φ = 0.40π and φ = 0.60π are plotted in Figs. 2(e)
and 2(f), respectively. Both spectra show band folding at the
boundaries of mini Brillouin zones, where the band gaps
are open. Especially, distinct edge modes emerge within the
energy gaps in Fig. 2(e), as indicated by the white dashed
lines.

Next, we explore the topological origin of those edge
modes. We utilize a discrete manifold method [48] to calculate
the Berry curvature and Chern number in the kx-φ space un-
der periodic boundary conditions. This efficient geometrical
technique could give integer-valued Chern numbers with high
accuracy in any gauge, and requires only a coarse discretiza-
tion of the Brillouin zone. The Berry curvature is defined
as Fkx,φ = ∂kx Aφ − ∂φAkx , where Aμ(kx, φ) is the Berry con-
nection given by Aμ(kx, φ) = 〈�a(kx, φ)|∂μ|�b(kx, φ)〉, with
μ = kx, φ. Due to the non-Hermiticity of our system, the
superscripts a and b could indicate the right (r) or left (l)
eigenvectors of the Hamiltonian, and we find that the follow-
ing discussion does not depend on the selection of the basis
vectors. In order to investigate the φ dependence of the Berry
curvature, we integrate Fkx,φ along the kx direction, and define
Fφ = 1

2π i

∫
BZ dkxFkx,φ , with BZ denoting the first Brillouin

zone. Fφ
φ for the eighth band as a function of φ is plotted
in Fig. 2(g). Four singular peaks appear at particular values of
φ, which is analogous to the magnetic monopoles emerging
at the Dirac points in the 2D quantum Hall model [38,49,50].
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FIG. 3. (a) The solid lines show imaginary parts of the eigenstate
as a function of φ. The two solid lines labeled by different digit
numbers correspond to two energy branches from the band structure
(inset). To further distinguish their spatial distribution, edge states
and bulk states in each energy branch are plotted in red and blue, re-
spectively. (b) With φ = 0.40π and pump power slightly higher than
the threshold, P0 = 1.02Pth, polaritons condensate at the topological
edge state, labeled by the white dashed lines. (c) The spectrum inten-
sity as a function of P0 for the edge and bulk lasing modes. (d) Slope
efficiency as a function of disorder strength (measured in terms of the
standard deviation) for the edge and bulk lasing modes. Parameters:
gP = 0.0044 meV μm2, α = 0.05 meV μm2. The disorder potential
has an isotropic correlation length of 0.12 μm. All other parameters
are same as those in Fig. 2.

Then, the Chern number can be obtained as

Cn = 1

2π i

∫ π

0
dφ

∫
BZ

dkxFkx,φ. (3)

The Chern number of the selected bands as labeled by double-
arrowed black lines in Fig. 2(a) are C8th = 2 and C7th = −1,
respectively. Accordingly, the extracted nonzero topological
invariants indicate that the edge states emerging within the
bulk band gap are topologically protected.

As a natural driven-dissipative system, polaritons pref-
erentially lase on the states with the largest gain. In the
low-density regime, the gain and loss nature of our system
is determined by the competition between the spatially in-
homogeneous pumping and the intrinsic radiative decay, as
reflected in the RP(x, y) and γP terms of Eq. (2). The inset of
Fig. 3(a) shows two selected bands in Fig. 2(a) labeled by the
red dashed rectangle, where the imaginary part of the energy
of each state is color coded, with magenta corresponding to
the lowest decay and cyan corresponding to the larger decay.
The two bands with the largest imaginary components of the
system, labeled by 1 and 2, are located in this region, and their
imaginary parts are explicitly plotted in Fig. 3(a). According
to Fig. 2(g), the interface of the bulk and edge states in the
topologically nontrivial band 1 can be determined by the posi-
tions of the singular points of Fφ
φ. The localized edge states

of topological origin are in the range of φ ∈ [0.24π, 0.59π ] ∪
[0.61π, 0.97π ], as coded by red in Fig. 3(a). Compared with
the bulk band 2, the edge modes in 1 are found to have a larger
gain in the range of φ ∈ [0.24π, 0.42π ) ∪ (0.78π, 0.97π ],
meaning that they would be preferentially selected during
polariton lasing. Note that not all the edge states labeled in
red can lase spontaneously. Edge-state lasing requires that the
polariton wave packets in localized edge states obtain a higher
overlap with the pumping spots than that in extended states.
Indeed, it is the combination of the non-Hermitian and the
topological properties that allows the topologically protected
edge states to acquire the largest gain.

Considering the nonlinear repulsive interactions, polaritons
in bulk states can be expelled away from the pumping spots,
resulting in a larger decay and thus are more difficult to lase in
these states. In contrast, the localized states cannot be expelled
and thus exhibit a higher gain. We solve Eq. (2) numerically
using the time-splitting sine pseudospectral method [51]. In
Fig. 3(b), we show polariton lasing at the topological edge
state in the momentum space under nonresonant pumping
with φ = 0.40π . Compared with Fig. 2(e), polaritons accu-
mulate only on a single state and the intensity of the occupied
state is five times higher, marking the spontaneous formation
of topological condensation. The blueshift induced by the
nonlinearity is about 0.02 meV, which is smaller than the
band gap 
E7→8 
 1.19 meV and does not change the topo-
logical properties of the system. For the all-optical scheme we
proposed, increasing the pump intensities will bring greater
gain and a deeper lattice potential to the system, possibly
changing the band structure. We show in Fig. 3(c) the pump-
power dependence of the spectrum intensities of the lasing
modes at φ = 0.40π and φ = 0.60π . The edge-state lasing
exhibits a lower threshold and a higher output intensity. When
the pump power is higher than the shown range, lasing occurs
in both the bulk and edge states due to the enlarged gain.
Moreover, we investigate the efficiency and the robustness
of the lasing modes in the presence of static disorder in
Fig. 3(d) by the power slope efficiency, which is defined as
the derivative of the emitted lasing intensity with respect to
the input pump power [3]. Significantly, the slope efficiency
of edge lasing is higher than that of bulk lasing, and re-
mains high even at strong disorder levels. Interestingly, the
slope efficiency of the edge lasing exhibits an enhancement
at intermediate values of the disorder strength. A similar
phenomenon has been reported in the temporal coherence
of a different topological laser model, and has been tenta-
tively explained as an effective suppression of the nonlinear
effects in a specific long-wavelength dynamics of the phase by
disorder [4].

In Fig. 4, we show the spontaneous formation of the topo-
logical polariton lasing at an edge state under nonresonant
pumping and the optical switching between different edges.
The initial value of φ is 0.40π , and the initial wave function
of the polariton is Gaussian white noise as shown in Fig. 4(c).
With time evolution, polaritons condense at the right edge of
the lattice, as indicated in Fig. 4(d), and the system reaches
quasiequilibrium. At T = 150 ps, the tunable parameter of
nonresonant pump φ is abruptly switched to 0.80π within
the timescale of 10 ps. In the following time, the conden-
sates evolve to the left edge, as indicated by the red solid
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FIG. 4. (a) Polariton condensates in real space with φ = 0.40π (top panel) and φ = 0.80π (bottom panel). (b) Time evolution of polariton
condensates at the left edge (red solid line) and right edge (blue solid line) when φ is tuned from 0.40π to 0.80π (black dashed line). (c)–(g)
Real space distribution of the polaritons at selected moments in (b), illustrating that the location of polariton condensates is switched from the
right to the left edge. The pump power is fixed at P0 = 90 meV μm2, and other parameters are the same as those in Fig. 3.

line in Fig. 4(b). Figures 4(e) and 4(f) selectively show the
wave-function distribution at two different moments. Even-
tually, the exciton-polariton condenses stably at the left edge
state. Such a transportation process of polariton lasing is com-
pleted in less than 50 ps. This all-optical scheme provides us
with the potential applications for optical circuit devices that
switch between two different topological edge states.

In conclusion, we have presented a scheme to obtain topo-
logical polariton lasing by an all-optical method. The phase
of the optical lattice can serve as a new degree of freedom
to tune the system from trivial bulk states to nontrivial topo-
logical edge states. The translational symmetry breaking of
the lattice, together with the non-Hermitian optical control,
makes topological polariton condensates switchable between
the opposite edges. Given its topological nature and flexible
tunability, such a chain can be extremely useful in future po-
laritonic circuits and can also be integrated as a controllable

laser in optical networks. These results are suitable for the
exciton polariton with a low optically induced potential. This
proposal can be readily applied to room-temperature polariton
systems such as ZnO [41,52–54], GaN [55], organics [56,57],
and perovskites [58].
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