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We analyze the dynamics of entanglement in a paradigmatic noninteracting system subject to continuous mon-
itoring of the local excitation densities. Recently, it was conjectured that the evolution of quantum correlations
in such system is described by a semiclassical theory, based on entangled pairs of ballistically propagating
quasiparticles and inspired by the hydrodynamic approach to unitary (integrable) quantum systems. Here,
however, we show that this conjecture does not fully capture the complex behavior of quantum correlations
emerging from the interplay between coherent dynamics and continuous monitoring. We unveil the existence of
multipartite quantum correlations which are inconsistent with an entangled-pair structure and which, within a
quasiparticle picture, would require the presence of larger multiplets. We also observe that quantum information
is highly delocalized, as it is shared in a collective nonredundant way among adjacent regions of the many-body
system. Our results shed light onto the behavior of correlations in quantum stochastic dynamics and further show
that these may be enhanced by a (weak) continuous monitoring process.
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Introduction. The evolution of quantum correlations
in stochastic systems is attracting much attention nowa-
days [1–12]. On the one hand, this dynamics is relevant
for understanding the extent to which quantum effects may
be exploited in current devices [13–21]. On the other hand,
this renewed interest has been triggered by the discovery of
entanglement phase transitions [22–45], stemming from the
competition between coherent dynamics and random mea-
surements. Furthermore, quantum stochastic processes hold
the promise to bridge recent progress in the description
of nonequilibrium unitary quantum systems and open chal-
lenges in characterizing open quantum dynamics [46–55],
also beyond average-state properties [56–59]. In this regard,
demonstrating the applicability of powerful theories, so-called
quasiparticle pictures [60–63], to entanglement spreading in
stochastic many-body processes would represent a major
breakthrough.

This possibility has been explored in a paradigmatic
many-body quantum system [64], subject to continuous mon-
itoring [65] [see sketch in Figs. 1(a) and 1(b)]. It has been
proposed that, as happens for unitary (integrable) dynam-
ics [60–63], the spreading of correlations in the system is
solely attributable to entangled pairs of ballistically propa-
gating quasiparticles [4]. The effect of continuous monitoring
was conjectured to be that of making these excitations unsta-
ble and of generating new entangled pairs, in place of the
collapsed ones [4]. This collapsed quasiparticle ansatz [4]
has been benchmarked against exact results [4,12] and has
stimulated several related studies (see, for instance, the recent
Ref. [66]).

In this Letter, however, we demonstrate that continu-
ously monitored systems feature an unexpectedly complex

dynamics of quantum correlations, whose fundamental as-
pects are not captured by the collapsed quasiparticle ansatz.
We show indeed that such a theory is not quantitatively accu-
rate in predicting several measures of bipartite entanglement,
both between a subsystem and the remainder of the many-
body system and between adjacent subsystems. In this latter
setting, we observe that continuous monitoring can also be,
quite surprisingly, beneficial for quantum correlations, since
it can stabilize a stationary entanglement in cases in which the
unitary dynamics would lead to unentangled subsystems.

Most importantly, we identify a central reason why the
dynamics of quantum correlations in the system cannot
be captured by a picture based on quasiparticle pairs. We
compute the tripartite mutual information between three sub-
systems A1, A2, A3 [see sketch in Fig. 1(a)] and show that it
assumes nonzero, in fact negative, values. This signals the ex-
istence of multipartite (i.e., between more than two intervals)
quantum correlations, which are inconsistent with the mere
presence of pairs of entangled quasiparticles [cf. Fig. 1(c)].
As we discuss, consistency of a quasiparticle picture with a
nonzero tripartite mutual information requires the presence
of entangled multiplets with at least four quasiparticles, as
sketched in Fig. 1(d).

A negative tripartite mutual information, as we find here,
implies that the information about A2 contained in A1 ∪ A3

is more than the sum of the information contained in A1 and
A3 separately [68], showing that for the monitored system
the whole is more than the sum of its parts [69]. It further
indicates that the mutual information is monogamous and,
thus, likely to be dominated by quantum correlations [69–73].
Negative values of the tripartite mutual information have also
been associated with the delocalization (broadly referred to
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FIG. 1. Noninteracting system subject to continuous monitor-
ing. (a) Fermionic tight-binding chain with coherent hopping rate
J/2. We consider several partitionings of this many-body system,
A ∪ Ā, into a system of interest A and its complement, Ā. In the
sketch, we illustrate a system A made of three adjacent subsystems,
A = A1 ∪ A2 ∪ A3, of equal length �. (b) Each site of the chain is
subject to the continuous measurement of its local density nm, at
rate γ . (c) The tripartite mutual information I3 quantifies the degree
of extensivity of the mutual information and is also a four-partite
entanglement measure for pure states [67]. Pairs of quasiparticles
cannot entangle more than two intervals at a same time, implying
I3/� → 0. (d) Multiplets with at least four quasiparticles can lead to
a finite tripartite mutual information I3/�.

as scrambling) of quantum information [67–69,73–79]. Our
findings show that the interplay between monitoring and co-
herent dynamics leads to the continuous dispersal of quantum
information into entangled multiplets of excitations, which in
turn establish robust multipartite entanglement and determine
an unusual, for a noninteracting system, dynamics of quantum
correlations.

Monitored noninteracting system. We consider a fermionic
chain subject to the continuous measurement of local observ-
ables [4,8]. The model Hamiltonian is

H = J

2

L∑
m=1

(a†
mam+1 + a†

m+1am), (1)

with am and a†
m being fermionic annihilation and creation

operators, respectively. This Hamiltonian describes coherent
hopping of fermionic excitations between neighboring sites at
rate J/2 [cf. Fig. 1(a)], in a periodic lattice. The total num-
ber of fermionic excitations N = ∑L

m=1 nm, with nm = a†
mam,

is conserved and we assume that the local fermionic densi-
ties nm are continuously measured, as sketched in Fig. 1(b).
This monitoring induces nonlinear and random effects in
the system dynamics, which is governed by the stochastic
Schrödinger equation [65,80–82]

d |ψ (t )〉 = −iH dt |ψ (t )〉

+
L∑

m=1

(√
γ Mm(t )dWm(t ) − γ

2
M2

m(t )dt

)
|ψ (t )〉 ,

(2)

where Mm(t ) = nm − 〈ψ (t )| nm |ψ (t )〉. The terms dWm(t )
are Wiener processes—in Ito convention—such that
E[dWm(t )] = 0 and E[dWm(t )dWm′ (t )] = δmm′dt , with E
denoting expectation over noise realizations. The rate γ

provides the strength of the monitoring process.
We consider the initial state to be the Néel state |ψ (0)〉 =∏

m odd a†
m |0〉, where |0〉 is the fermionic vacuum. For each

noise realization, Eq. (2) encodes a quantum trajectory. Since
the initial state is Gaussian and the generator is quadratic, the
state in each trajectory is Gaussian at all times and can be
efficiently simulated [4,8]. In particular, entanglement-related
quantities, such as the Rényi entropies S(n)

� (t ) of a subsystem
of length �, in quantum trajectories can be calculated from the
fermionic two-point function Chk = 〈ψ (t )|a†

hak|ψ (t )〉 [83].
In what follows, we focus on the behavior of the entropies
S

(n)
� (t ) := E[S(n)

� (t )], and related quantities, averaged over
quantum trajectories.

Collapsed quasiparticle ansatz. In the absence of contin-
uous monitoring (γ ≡ 0), the unitary dynamics of quantum
information in the system is captured by a quasiparticle pic-
ture [60–63]. The basic idea is that the initial state of the
system acts as a source of pairs of entangled quasiparticles,
labeled by their quasimomentum q, which travel ballisti-
cally in the opposite direction with velocity |vq| = |J sin(q)|.
While traveling, quasiparticles spread correlations along the
system. Specifically, the entanglement between a subsys-
tem and its complement, at a given time, is proportional to
the number of quasiparticle pairs they share at that time.
For instance, the Rényi-n entanglement entropy of a sub-
system of length �, embedded in an infinite chain, is given
by [61]

S(n),0
� (t ) =

∫ π

−π

dq

2π
s(n)

q �q(t ). (3)

This equation is valid in the scaling limit t, � → ∞, with
t/� = τ fixed, and provides the leading-order behavior in �.
The superscript 0 stands for unitary dynamics and

�q(t ) = min{2|vq|t, �}. (4)

This function counts the number of pairs, formed by quasipar-
ticles with quasimomenta q and −q, shared by the subsystem
and its complement at time t [60]. The term s(n)

q accounts for
the entanglement between such quasiparticles and is given by
the Yang-Yang entropy

s(n)
q = (1 − n)−1ln

[
	n

q + (1 − 	q)n
]
, (5)

quantifying the quasimomentum contribution to the ther-
modynamic entropy of the generalized Gibbs ensemble
describing local stationary properties of the system [84–89].
In Eq. (5), 	q is the density of quasiparticles 	q =
〈ψ (0)| β†

qβq |ψ (0)〉 and βq are the eigenmodes of the Hamil-
tonian H . For the Néel state, 	q = 1/2, ∀ q.

To account for the presence of continuous monitoring,
a modification to the above picture, also called collapsed
quasiparticle ansatz, has been proposed [4]. The key assump-
tions are that quantum correlations are still exclusively spread
by pairs of quasiparticles and that the measurement process
solely determines their random collapse, at a rate proportional
to γ . When such an event occurs, the collapsed pair becomes
irrelevant. However, in its place, a new entangled pair is pro-
duced, uniformly in quasimomentum. For (macroscopically)
homogeneous initial states, such as the Néel state, it was
assumed that the entanglement content of any pair, either
generated in the initial state or during the dynamics, is a
function of the average density [4], which is conserved by
Eq. (2).
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FIG. 2. Entanglement and quantum correlations in the monitored system. (a) Average Rényi-1/2 entropy for a subsystem of length � (see
sketch) quantifying entanglement between the subsystem and its complement (the remainder of the system). The dashed line is the unitary
prediction from Eq. (3), while the dotted line is the one from Eq. (6). Solid lines are numerical results. We have taken �/J = 1. (b) Same
as in (a) but for the Rényi-2 entanglement entropy. The predictions coincide with the ones in (a) (see main text). (c) Mutual information
I2 [cf. Eq. (7)] between two adjacent subsystems of length �, as shown in the sketch. Also in this case, the dashed line is the prediction
for the unitary case γ ≡ 0, while the dotted one is the prediction from the collapsed quasiparticle ansatz (see Ref. [90]). (d) Logarithmic
negativity E2 quantifying entanglement between two adjacent subsystems. Both predictions coincide with half of those obtained for the mutual
information [90]. For all panels, we considered L = 1000. In (a) and (b), we averaged over Ntraj = 250 trajectories, in (c) Ntraj = 150, while in
(d) Ntraj = 100.

From this stochastic picture, one can make predictions for
the Rényi entropy of a subsystem averaged over trajectories.
For homogeneous initial states, one has [4]

S
(n)
� (t ) = e−γ t S(n),0

� (t ) + γ

∫ t

0
du e−γ u S(n),0

� (u). (6)

As for the unitary case, this equation is expected to provide
the leading-order behavior in the scaling limit t, � → ∞, with
τ = t/� fixed. Since we have t ∝ �, to make Eq. (6) well
defined in the � → ∞ limit, it is natural to consider a small γ ,
obtained through the rescaling γ = �/�, such that γ t = �τ

remains fixed in the limit [4,46,50–53] (see Supplemental
Material [90]). In this regime, the average entropy obeys a
volume law. The first term in Eq. (6) accounts for correla-
tions due to quasiparticle pairs formed in the initial state and
survived up to time t . The second term instead accounts for
pairs generated after the random collapses [4]. For γ ≡ 0, one
recovers the unitary case S

(n)
� (t ) = S(n),0

� (t ). Since s(n)
q = ln2

∀n, Eqs. (3)–(6) give the same quantitative prediction for all
Rényi entropies.

Entanglement and quantum correlations. We first analyze
entanglement between a subsystem of length � and its comple-
ment (the remainder of the many-body system), as sketched in
Fig. 2(a). We consider the Rényi-1/2 entanglement entropy of
the subsystem, which for each quantum trajectory is exactly
equal to the logarithmic negativity [91–98], since the system
state is pure [99]. As shown in Fig. 2(a), numerical results for
S

(1/2)
� do not agree with the prediction from Eq. (6) (dotted

line). This also happens for the Rényi entropy with n = 2
[see Fig. 2(b)]. As reported in Ref. [90], we even observe
discrepancies between numerical results and the prediction for
the von Neumann entropy analyzed in Ref. [4], when system-
atically considering the scaling limit. In Figs. 2(a) and 2(b),
we also show the theory prediction for γ ≡ 0 (dashed line)
given by Eq. (3). In the scaling limit S

(n)
� and S(n),0

� are of
the same order, even if the monitoring process suppresses
quantum correlations here.

We now consider bipartite correlations between two sub-
systems embedded in the chain. We start investigating the von

Neumann mutual information, defined as

I2[X,Y ] := S(n→1)[X ] + S(n→1)[Y ] − S(n→1)[X ∪ Y ], (7)

where S(n→1)[X ] indicates the von Neumann entropy of the
system X . In particular, we take two adjacent subsystems,
A1 and A2, of length � [see sketch in Fig. 2(c)]. Within
the collapsed quasiparticle ansatz, the prediction for the av-
erage mutual information, which we derived in Ref. [90],
is given by an equation similar to Eq. (6), with a unitary
term given by Eq. (3) with �q(t ) = 2|vq|t + 2 max{|vq|t, �} −
2 max{2|vq|t, �} [90]. This function �q(t ) now counts the
number of quasiparticle pairs shared by the intervals A1 and
A2 [100].

As shown in Fig. 2(c), I2(t ) exhibits clear scaling behavior
in the scaling limit. Still, as for the entanglement entropies, the
theoretical prediction fails to capture quantitatively the mutual
information. For instance, our results show that correlations
between A1 and A2 do not decay to zero in the limit t/� → ∞,
in contrast with the unitary case (dashed line), but reach a
plateau value. While this feature is qualitatively captured by
the ansatz [90], the exact stationary value is substantially
different. The existence of this plateau demonstrates that the
continuous monitoring enhances bipartite correlations. This is
due to the fact that the monitoring generates, continuously
in time, entangled excitations throughout the system, and
their spreading sustains finite stationary correlations between
the two subsystems. Since the quantum state of A1 ∪ A2 is
mixed, these correlations are in principle both of quantum
and of classical nature. However, we can also calculate the
logarithmic negativity E2(t ) [91–98], a proper measure of
entanglement, which shows that A1 and A2 are not solely
classically correlated but feature a stationary entanglement,
as shown in Fig. 2(d). The prediction from the collapsed
quasiparticle ansatz for the logarithmic negativity is given by
E2(t ) = I2(t )/2 [90]. This is due to the fact that for the unitary
system the logarithmic negativity is equivalent to the Rényi-
1/2 mutual information in the scaling limit [101], and that for
our case the latter is equal to I2(t ). The above prediction fails
to capture the behavior of E2(t ), as shown in Fig. 2(d).
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FIG. 3. Tripartite mutual information. (a) Dynamics of the tripartite mutual information starting from the Néel state, for γ ≡ 0. In the
scaling limit � → ∞, this quantity is subextensive in �. The inset (in log-log scale) shows convergence to zero of |I3|/�, for Jt/� = 1.5. We
considered � = 10, 20, . . . , 120 and L up to L = 1200. (b) Tripartite mutual information starting from a state with one fermionic excitation
every three sites, for γ ≡ 0. A subextensive behavior with � of this quantity is apparent. The inset (in log-log scale) shows |I3|/� as a function
of �, for Jt/� = 2.4. We considered � = 10, 20, . . . , 120 and L up to L = 1200. (c) Tripartite mutual information starting from a state with
one fermionic excitation every four sites, for γ ≡ 0. This quantity is extensive in � and remains finite in the scaling limit, as also highlighted in
the inset (in log-log scale) for Jt/� = 2. We considered � = 10, 20, . . . , 140 and L up to L = 1500. (d) Average tripartite mutual information,
I3, for the continuously monitored system sketched in Figs. 1(a) and 1(b), with �/J = 1. As shown in the main panel, as well as in the
inset (in log-log scale) for Jt/� = 2, the tripartite mutual information remains finite (negative) in the scaling limit � → ∞. We considered
� = 10, 20, . . . , 100 and L up to L = 1000. The value of I3 is obtained by averaging over Ntraj = 250 quantum trajectories.

Beyond quasiparticle pairs. We now consider the tripar-
tite mutual information I3 between three adjacent intervals
A1, A2, and A3 [cf. Fig. 1(a)],

I3 := I2[A2, A1] + I2[A2, A3] − I2[A2, A1 ∪ A3]. (8)

This quantity allows us to discuss multipartite correlations—
I3 is a four-partite entanglement measure for pure states—and
to unveil peculiar features in the behavior of quantum correla-
tions in the system.

By definition, the tripartite mutual information is zero if
the mutual information between A2 and A1 ∪ A3 is equal to
the sum of the mutual information between A2 and A1 plus
that between A2 and A3. This simple property allows us to
argue that the mere presence of quasiparticle pairs must result
in a vanishing tripartite mutual information. Indeed, pairs of
quasiparticles can entangle only two subsystems at a time and
different entangling pairs are uncorrelated with each other.
This implies that the contributions of the pairs that entangle
A2 with A1 and A3 are subtracted by the last term in Eq. (8), so
that I3 = 0 in the scaling limit. In Fig. 3(a), as an example, we
show how I3 vanishes for the unitary dynamics implemented
by H , when starting from the Néel state.

Furthermore, in Ref. [90] we demonstrate that not even
triplets of quasiparticles can produce a finite tripartite mutual
information, in the scaling limit. We also verified this numeri-
cally [see Fig. 3(b)] for the unitary dynamics implemented by
H starting from |ψ (0)〉 = ∏

k a†
3k+1 |0〉, which is a source of

quasiparticle triplets [102]. On the other hand, multiplets with
at least four elements can generate four-partite entanglement
[see sketch in Fig. 1(d)] giving rise to a nonvanishing I3/�,
in the � → ∞ limit. For example, we show this in the case
of quadruplets in Fig. 3(c), obtained by unitarily evolving the
initial state |ψ (0)〉 = ∏

k a†
4k+1 |0〉 [102].

We can thus exploit the tripartite mutual information to
witness the existence of multiplets with more than three ex-
citations in the process of Eq. (2). As shown in Fig. 3(d),
the average tripartite mutual information I3 is indeed differ-
ent from zero. In particular, it assumes negative values, in
contrast to what happens in the considered unitary case in

the presence of quadruplets of quasiparticle [cf. Fig. 3(c)]
or of higher-order multiplets, as we verified numerically (not
shown). This implies that, in the latter case, the multiplets
generated by the initial state share quantum information in
a redundant way, i.e., all excitations have the same piece
of information. In the presence of continuous monitoring
we instead find I3 < 0, indicating a monogamous mutual
information [69–73]—there is more information about A2

in A1 ∪ A3 than in the sum of A1 and A3, separately. This
suggests that the continuous monitoring generates multiplets
with a novel correlation structure, very different in nature
from that of the multiplets observed in the considered uni-
tary cases, for which an exact quasiparticle description is
possible [102].

Conclusions. We have shown that the dynamics of quantum
correlations in a paradigmatic continuously monitored system
is unexpectedly complex and displays interesting unantic-
ipated features. We have found that quantum correlations
can be enhanced by the monitoring process [cf. Figs. 2(c)
and 2(d)], which is also responsible for a robust delocalization
of quantum information that is shared in a genuinely collective
way [cf. Fig. 3(d)]. Such intricate phenomenology cannot be
explained solely relying on entangled pairs of quasiparticles,
and we have indeed provided evidence for the existence of
multiplets of excitations with at least four elements. Clearly,
there is no reason why only quadruplets should be present
and we actually expect multiplets of any order. These are
generated during the dynamics and must thus emerge as
a consequence of the inhomogeneity of the time-dependent
stochastic on-site (imaginary) potential encoded in the second
line of Eq. (2).

It should be possible, at least in principle, to develop a
quasiparticle picture where multiplets possess an entangle-
ment structure which can also support negative values of the
tripartite mutual information. Still, the expected presence of
multiplets of any order, their complex correlation structure,
and their “uncontrollable” generation mechanism suggest that
the formulation of an exact theory for the considered stochas-
tic process, provided it exists at all, may be very challenging.
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[5] M. Žnidarič, Entanglement growth in diffusive systems,
Commun. Phys. 3, 100 (2020).

[6] L. Piroli, C. Sünderhauf, and X.-L. Qi, A random unitary
circuit model for black hole evaporation, J. High Energy Phys.
04 (2020) 63.

[7] A. Nahum, S. Roy, B. Skinner, and J. Ruhman, Measure-
ment and entanglement phase transitions in all-to-all quantum
circuits, on quantum trees, and in landau-ginsburg theory,
PRX Quantum 2, 010352 (2021).

[8] O. Alberton, M. Buchhold, and S. Diehl, Entanglement Tran-
sition in a Monitored Free-Fermion Chain: From Extended
Criticality to Area Law, Phys. Rev. Lett. 126, 170602 (2021).

[9] S. Sang and T. H. Hsieh, Measurement-protected quantum
phases, Phys. Rev. Res. 3, 023200 (2021).

[10] A. Lavasani, Y. Alavirad, and M. Barkeshli, Measurement-
induced topological entanglement transitions in symmetric
random quantum circuits, Nat. Phys. 17, 342 (2021).

[11] M. Ippoliti, M. J. Gullans, S. Gopalakrishnan, D. A.
Huse, and V. Khemani, Entanglement Phase Transitions in
Measurement-Only Dynamics, Phys. Rev. X 11, 011030
(2021).

[12] M. Coppola, E. Tirrito, D. Karevski, and M. Collura, Growth
of entanglement entropy under local projective measurements,
Phys. Rev. B 105, 094303 (2022).

[13] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou,
P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, A varia-
tional eigenvalue solver on a photonic quantum processor,
Nat. Commun. 5, 4213 (2014).

[14] J. Preskill, Quantum computing in the NISQ era and beyond,
Quantum 2, 79 (2018).

[15] A. Kandala, K. Temme, A. D. Córcoles, A. Mezzacapo,
J. M. Chow, and J. M. Gambetta, Error mitigation ex-
tends the computational reach of a noisy quantum processor,
Nature (London) 567, 491 (2019).
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