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We study Hilbert space fragmentation in the extended Fermi-Hubbard model with nearest- and next-nearest-
neighbor interactions. Using a generalized spin/mover picture and saddle point methods, we derive lower bounds
for the scaling of the number of frozen states and for the size of the largest block preserved under the dynamics.
We find fragmentation for strong nearest- and next-nearest-neighbor repulsions as well as for the combined case.
Our results suggest that the involvement of next-nearest-neighbor repulsions leads to an increased tendency for
localization. We then model the dynamics for larger systems using Markov simulations to test these findings
and unveil in which interaction regimes the dynamics becomes spatially localized. In particular, we show that
for strong nearest- and next-nearest-neighbor interactions random initial states will localize provided that the
density of initial movers is sufficiently low.
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Dynamical thermalization and ergodicity breaking in
closed many-body quantum systems have been subjects of
renewed interest in recent years. Advances in controlled
experimental and quantum simulation techniques have al-
lowed us to observe quantum dynamics with unprecedented
resolution and even to engineer entirely novel many-body
Hamiltonians [1–9]. This experimental progress is accom-
panied by new theoretical insights into the emergence of
thermodynamic properties from quantum dynamics. In ad-
dition, possible exceptions to what seems to be the generic
mechanism of thermalization have been under investigation
in recent years [10–18]. A thermal Hamiltonian is character-
ized by eigenstates that look thermal with respect to local
observables and have additional properties that ensure that
arbitrary initial states thermalize, as long as they are not un-
physical. These properties are summarized in what is called
the eigenstate thermalization hypothesis (ETH) [17,19,20].
One of the proposed exceptions to ETH is many-body local-
ization, which can be understood as an emergent integrability
caused by local quenched disorder [11,14,21–26]. A different
mechanism is quantum many-body scars [27–34]. These are
a set of eigenstates of measure zero in the thermodynamic
limit that violate ETH. A third mechanism of ergodicity
breaking, that of Hilbert space fragmentation, describes the
phenomenon that local constraints can separate the Hilbert
space into exponentially many subspaces that are spanned by
product states and are dynamically disconnected from each
other [34–42]. The Hamiltonian assumes a block-diagonal
structure with respect to a product basis, and the number of
blocks is exponential in system size L. This results in a small

*pfrey@student.unimelb.edu.au
†lucas.hackl@unimelb.edu.au
‡stephan.rachel@unimelb.edu.au

number of accessible states and can prevent a typical initial
product state from thermalizing. One may distinguish strong
and weak fragmentation by comparing the dimension Dmax

of the largest block to the dimension D of the entire Hilbert
space. The former is characterized by Dmax/D → 0; the latter
is characterized by Dmax/D → 1 as L → ∞. One striking
feature of fragmentation is the abundance of so-called frozen
states, i.e., local product states that are also eigenstates of the
Hamiltonian and hence evolve trivially. The most prominent
class of systems that have been shown to be fragmented are
dipole moment-conserving models in which only local multi-
particle hopping terms are present [34,38,40,41]. The nature
of these constraints can lead to spatial localization of the dy-
namics in the sense that the occupancy of certain sites remains
fixed over time [35]. This is accompanied by a transition from
weak to strong fragmentation. Another route to fragmenta-
tion relies on interaction-induced local constraints [43,44]. It
was shown that the integrable spinless Fermi-Hubbard chain
features a fragmented Hilbert space in the infinite interaction
strength limit [44].

In this Letter, we extend the spinless Hubbard model
by adding a next-nearest-neighbor term and consider vari-
ous limits and their effect on Hilbert space fragmentation
and localization. Making use of a convenient mapping of
product states onto symbol strings, we derive effective
hopping rules for the novel cases. They lead us to con-
struct frozen states as well as large Hilbert space blocks.
Classical Markov simulations allow us to explore spatial lo-
calization in said limits beyond system sizes that can be
diagonalized exactly [35]. The effective rules are particularly
simple for only nearest-neighbor constraints and combined
nearest- and next-nearest-neighbor constraints. While the
former case is clearly delocalized, our findings suggest
that the additional next-nearest-neighbor interactions induce
localization.
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Extended Fermi-Hubbard model. We consider the t-V1-V2

spinless fermionic chain with periodic boundary conditions
(PBCs) imposed,

Ĥ =−t
∑

x

(ĉ†
x+1ĉx +H.c.)+V1

∑
x

n̂xn̂x+1+V2

∑
x

n̂xn̂x+2.

(1)

ĉx creates an electron on site x, and t is the hopping am-
plitude. V1 and V2 denote nearest- and next-nearest-neighbor
repulsion, respectively. We note that the model is integrable
(nonintegrable) for V2 = 0 (V2 �= 0). Hamiltonian (1) has been
studied as a genuine fermionic model but also in its closely
related hard-core boson form [45–47] as an anisotropic spin- 1

2
XXZ chain [48,49] and the six-vertex model of statistical
mechanics [50]. The important limit V1 → ∞ and V2 = 0 was
explicitly worked out for fermions using a spin/mover picture
in [43]. Both limits (V1 → ∞, V2 = 0) and (V2 → ∞, V2 = 0)
lead to a locally constrained hopping term:

Ĥ (1,2)
∞ = −

∑
x

P̂(1,2)
x (ĉ†

x+1ĉx + H.c.)P̂(1,2)
x , (2)

with the local projectors P̂(1)
x = 1 − (n̂x+2 − n̂x−1)2,

which projects onto states where n̂x−1 = n̂x+2, and
P̂(2)

x = 1 + 1
4 [(n̂x−2 + n̂x+2 − n̂x−1 − n̂x+3)4 − 5(n̂x−2 +

n̂x+2 − n̂x−1 − n̂x+3)2], which projects onto states with
nx−2 + nx+2 = nx−1 + nx+3, respectively.

In the limit V1 → ∞ and V2 → ∞, both constrains act
simultaneously [51]:

Ĥ (3)
∞ = −

∑
x

P̂(2)
x P̂(1)

x (ĉ†
x+1ĉx + H.c.)P̂(1)

x P̂(2)
x . (3)

Note that P̂(1)
x and P̂(2)

x commute.
There are three relevant operators that are preserved in

certain limits, namely, the total number of particles N̂ =∑
x ĉ†

x ĉx; the number of bonds N̂ (1)
•• = ∑

x n̂xn̂x+1, i.e., lattice
bonds with both of the adjacent sites occupied; and the num-
ber of second-order bonds N̂ (2)

•• = ∑
x n̂xn̂x+2.

The Hamiltonian always conserves N , which allows us to
focus on the half-filling sector (N = L

2 ) with dimension

Dhalf =
(

L
L
2

)
∼

√
2

Lπ
2L. (4)

In contrast, N (1)
•• is conserved only in the limit V1 → ∞, and

N (2)
•• is conserved in the limit V2 → ∞. Thus, the Hilbert space

of Ĥ (i)
∞ fragments into disjoint blocks of product states char-

acterized by their filling N and respective bond numbers N (1)
••

and/or N (2)
•• . As derived in the Supplemental Material [52]

(part A), for a chain of L sites the largest symmetry sector is
characterized by N = L

2 and, depending on which quantities
are conserved, N (1)

•• = L
4 and/or N (2)

•• = L
4 . The dimension of

these symmetry sectors scales with the dimension of the full
Hilbert space, i.e., 2L, multiplied by some polynomial correc-
tion (see the Supplemental Material [52], part A, and Table I).

Mapping to spins and movers. It turns out that even within
each symmetry sector there is further fragmentation due to
the local constraints on particle hopping. In particular, frozen
states are product states that are simultaneously eigenstates
of Ĥ (i)

∞ , so they correspond to one-dimensional blocks of Ĥ (i)
∞ .

TABLE I. We consider the half-filling sector N = L
2 and list the

lower bounds Dfrozen, for the number of frozen states in this sector,
and Dmax, for the dimension of the largest block in this sector.
We compare them to Dsym, which is the dimension of the largest
symmetry sector, i.e., N (1)

•• = L
4 for V1 → ∞, N (2)

•• = L
4 for V2 → ∞,

and both combined for V1,V2 → ∞. While they symbol ∼ indicates
exact asymptotics, the symbol � indicates only a lower bound for the
asymptotics.

Dfrozen Dmax Dsym

V1 → ∞ ∼ 0.74√
L

(1.62)L ∼0.11
√

L (1.61)L ∼ 1.27
L 2L

V2 → ∞ � 4.98
L (1.22)L � 2.26√

L
(1.50)L ∼ 1.27

L 2L

V1,V2 → ∞ � 0.74√
L

(1.62)L � 1.13√
L

(1.41)L ∼ 2.03
L3/2 2L

Let us illustrate this for Ĥ (1)
∞ with L = 8, N = 4, and N (1)

•• = 2.
Indicating filled (empty) by • (◦), the state |••◦◦••◦◦〉 is
frozen, as it is an eigenstate. Spatial translations generate four
such states in total. One may use these states as a starting
point to construct further blocks of states by shifting particles
in a systematic fashion. The state |•••◦◦•◦◦〉, for example,
is in the same symmetry sector but is clearly dynamically
disconnected from any frozen state. The single particle on
the right can hop freely until it encounters the block of three
particles on the left, in which case it can assist in the hopping
of said particles, i.e.,

|•••◦◦•◦◦〉 → |•••◦•◦◦◦〉 → |••◦••◦◦◦〉
→ |•◦•••◦◦◦〉 → |◦◦•••◦◦•〉 → · · · . (5)

The free particle is called a mover for obvious reasons, and
the above example illustrates that a mover passing through the
entire chain results in a state that is shifted by two sites with
respect to the initial state; that is, in this case we would not
have localization.

In order to analyze the Hilbert space fragmentation in the
limits V1 → ∞ and V2 → ∞, it is useful to map the states
from the occupation number picture to a spin/mover pic-
ture [43,44]. For this, we adopt the following rules: Every
bond •• is assigned an up spin ↑, and every pair of unoccupied
sites ◦◦ is assigned a down spin ↓. Furthermore, we introduce
so-called movers 0 associated with alternating sequences, e.g.,
•◦•, ◦•◦, •◦•◦, ◦•◦•, etc., of length n, which is mapped to
� n−1

2 � movers.
This mapping can be compactly summarized as

|••· · ·••︸ ︷︷ ︸
n1

n2︷ ︸︸ ︷•◦•· · ·◦•◦◦◦ · · · ◦◦︸ ︷︷ ︸
n3

〉 ≡ |↑· · ·↑︸ ︷︷ ︸
n1−1

0· · ·0︸ ︷︷ ︸
� n2−1

2 �

↓· · ·↓︸ ︷︷ ︸
n3−1

〉 , (6)

where we illustrate two blocks of spins separated by a block
of movers. Note that our counting of the mover sequences
(length of alternating sequence) is such that the last and first
sites also count towards the spin blocks [see overlapping
braces in (6)]. For periodic boundary conditions the mapping
to spin/movers is not injective, as sometimes two quantum
states are mapped to the same spin/mover states (see the
Supplemental Material [52], part B).

Effective dynamics. In order to analyze fragmentation and
localization in each of the three limits Ĥ (1,2,3)

∞ , we employ
the general strategy of deriving effective hopping rules in the
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spin-mover picture. Using these rules, we systematically con-
struct frozen states and large blocks and derive the asymptotic
scaling of their number and dimension, respectively. In the
case of Ĥ (1)

∞ the effective rules are especially simple, and it
is clear that any product state but a frozen state dynamically
delocalizes. The cases Ĥ (2,3)

∞ require a more detailed analysis.
We use statistical arguments and numerical evidence to show
that the dynamics of Ĥ (2)

∞ is also delocalized, while Ĥ (3)
∞ is

typically localized. However, introducing the average mover
density as a control parameter gives rise to a transition be-
tween localized and delocalized dynamics in Ĥ (3)

∞ .
Fragmentation for V1 → ∞. We introduce the number of

spin ups N↑, the number of spin downs N↓, the number of
movers N0, and the number of times the pattern ↓↑ appears in
the spin sequence N↓↑. Then we find the following constraints:
N↑ = N↓ = N

2 and N↓↑ + N0 = N (1)
•• . Every state corresponds

to a sequence of ↑, ↓, and 0’s, and the constrained dynamics
corresponds to the 0’s moving freely through the sequence
with the additional condition that moving every 0 through
the entire chain results in a cyclic permutation of the spin
sequence (PBCs imposed), i.e.,

|↑↑↓0↓〉 → |↑↑0↓↓〉 → |↑0↑↓↓〉
→ |0↑↑↓↓〉 → |↓↑↑↓↓0〉 → . . . , (7)

which corresponds to (5) rewritten in spins. The dimension
Dfrozen of the frozen state block for V1 → ∞ and half filling
can be computed analytically. For this, we recall that for Ĥ (1)

∞
only the movers can move, so a state is frozen if it does not
contain any movers, i.e., there are no 0’s in the spin picture.
We can organize such frozen states by the number 2w of spin
domains (up and down spins). For L sites and 2w domains,
there must be L

2 − w spins of each type, which we need to
distribute over the different domains. Using the saddle point
method reviewed in the Supplemental Material [52] (part C1),
we find the asymptotics

Dfrozen ∼
√

3
√

5−5
πL

(
1+√

5
2

)L
= 0.74√

L
(1.62)L. (8)

The number of frozen states is exponentially suppressed

in the sector of half filling with Dhalf = (L
L
2

) ∼
√

2
πL 2L.

While their dynamics is trivially localized, a generic initial
state will thus not have sufficient overlap with frozen states to
make its dynamics also local.

The largest block for V1 → ∞ is found in [44] using the
spin/mover picture. It corresponds to states with N0 = L

4 − 1
movers (corresponding to L

2 sites) that move freely through
two regions (one filled, one empty) of L

4 sites each, i.e., gen-
erated by

|•◦ · · · •◦•• · · · ••◦◦ · · · ◦◦〉 = |0 · · · 0↑ . . .↑↓ . . .↓〉 . (9)

Starting with the spin state |↑ . . .↑↓ . . .↓〉, we can cyclically
rotate the spins to get L

2 different states, which can then
be filled by distributing the N0 movers over the L

2 positions
between the spins. We therefore count a block dimension of

Dmax = L
2

( L
2+N0−1

N0

) ∼
√

L

27π

(
33/4

√
2

)L

= 0.11
√

L(1.61)L.

(10)

FIG. 1. We illustrate the spin mapping, which allows us to
map the fermionic Fock states to a sequence of spins ↓↑ and
so-called movers 0 based on [43]. Movers move freely and are
preserved in Ĥ (1)

∞ , while in Ĥ (2)
∞ they are constrained and can be

created/annihilated based on the illustrated rules. For V1,V2 → ∞,
we have only the constrained movement (2b). The symbol � repre-
sents a spin that is fixed to either up or down.

We have limL→∞ Dmax
Dsym

= 0, where Dsym is the dimension of
the relevant symmetry sector (see Supplemental Material [52],
part A), so Ĥ (1)

∞ admits strong Hilbert space fragmentation. At
the same time, we see explicitly that the movers 0 can move
freely through the whole system. As this applies to all blocks,
except frozen states, Ĥ (1)

∞ will not show any localization for
generic initial states.

Fragmentation for V2 → ∞. In order to simplify the dy-
namics and to bring similar combinatorial arguments to bear
on this problem, we use the same mapping as before, i.e.,
every state is now written as a sequence of ↑, ↓, and 0’s.
However, the hopping rules are now given by rules (2a) and
(2b) in Fig. 1, where � represents either an up or down spin
and S1,2 ∈ {↑,↓, 0} can be any symbol. We see that it is still
the movers (0’s) that hop, although with further constraints.
However, the number of movers is no longer conserved since
they can be created and annihilated by certain spin configura-
tions.

Note that rule (2a) leads to a second-order hopping process
for movers in certain configurations, e.g.,

|· · ·↑0↓↑↑· · ·〉 ↔ |· · ·↑↑↓↓↑↑· · ·〉 ↔ |· · ·↑↑↓0↑· · ·〉 .

(11)

Since the model is symmetric under a global transformation
nx ↔ 1 − nx, there is a corresponding hopping process when
globally substituting ↑↔↓. Hence, we see that movers can
trade position with antialigned spins if the pattern is framed
by identical spins that are aligned with the outer spin of the
antialigned pair. as illustrated in (11).

In the Supplemental Material [52] (part C2), we systemati-
cally construct frozen states as spin configurations that cannot
generate movers and derive a lower asymptotic bound Dfrozen

for the number of frozen states, namely.

Dfrozen � 4.98

L
(1.22)L. (12)

By comparison with numerical results, it is clear that
these spin states do not contribute the bulk of frozen
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FIG. 2. Analysis of Dfrozen and Dmax/Dsym by comparing the ex-
act values with our analytics (V1 → ∞) and numerical fits (V2 → ∞,
V1,V2 → ∞), confirming Dmax/Dsym → 0 as L → ∞ (strong frag-
mentation). Here, Dmax refers to the largest Block within the largest
symmetry sector, whose dimension is Dsym (see Table I).

states for V2 → ∞. Instead, states containing frozen movers
represent the majority of such states in the asymptotic
limit.

In the Supplemental Material [52] (part C3), we construct
a lower bound D−

max for the dimension of the largest block as
some involved sum over binomial factors. We then expand the
summand for large L, convert the sum into an integral, and
then extract the asymptotics using the saddle point method
to find

Dmax � 4√
πL

4
√

5
L ≈ 2.26√

L
(1.50)L. (13)

Fragmentation for V1,V2 → ∞. The case where both inter-
actions terms are taken independently to infinity, i.e., V1 → ∞
and V2 → ∞, is characterized by the conservation of N̂ , N̂ (1)

•• ,
and N̂ (2)

•• . Therefore, rule (2b) from Fig. 1 describes the only
allowed hopping for movers.

All frozen states in the limit V1 → ∞ are also frozen in
the limit V1,V2 → ∞, so we immediately find the previously
derived asymptotics (8) for V1 → ∞ as a lower bound, i.e.,

Dfrozen �
√

3
√

5−5
πL

(
1+√

5
2

)L
= 0.74√

L
(1.62)L. (14)

From Fig. 2, we see that this already describes the asymptotics
well, but a numerical fit indicates that the leading coefficient
should be around 2.59 instead of 0.74. We thus see that even
in the limit V1,V2 → ∞ the frozen block still represents a
fraction Dfrozen/Dhalf → 0 that vanishes exponentially fast, so
that we need to focus on the larger blocks to analyze potential
localization.

For the construction of large blocks the same starting point
can be used as in the case V2 → ∞ since the contribution from
states with n = 2� L

8 � and N0 = L
2 − 2� L

8 � makes use of only
rule (2b). We therefore find the lower bound on the dimension
Dmax of the largest block to be

Dmax �
(

n + N0

N0

)
∼ 4n√

πn
=

√
2

L

√
πL/4

≈ 1.13√
L

(1.41)L. (15)

The problem of localization. Our key findings are summa-
rized in Table I and Fig. 2, where we study the dimensions
of the frozen state space Dfrozen and of the largest block
Dmax within the half-filling sector. We find in all three limits

V1 → ∞, V2 → ∞, and V1,V2 → ∞ that the frozen states are
exponentially suppressed (Dfrozen/Dhalf ∼ e−αL) and hence
should not cause typical states to stay localized. We then
study larger blocks and determine the dimension scaling of
the largest block Dmax. While we find freely moving 0’s in
the states of large blocks and thus delocalized dynamics,
we also see that for V2 → ∞ and V1,V2 → ∞ there exist
Hamiltonian blocks generated from states where individual
movers are constrained due to barriers that do not let movers
pass through according to rule (2b) from Fig. 1. Thus, we
conclude that V1 → ∞ does not lead to localization, while
the limits V2 → ∞ and V1,V2 → ∞ require a more detailed
analysis.

We have seen that the limit V1 → ∞ yields fragmenta-
tion, while the dynamics is not localized in real space (with
the exception of frozen states). We may attribute the exis-
tence of large blocks to the fact that each mover is spatially
unconstrained, so a finite number of movers contributes a
binomial coefficient to the dimension of the block generated
by such states. We were able to construct large blocks in the
limit V2 → ∞ by carefully choosing a generating state that
allows for fully delocalized dynamics despite the restricted
hopping rule (2b). This begs the question of whether full
spatial delocalization is typical even for the cases V2 → ∞
and V1,V2 → ∞. We will analyze this question using classical
Markov simulations [35].

Markov simulations for V2 → ∞. We consider random
states with a fixed density of movers n0. We do this by first
generating strings of spin and mover symbols of length m
and a total of n0m movers. We subsequently convert these to
states in real space characterized by their local occupancies.
These states are then time evolved via a Markov simulation
(see the Supplemental Material [52], part D), during which
we keep track of active sites, i.e., those sites that change
their occupancy at any point in the simulation. We find that
essentially, all initial states result in a fully delocalized dy-
namics, except for very low densities n0, as one might expect
from the fact that large blocks are prevalent for V2 → ∞.
We can explain this fact by showing explicitly that typical
states should delocalize based on rules (2a) and (2b). The
problem can be broken down into two parts. First, consider
random strings of spins with no movers. Rule (2a) will gener-
ate a mover for any ↑↑↓↓ / ↓↓↑↑ pattern within the string.
These occur with a rate r = N↑↑↓↓

m = 1/8 and should follow
a Poisson distribution. Therefore, the distance between two
consecutive patterns of this type should be Poisson distributed
with mean μ = 1/r = 8. Applying rule (2a) will reduce the
number of symbols between the resulting movers by two,
and we find that the symbol distance � between movers
is a shifted Poisson distribution. We are left with a string
of random spins that does not contain any ↑↑↓↓ / ↓↓↑↑
patterns and a finite number of movers embedded within it.
Second, we consider one such mover and its surrounding spins
and study the size of the active region generated by it. It is
clear that any activity has to spread locally from this single
mover in a random spin background. We perform Markov
simulations on random symbol strings of this type. For a given
number m of spin symbols to the right of the central mover we
identify the site in real space that corresponds to the end of
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FIG. 3. For V1,V2 → ∞, we show the mean size of the active
regions Lactive relative to the total system size for random symbol
strings with Mtotal = 31 symbols and n0Mtotal movers in blue. The
solid blue line corresponds to the predicted value of Lactive based
on an independent-mover model. We show the mean active size for
random states in real space with fixed length Ltotal = 42 in solid
orange and the mean probability of localization Ploc as a function
of mover density for random symbol strings with Mtotal = 31 in red.
The dotted gray line marks the intersection of blue and solid orange
lines and hence indicates that real-space random states correspond to
a mover density n0 = 0.25. All Markov simulations use 400 random
initial strings and 8 × 104 time steps each.

the mth symbol and keep track of its activity. This allows us
to sample the cumulative probability distribution [CDF(m)]
of activity over a range of symbols 0 � m � 15 (see Fig. 3 in
the Supplemental Material [52]). We find that the distribution
saturates at a value of CDFmax ≈ 0.53 at m ≈ 5, indicating
that in around half of all cases the active region is confined
to fewer than five symbols and otherwise spreads indefinitely
due to an avalanche effect. We can now find the probability
that two consecutive movers produce active regions that do not
connect:

Pdisc =
∑
�

Psep(�)
�−1∑
m=0

CDF(m) PDF(� − m) ≈ 0.26.

(16)

Here, Psep is the distribution of distance between consecutive
movers, and PDF is the probability density function asso-
ciated with the cumulative distribution CDF. The avalanche
effect implies that essentially, every active region associ-
ated with a mover has to remain finite in order to avoid
full delocalization and therefore the probability of local-
ization for a random symbol string of length m is Ploc ≈
(CDFmax)mr . Adding additional movers by setting n0 > 0
will affect Psep and hence lower the value of Pdisc. How-
ever, its main effect on the probability of localization is
via a shift in the exponent: P (n0 )

loc ≈ (CDFmax)m(r+n0 ). This
explains why only very low initial mover densities n0

and short chains yield a significant fraction of localized
states.

Markov simulations for V1,V2 → ∞. This case is charac-
terized by only rule (2b), and the treatment in terms of active
and inactive regions can be done analytically. A mover in
a random spin background can hop past a given spin with

probability p = 1
2 according to (2b). Hence, the probability

of creating an active region that extends over m spins is

PS(m) =
m∑

n=0

pn pn−m(1 − p)2 = (m + 1) 2−(m+2). (17)

The mean free path of a mover is given by m =∑
m mPS(m) = 2. Numerically, we find a compatible distri-

bution in the real-space length L using a Markov simulation
with t = 105 time steps and a sample of 1000 initial symbol
strings if we account for the relation L ≈ 1.65m.

In order to estimate the size of active regions as a function
of mover density we make the ansatz

Mactive

Mtotal
= Lactive

Ltotal
= n0(m − x), (18)

where Mactive and Lactive are the number of active sites in
symbol space and real space, respectively. Likewise, Mtotal and
Ltotal are the total numbers of symbols and sites, respectively.
x is the average overlap between neighboring active regions.
We estimate x assuming that neighboring active regions are
dynamically independent, which turns out to be a good ap-
proximation for not too large mover densities.

Figure 3 shows data obtained from Markov simulations
along with a prediction based on the independent-mover ap-
proximation. The latter fails to be accurate above n0 ≈ 0.7,
where we numerically find essentially no dependence on n0.
The probability of localization, defined as a nonvanishing
number of inactive sites, is essentially Ploc = 1 up to n0 ≈ 0.5.
Comparing the mean size of active regions for random states
in real space, i.e., equal probability of occupancy 0 or 1 on
each site, with that of random states in symbol space of fixed
mover density, we find that the mean mover density of the
former is n0 = 0.25. Therefore, random states in real space are
well within the localized regime, and the limit V1,V2 → ∞
shows localized dynamics for typical initial states.

Conclusion. In summary, we studied the spinless extended
Fermi-Hubbard chain in various limits of strong repulsion;
the presence of any next-nearest-neighbor interactions breaks
integrability. The model exhibits Hilbert space fragmentation
for only nearest- or next-nearest-neighbor interactions as well
as for both interaction terms combined. We derived effec-
tive hopping rules and construct frozen states, allowing us
to derive lower bounds for the number of the highly local-
ized frozen states and the dimension of the largest Hilbert
space block. In contrast to the nonextended Fermi-Hubbard
model, our results suggest that the extended model features
interaction-induced localization. To substantiate these find-
ings, we presented classical Markov simulations and indeed
found localization provided that the density of initial movers
is sufficiently low. While all our results have been derived for
the fermionic model, due to its close relationship to the hard-
core boson variant [45–47], the spin-1/2 XXZ chain [48,49],
and the six-vertex model [50] we expect our results apply to a
large class of systems.
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