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Effects of autocorrelated disorder on the dynamics in the vicinity
of the many-body localization transition
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The presence of frozen uncorrelated random on-site potential in interacting quantum systems can induce a
transition from an ergodic phase to a localized one, the so-called many-body localization. Here we numerically
study the effects of autocorrelated disorder on the static and dynamical properties of a one-dimensional many-
body quantum system which exhibits many-body localization. Specifically, by means of some standard measures
of energy level repulsion and localization of energy eigenstates, we show that a strong degree of correlations
between the on-site potentials in the one-dimensional spin-1/2 Heisenberg model leads to suppression of the
many-body localization phase, while level repulsion is mitigated for small disorder strengths, although energy
eigenstates remain well extended. Our findings are also remarkably manifested in the time domain, on which we
put the main emphasis, as shown by the time evolution of experimentally relevant observables, like the return
probability and the spin autocorrelation function.
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The celebrated, very well studied, and equally understood
single-particle Anderson localization (AL) [1] is expanded in
some sense to the realm of interacting quantum systems by
the still incompletely understood so-called many-body local-
ization (MBL), where a thermal description of the system
properties fails [2–5]. Among some questions challenging
MBL and some of its features are the ones related to the role
of finite-size effects [6–8], finite times [9], and self-averaging
[10–12]. Deepening our knowledge about MBL is of funda-
mental theoretical, experimental [13–15], and technological
(see, for instance, Ref. [16]) interest.

The standard scenario in the noninteracting case is that
AL transition occurs in three dimensions for strong enough
disorder strength; meanwhile, in one- and two-dimensional
systems at the limit of infinite system size an infinitesimal
strength of the uncorrelated disorder is enough to localize all
eigenstates of the system (see [17–19] and references therein).
However, it has been shown, theoretical and experimentally,
that particular correlations between the on-site potentials are
able to produce delocalization and even the appearance of a
mobility edge in one-dimensional systems [20–24] (see also
[25] and references therein). Further studies of autocorrelated
disorder in low-dimensional noninteracting systems have ad-
dressed, for instance, the onset of Bloch-like oscillations [26],
localization in ultracold atoms [27,28] and optical lattices
[29], violation of Harris criterion [30], nonuniversality of
AL [31], and features of the entanglement spectrum [32–34].
Recently, the effects of autocorrelated disorder have been
also investigated in the joint context of ultracold atoms and
machine learning [35]. A natural question is what could be
the effects of autocorrelated disorder in the context of MBL?
However, in contrast with the noninteracting case, effects
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of autocorrelated disorder in interacting many-body quantum
systems have been less explored [36–41]. While most works
are focused on time-independent quantities, dynamics are pre-
dominantly left aside even though they are of fundamental
relevance not only by their ubiquity but from a theoretical
point of view and also for experiments dealing with many-
body quantum systems, like the ones with ultracold atoms
in optical lattices [13,42–44], trapped ions [45], and super-
conducting qubit arrays [46], where information about the
system properties is usually accessed through the dynamics.
It is fair to mention that in [47] the role of speckle disorder
on the dynamics of the imbalance was part of the analysis
that led to the main conclusion that MBL transitions under
uncorrelated disorder and speckle disorder belong to the same
universality class. Here, however, our aim is not to determine
the universality class of MBL or even the behavior of critical
points under our model of autocorrelated disorder, but instead
to provide a general description of its effects on the whole
time evolution of the many-body quantum system that we
study around the MBL transition.

For our purposes we consider the Heisenberg model for
spin-1/2 particles in a one-dimensional lattice with pair inter-
actions, on-site potentials, and periodic boundaries,

H =
L∑

k=1

(
Sx

k Sx
k+1 + Sy

kSy
k+1 + Sz

kSz
k+1

) +
L∑

k=1

hkSz
k . (1)

In Eq. (1) we have set h̄ = 1 and Sx,y,z
k = σ

x,y,z
k /2 are spin-1/2

operators in terms of Pauli matrices acting over the particle
located at site k. Traditional studies consider the amplitudes
hk being uncorrelated random numbers from an uniform dis-
tribution, that is, hk ∈ U (−h, h), with h the disorder strength.
The critical point hc for MBL is not exactly known but there
exist some estimates for finite-size systems—from [48–52]
the bounds are 3 < hc < 4; meanwhile, in [53–56] an upper
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bound hc > 4 is given. Here we consider the amplitudes hk

also as random numbers from a uniform distribution with
support [−h, h], but linearly correlated, that is, E(hkh�) �=
E(hk )E(h�) for k, � = 1, 2, . . . , L and E stands for the statis-
tical expectation value. The method that we use to generate
autocorrelated random numbers is based on the cumulative
distribution function F (X ) of the sum of a U (0, 1) number
and a U (0, 1/c) number, where c is any positive real number.
With Vk an i.i.d. U (0, 1) we generate the sequence

X1 = V0 + V1/c,

Xk = F (Xk−1) + Vk/c, k > 1,
(2)

such that the sequence of F (Xk ) is autocorrelated U (0, 1);
then the random numbers hk in Hamiltonian (1) are obtained
according to hk = h[2F (Xk ) − 1]. The distribution F (Xk ) de-
pends on the value of c and it can be determined exactly
as shown in [57]. By tuning c any desired degree of cor-
relations is obtained—c ≈ 0 means absence of correlations;
meanwhile, the strength of correlations grows larger as c
increases.

Since Hamiltonian (1) preserves the total magnetization in
z direction, Sz = ∑

k Sz
k , the Hilbert space splits in sectors

with fixed values of Sz. Here we work in the subsector with
Sz = 0 for which the dimension is D = L![(L/2)!]−2.

Quantities. We describe the static quantities, as well as
the time-dependent ones that will be used in our analysis, as
indicators of ergodicity and localization.

We start by denoting the eigenvalues and eigenstates of
Hamiltonian (1) by Eα and |ψα〉, respectively. Next, to analyze
level repulsion we use the mean value of the ratio between
consecutive level spacings r [48], defined through

r = 1

D

D∑
α=1

min

(
rα,

1

rα

)
, with rα = Eα+1 − Eα

Eα − Eα−1
. (3)

Level repulsion is absent in the MBL phase, corresponding
to spacings with Poisson-like statistics and r ≈ 0.386 [48,58].
Meanwhile, in the ergodic phase the spacings have GOE-like
statistics; that is, energy eigenvalues present linear repulsion,
for which r ≈ 0.536 [58]. The ratio decreases monotonically
between those two limits as the magnitude of the uncorrelated
disorder increases [48].

To study the degree of localization of the eigenstates of
Hamiltonian (1) we use the inverse participation ratio, IPR,
given by

IPRα =
D∑

n=1

∣∣Cα
n

∣∣4
, with Cα

n = 〈ψα|n〉, (4)

where {|n〉} represents a suitable basis determined by physical
considerations. Since our interest is localization in real space,
we choose the basis composed by eigenstates of the z part of
Hamiltonian (1)—the so-called site basis. A state is extended
in the respective basis if IPRα ∝ D−1 [for instance, IPRα =
3/(D + 2) for eigenstates of GOE matrices [59]], while for
localized states IPRα is O(1).

At a first glance it could appear as redundant to analyze
both quantities, but to our knowledge no one-to-one corre-
spondence between the behavior of r and IPRα for model (1)
has been proved. Certainly a proof of this last point is not the

aim of this work; however, the analysis of both features, level
repulsion and degree of localization of states, is important for
our objectives and because they show up in different stages of
the time evolution of the system [60–63].

Dynamics can be analyzed employing the return probabil-
ity, which is also known as survival probability and nondecay
probability. It measures the time dependent probability for a
given quantum system to return to its initial state |�(0)〉 and
it is given by

RP(t ) = |〈�(0)|e−iHt |�(0)〉|2. (5)

Return probability has been analyzed in several contexts, both
theoretical and experimentally. By the side of experiments
in molecules [64] are ultracold atoms in magneto-optic traps
[65], atom chip [66], and prethermalization in Floquet sys-
tems [67]. See also an interesting proposal in [68] about
the experimental measuring of RP(t ). By the side of theory,
RP(t ) has been studied in relation with the time evolution
of unstable quantum states [69] and possible implications in
cosmology of the late time behavior of false vacuum decay
[70], nonperiodic substitution potentials [71], noninteacting
fermions [72], quantum walks and complex networks [73–76],
matter-radiation interaction models like Dicke [77], and Bose-
Hubbard [78].

In addition, to further study dynamics we consider the spin
autocorrelation function

I (t ) = 4

L

L∑
k=1

〈�(0)|Sz
k (0)Sz

k (t )|�(0)〉. (6)

This quantity measures the similarity between the initial spin
configuration and the one at a late time t . For specific initial
states, such as a Néel-like state, it coincides with the density
imbalance measured in experiments with cold atoms [13].

Since we are dealing with a disordered system, we compute
averages over disorder realizations for the static quantities,
r and IPRα , while an additional average over initial states
is done for the dynamical quantities, RP(t ) and I (t ). Our
results will be presented using the notation for the averages
as 〈. . . 〉 irrespective of their kind. The initial states we use
are part of the set {|n〉}; that is, |�(0)〉 ≡ |n〉 with energy
En = 〈n|H |n〉 ≈ 0.

Before presenting our results, we judge as instructive and
pertinent to give an overview of the existing picture about the
dynamics of many-body quantum systems with uncorrelated
disorder. Certainly, the dynamics of many-body quantum sys-
tems could be approached by many kinds of observables, but
for decaying-in-time observables, like the return probability
and the spin autocorrelation function, a clear picture already
exists [63]. For the first one, quantum mechanics predicts a
universal quadratic decay in time for very short times; this
is the region of the ancient Zeno’s paradox in the quantum
realm [79,80]. The quadratic decay is followed by one which
depends on the interaction strength—exponential for weak
strengths and Gaussian for strong enough strengths [60]. A
power-law decay is developed at larger times; it can have
two different sources, one being the inevitable bounds in the
energy spectrum [81] and the other one related to the increase
of correlations between eigenstate components as the disor-
der strength increases [61]. The former one has been used
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FIG. 1. Inverse participation ratio (IPR) and average spacing ra-
tio r versus degree of correlations c. (a) IPR from Eq. (4) and (b) r
from Eq. (3). In each panel the shaded (gray) curves represent raw
data from a single disorder realization (see main text), while the
curves in red, green, and blue are running averages for h = 0.5,
h = 3.75, and h = 6, respectively. Theoretical values for GOE (black
dashed line) and Poisson (turquoise dashed line). System size is
L = 16.

to anticipate thermalization [82,83] in interacting quantum
systems, while the last one was investigated in relation with
the multifractality of eigenstates [61,84]. Power-law decays
have been also observed for the imbalance, both theoretically
[54,85] and experimentally [86]. Eigenstate correlations and
their relation with the return probability was also studied more
recently in [68]. At even larger times and preceding satura-
tion the repulsion hole appears, a dynamical manifestation of
short- and long-range energy-level repulsion, which explicitly
occurs at the many-body Thouless time and ends up at the
longest time scale, the so-called Heisenberg time. In partic-
ular, it was shown that the ratio between the Thouless and
Heisenberg times approaches unity as the system approaches
the MBL phase [87]; this fact was further confirmed later
in [9].

Results. We now present our results; explicitly we show
the effects of the correlations between the on-site random
potentials on the static and time-dependent properties previ-
ously defined. We start with the behavior of the structure of
eigenstates [Fig. 1(a)] and repulsion between adjacent energy
levels [Fig. 1(b)] with respect to the degree of correlations
represented by c for a fixed system size L = 16. In both
panels the results are for three different disorder strengths,
h = 0.5 (red solid curve), h = 3.75 (green solid curve), and
h = 6.0 (blue solid curve), which in a context of uncorrelated
disorder are representative of the ergodic, critical, and local-
ized regions, respectively. We use dashed lines to represent
the GOE theoretical prediction (black) and Poisson predic-
tion (turquoise) for both quantities, IPRα and r. We observe
two different behaviors depending on the disorder strength as
the degree of correlations increases from a very small value
of c to a larger one, c ≈ 20. For small disorder strength,
h = 0.5, the IPRα almost does not change with respect to
c. However, level statistics clearly transit from GOE-like to
different statistics, that approach and eventually cross down
Poisson-like statistics as c increases, reaching a regime of
the Schnirelman peak (see [88] for some specific examples
of the level spacing distribution and see, also, Refs. [89–93]
therein). For the disorder strengths, h = 3.75 and h = 6.0,
the behaviors are similar; a crossover occurs as c increases
from localized states to extended states and from Poisson-like
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FIG. 2. Averaged return probability for different disorder
strengths and degrees of correlations c. (a) c = 15, (b) c = 8, (c) c =
2, and (d) c = 0.5. In each panel h = 0.5 (red), h = 3.75 (green), and
h = 6 (blue). Dashed lines are the corresponding saturation values.
System size is L = 16. An average over 25 × 103 samples (500 initial
states and 50 disorder realizations). An additional running average
was implemented in order to smooth even more the curves.

statistics to GOE-like. It is worth mentioning that results from
a single disorder realization of the static properties show big
fluctuations; this is depicted by the shaded (gray) curves in
both panels of Fig. 1. Of course, those fluctuations can be
reduced if an average over disorder realizations is carried out;
see [88] for further details. Also note that in Fig. 1(a) an
average over 100 energy eigenstates with energy closest to
zero was performed; however, this was not enough to smooth
the curves for h = 3.75 and h = 6.0 because IPRα is not self-
averaging for those values [94]. To circumvent this situation,
we decided to present in a simple way running averages over
intervals of 10 values of the static properties along c which
are precisely represented by the colored solid lines already
explained above.

We now move to the time-dependent quantities; in Fig. 2
we depict the behavior of the return probability for three
different disorder strengths, just like in Fig. 1 and with the
same coloring code. Four values of c are selected from large to
small in order to cover different regimes of eigestates structure
and level statistics, namely c = 15 (a), c = 8 (b), c = 2 (c),
and c = 0.5 (d) (see Fig. 1). The system size is also fixed
to L = 16. In general we observe similar initial dynamics
for the four values of c and the three values of h, that is,
a typical initial nonexponential decay, explicitly a Gaussian
decay [60,95–97] which is followed by some fluctuations
related to the details of the local density of states which
is not a perfect Gaussian [60,61,96,97]. For small disorder,
h = 0.5 (red solid line), the power-law decay with exponent 2
predicted for weak uncorrelated disorder [82,83] is observed
in the approximated time interval t ∈ [3, 12] for all values
of c. In the limit of large system sizes the power-law decay
with exponent 2 prevails for longer times [98]. The survival
of power-law decays with system size was also studied for
the imbalance in [54]. The repulsion hole is wiped out for
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FIG. 3. Absolute value of the averaged spin autocorrelation func-
tion for same parameters, coloring code, and averaging procedure as
used in Fig. 2. Dashed lines are the corresponding saturation values
of |〈I (t )〉|.

c = 15; meanwhile, the hole appears and becomes more clear
as the value of c decreases, as shown for c = 8 and c = 2 in
Figs. 2(b) and 2(c), respectively. The saturation values of the
return probability which corresponds to the average IPR of the
initial state in the energy basis and indicated by corresponding
dashed lines in Fig. 2 remain almost the same and with a
small value, thus indicating that the average IPR of the initial
states behaves at least in a similar way as the energy eigen-
states [see Fig. 1(a)]. For the two other disorder strengths,
h = 3.75 (green solid curves) and h = 6.0 (blue solid curves),
the dependence on c of the late-time dynamics of the return
probability is quite different from the case h = 0.5. In partic-
ular, for c = 15 and both values of h there is practically no
distinction between the corresponding dynamics; they show
a similar repulsion hole and saturation value. The curves
for the two different values of h get more separated as the
value of c increases. The behaviors of the repulsion hole and
the saturation value are consistent with the results of the static
quantities previously presented, while the dependence of the
power-law decay on c and h deserves further studies. For
c = 0.5 in Fig. 2(d) the degree of correlations is weak enough
to recover the known picture for uncorrelated disorder [61].

We finish our analysis by considering the time evolution of
the spin autocorrelation function, I (t ) [Eq. (6)]. Since I (t ) can
have positive and negative values even after an average over
initial states and disorder realizations, in Fig. 3 we present our
results for the absolute value of the averaged I (t ). The same
parameters as for RP(t ) in Fig. 2 were used. Once again we
observe that the inclusion of correlations between the on-site
random potentials leads to rich and nontrivial dynamics, but
now testified by I (t ). The dependence on c of this quantity is
similar to that of RP(t ). For large c [Fig. 3(a)] the evolution
for h = 3.75 and h = 6.0 shows a repulsion hole and small
saturation values; meanwhile, for h = 0.5 there is no hole.
At this point we should note that the negative values of the
averaged I (t ) are present only for h = 0.5 and c = 15, 8, 2,
as seen by the bumps inside the time interval t ∈ [10, 100]
of Figs. 3(a)–3(c). The behaviors of I (t ) for all disorder
strengths, when the value of c decreases, approaches the ones
for uncorrelated disorder [63,85]. Although the repulsion hole
is present in RP(t ) and I (t ), it should be noted that in [99] a
careful analysis was performed to show that while for RP(t )
the depth of the repulsion hole increases, for I (t ) and other
observables the depth apparently decreases when the system
size increases. The persistence of the observed effects due to
correlated disorder in the L → ∞ limit is also another natural
and interesting question. We address this question in [88].

Conclusions. We revealed that the inclusion of linearly
autocorrelated on-site random potentials in a paradigmatic
model for many-body localization and tuning its strength
allows one to control both static and dynamical properties
of the system in a more rich and nontrivial way than un-
correlated disorder. Strong correlations result in thermal-like
behavior of the studied dynamical probes when the disorder
strength is large. Meanwhile, for small disorder strength only
energy-level indicators are significantly affected. Diminishing
the degree of correlations leads to the usual behavior when
uncorrelated disorder is considered. We hope that our results
will motivate the community to consider different observables
of interest in theoretical and experimental studies. Additional
studies could also address questions related to time scales and
power-law decays.
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