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Full quantum theory of nonequilibrium phonon condensation and phase transition
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Fröhlich condensation is a room-temperature nonequilibrium phenomenon which is expected to occur in
many physical and biological systems. Although predicted theoretically a half century ago, the nature of such
condensation remains elusive. In this Letter, we derive a full quantum theory of Fröhlich condensation from
the Wu-Austin Hamiltonian and present an analytical proof that a second-order phase transition induced by
nonequilibrium and nonlinearity emerges in the large-D limit with and without decorrelation approximation.
This critical behavior cannot be witnessed if external sources are treated classically. We show that the phase
transition is accompanied by large fluctuations in the statistical distribution of condensate phonons and that the
Mandel-Q factor which characterizes fluctuations becomes negative in the limit of excessive external energy
input. In contrast with the cold atom equilibrium Bose-Einstein condensation (BEC), the Fröhlich condensate is
a result of the nonequilibrium driving where the pump plays a role of setting the number of particles, and the
medium plays a role of setting the temperature. Hence, BEC can either arise by reducing the medium temperature
at fixed pump (equilibrium case), or by increasing the pump at fixed medium temperature (nonequilibrium case).
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Introduction. In biological systems, a driven nonequilib-
rium condensation phenomenon which is often compared
with the Bose-Einstein condensation (BEC) was hypothe-
sized by Fröhlich in the late 1960s [1–4]. Although BEC
is a low-temperature equilibrium phenomenon whose dis-
covery was only recently realized as the cooling technology
advances [5,6], the Fröhlich condensate is intrinsically an
out-of-equilibrium condensation of collective vibrations at
the lowest mode driven by an external energy supply and is
expected to occur at much higher temperatures. The proposal
has stimulated a wide range of studies on the collective modes
in nonequilibrium systems, such as quasiequilibrium magnon
condensation at room temperature [7–9], polariton condensa-
tion in photonic systems [10–14] as well as nonequilibrium
phase transitions [15,16]. Recently, due to the rapid progress
of terahertz technology, many experimental and analytical
works have been carried out in this direction and signals
of the long-anticipated nonequilibrium condensation were fi-
nally observed [17–21]. Further experimental investigations
in both biological and nonbiological systems have been pro-
posed, such as spectroscopic studies using lysozymes and the
bovine serum albumin (BSA) proteins, and optomechanical
experiments using an array of membranes coupled with a
cavity [22,23].

The essential piece in Fröhlich’s conjecture is the rate
equations of the vibrational modes. The rate equations in
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Fröhlich’s reasoning were constructed heuristically by re-
quiring a Bose-Einstein distribution of the phonons in the
absence of energy sources [1,2]. A rigorous derivation of
the rate equations was provided by Wu and Austin from a
quantum Hamiltonian, now known as the Wu-Austin Hamil-
tonian [24–27]. The Hamiltonian is composed of three parts:
the oscillating dipoles, the heat bath that interacts nonlinearly
with the system dipoles, and the external energy supply. The
microscopic theory was formulated based on the Hamilto-
nian and finite-temperature Green’s functions and confirmed
the possibility of detecting the phonon condensation in bio-
logical systems even at room temperature [24–27]. The rate
equations suggest the emergence of the cooperative self-
organization when the input energy is strong and the chemical
potential approaches the lowest energy in the branch of vibra-
tional modes [26,28].

Although the theory of Fröhlich condensation dates back
half a century ago, little was known regarding its quantum
and statistical properties near the transition. The common lore
for predicting the feature of Fröhlich condensate is to make
an analogy of the atomic BEC [1–4]. However, this a priori
assumption should be carefully scrutinized as Fröhlich con-
densation is intrinsically an out-of-equilibrium phenomenon
whose mechanism is more suitably compared to that of a
single-mode maser of which the quantum properties and phase
transitions are intensively studied [22,29–35]. The first in-
vestigation of the quantum statistics of the condensate was
performed in Ref. [22] where the system and the bath are mod-
eled by quantum oscillators and the external pump is treated
classically. The calculation in Ref. [22] shows a continuous
crossover between the two phases—the normal phase with
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almost no condensate and the condensate phase. Although
some critical pump strength can be defined artificially as a
reference scale at which the external input is roughly strong
enough to generate the condensate, there is no qualitative
distinction across the two phases. On the other hand, recent
experiments using BSA proteins have indicated not only the
existence of the collective oscillations of the biomolecules, but
also a sign of a sharp transition when the control parameter
exceeds certain critical threshold value [18,21]. Like many
studies on the Fröhlich condensate, the analysis in Ref. [21]
adopts a semiclassical method [28,36]. They proceeded by
dequantizing the Wu-Austin Hamiltonian to obtain the clas-
sical equations of motion. However, such treatment renders
the analysis nearly intractable and difficult to retrieve further
information beyond the dynamics of mean values [36].

In this Letter, we derive a full quantum theory of the
nonequilibrium condensation from the Wu-Austin Hamilto-
nian. In contrast with Ref. [22], both the surrounding solvents
and the external source are treated quantum mechanically in
our Letter, which results in crucial differences in the critical
behaviors near the condensation point from what was reported
in Ref. [22], such as the emergence of nonequilibrium phase
transitions. We provide an analytical proof that the transition
from the nonequilibrium steady state (NESS) with no con-
densate to the condensate state is similar to a second-order
phase transition in the large-D limit regardless of certain ap-
proximations used in the precedent research. Moreover, the
finite-size effects of the system on the transition and statistics
are investigated. Unlike BEC, the condensation process does
not require extremely low temperature but a high-temperature
energy input. We demonstrate that such transition is accom-
panied by large fluctuations in its statistics and that excessive
energy input promotes the system to the regime with a nega-
tive Mandel-Q parameter.

Driven dissipative system. The appearance of the Fröhlich
condensate is believed to be a general consequence of the
following three conditions: dissipation to the thermal bath,
external energy source, and nonlinearity. For the terahertz
vibrations inside protein molecules, such as phonon modes
in DNA or BSA proteins, the surrounding solvents function
approximately as a thermal bath. The nonlinear coupling
between the system vibration modes and the surrounding
medium in the second quantization form gives rise to the
Hamiltonian formulized by Wu and Austin [24–27]. The sys-
tem we consider is modeled by a collection of oscillators
in a narrow bandwidth ωi ∈ Isys which corresponds to D-
normal modes of the oscillation. The vibrational modes are
annihilated by operator ai. The normal modes interact with
the surrounding biological system with the excitation energies
�̄k and the associated annihilation operator bk as well as the
external source with frequency �i and annihilation operator
pi. The interaction Hamiltonian can be written as

Vint (t ) = h̄
∑

i

∑
k

fi,ka†
i bkei(ωi−�̄k )t

+h̄
∑
i, j

∑
k

gi j,ka†
i a jbkei(ωi−ω j−�̄k )t

+h̄
∑

i

∑
k

λi,ka†
i pkei(ωi−�k )t + H.c., (1)

where fi,k and gi j,k are the coupling constants between the
molecular vibrations and the solvent, and λi,k is the cou-
pling between the external source field and the system. ωi,
�̄k , and �k denote the frequencies associated with the ith
vibrational mode of molecules, the solvent modes, and of the
energy source. The Hamiltonian has been criticized for the
unbounded potential energy from below [37]. This does not
concern us here as the Hamiltonian is only used as an effective
approximation in the interested energy domain rather than a
fundamental description.

The rate equation of the condensate can be derived directly
from the above interaction Hamiltonian. The details of the
derivation can be found in the Supplemental Material [38].
We use the standard techniques of the full quantum mas-
ter equation with Born and Markov approximations which
returns formally the equations of motion for the whole sys-
tem [39–41]. We then reduce the equations of motion of the
density operator to only the lth state. After rearranging and
contracting the repeated indices, we obtain the rate equation of
phonons at mode ωl in reminiscence of the heuristic equa-
tion given by Fröhlich,

〈ṅl〉 = φ[n̄ωl − 〈nl〉] + �[nωl − 〈nl〉]

+χ

{∑
j>l

[n̄ω jl 〈n j − nl〉 + 〈n jnl + n j〉]

+
∑
j<l

[n̄ωl j 〈n j − nl〉 − 〈n jnl + nl〉]
}

, (2)

where φ = 2π f 2
ωD(ω), � = 2πλ2

ωD(ω), χ = 2πg2
ωD(ω)

are the rates of dissipation, energy input, and energy
redistribution, respectively. D(ω) is the density of states
of the surrounding environment. Since the bandwidth of the
oscillations Isys is assumed to be narrow, the variation of the
bath density and the couplings within the frequency range is
slow, thus, the rates can be well approximated to be the same
for each mode. As such, D(ω), fω, λω, and gω can all be
evaluated at a typical value of ω0, the lowest of the vibrational
modes. The rate equation of the total number of phonons
N̂ = ∑D

s=0 a†
s as can be further calculated to be the following:

〈 ˆ̇N〉 = (D + 1)(φn̄s + �nex ) − (φ + �)〈N〉. In the NESS,
the solution of the total number of phonons is

〈N〉 � (D + 1)(φn̄s + �nex )

φ + �
, (3)

where n̄s is the occupation of the solvent at frequency ω0, nex

is the occupation of the external source at ω0, and D is the
total number of modes. Note that the nonlinear term does not
contribute to the total phonon number and only contributes
to the energy redistribution. At the steady state, the phonon
number at mode ω0 can be formally expressed as

〈n0〉 = φn̄s + χ (n̄s + 1)(〈N〉 − 〈n0〉) + �nex

φ + � − χ (〈N〉 − 〈n0〉 − Dn̄s)
. (4)

It is easy to check that by setting the nonlinear coupling
χ = 0, the mean value of phonon number at mode ω0 becomes
the weighted average of thermal distributions due to the sol-
vent and the external source: 〈n0〉 = φn̄s+�nex

φ+�
. This is expected
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from the secular approximation used in the equations of mo-
tion which ignores the off-diagonal subdominant contribution
[39–43]. To obtain Eq. (4), we have assumed the decorrelation
approximation between n0 and nl , namely, 〈n0nl〉 � 〈n0〉〈nl〉
and 〈n2

0〉 � 〈n0〉2. In the case of large molecule numbers, the
total number of vibrational modes D is large, and the solution
for the mean condensate number is approximately,

〈n0〉 � 〈N〉 − Dn̄s

2
+ 1

2

√
(〈N〉 − Dn̄s)2 + 4(n̄s + 1)〈N〉. (5)

It is easy to see that in the limit of large total number of modes

D, the fraction of the condensate becomes 〈n0〉/〈N〉 D→∞−−−→ 0
for nex � n̄s. When nex > n̄s, we have

〈n0〉/〈N〉 � �

φn̄s + �nex
(nex − n̄s), (6)

which suggests a continuous phase transition at nex = n̄s and
gives the critical exponent β = 1. The fraction approaches to
one in the limit of large nex.

Condensate statistics and fluctuations without decorre-
lation approximation. The above approach to solve for the
approximate mean value of condensate phonons is a reminis-
cence of Fröhlich’s equation. However, one can argue that the
decorrelation approximation used in obtaining the formula is
heavily invalidated by the nonlinear term in the Hamiltonian
as well as by the coherence in the vibrational modes and
fluctuations in each mode [29,35]. Therefore, in situations
with strong coherence or near the transition point, such ap-
proximations are not applicable, and new approaches need to
be considered. To gain insight into the transition phenomenon,
we study the quantum statistics of condensate phonons as-
suming only the decorrelation between the total number of
phonons 〈N〉 and the condensate phonon number 〈n0〉, namely,
〈n0N〉 � 〈n0〉〈N〉. The total phonon number 〈N〉 has a much
smaller relative fluctuation due to the central limit theorem
and is conserved under the nonlinear two-phonon interaction
which correlates two individual modes. The statistics of the
condensate contains not only the information about the mean
value of the phonon numbers in the condensate, but also its
distribution. One of the important features of the distribution
is captured by its the Mandel-Q parameter defined as Q =
(〈n2

0〉 − 〈n0〉2)/〈n0〉 − 1, which characterizes the fluctuation
of a distribution as well as its distance from the classical Pois-
son distribution [44]. For any classical probability distribution
the range of the Mandel parameter is Q � 0, where Q = 0
corresponds to the Poisson distribution. Negative values of
Q means no classical analog and sub-Poissonian statistics
exemplified by certain squeezed states of light [45].

We reduce the density matrix into the lowest diagonal
mode to retrieve the information of only the conden-
sate modes, ρn0,n0 = ∑

{nl }〈n0, {nl}|ρ|n0, {nl}〉, where {nl} =
{n1, n2, . . . , nD} is the configuration of the excited states, and
n0 is the variable denoting the phonon number in the conden-
sate. For one specific n0, the diagonal element has the physical
interpretation of the probability of finding n0 phonons on the
lowest mode. The steady-state solution for the distribution of
the condensate phonons can be solved exactly. For details,
please refer to Supplemental Material [38]. For simplicity, we
denote the probability as P(m) where m ∈ {0–3 · · · }, then the
reduced equations of motion of the system have the simple

solution as follows:

P(m) = P(0)

(
1 + 1

n̄s

)m (N − m)(m)

(N + D − m)(m)
, (7)

where (q)(m) is the rising Pochhammer symbol, N is defined
as N = 〈N〉 + 1 + φn̄s+�ne

χ (n̄s+1) and D = D + φ(n̄s+1)+�(ne+1)
χ n̄s

−
φn̄s+�ne

χ (n̄s+1) − 1. The probability of zero condensate phonon
P(0) can be determined by the normalization condition∑

m P(m) = 1, which gives

P(0)−1 = 2F1

(
1,−N ; −D − N + 1; 1 + 1

n̄s

)
, (8)

where 2F1(1,−N ; −D − N + 1; 1 + 1
n̄s

) is the Gauss hyper-
geometric function of type (2,1). As a reminder, D is the
total number of oscillators in the system, and 〈N〉 is the
total number of phonons in all modes given in Eq. (3). Ex-
amples of such distributions are shown in the Supplemental
Material [38].

The mean phonon numbers in the condensate can be cal-
culated by the summation 〈n0〉 = ∑

m mP(m). The fraction of
the phonon condensate 〈n̄s〉/〈N〉 is given as follows:

〈n0〉
〈N〉

=
N

(
1+ 1

n̄s

)
2F1

(
2, 1 − N ; −D − N + 2; 1 + 1

n̄s

)

(D + N − 1) 2F1

(
1,−N ; −D − N + 1; 1+ 1

n̄s

)
/

〈N〉.

(9)

In deriving Eqs. (7)–(9), we have treated the total phonon
number as its mean value 〈N〉 given in Eq. (3). The second
moment of the condensate phonon number takes the analytic
form

〈n2
0〉 =

N
(

1 + 1
n̄s

)
3F2

(
2, 1 − N ; 1,−D − N + 2; 1 + 1

n̄s

)
(D + N − 1) 2F1

(
1,−N ; −D − N + 1; 1 + 1

n̄s

) .

(10)

The Mandel-Q parameter defined by

Q = Var [n0]

E [n0]
− 1 = (〈n2

0〉 − 〈n0〉2)/〈n0〉 − 1 (11)

can be directly computed from the above expressions (see
Fig. 1).

Nonequilibrium phase transition. For the Gauss hy-
pergeometric function given in Eq. (9), the function
2F1(a,−b; −c; d ) for positive {a, b, c, d} is bounded when the
ratio c

b < d and it converges to a finite positive value as b →
∞. Note that in the large-N limit, the total phonon number
and the total vibrational modes are related by D � 1

(n̄s+δn) 〈N〉
where δn = �

φ+�
(nex − n̄s). Therefore, in this case the fraction
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FIG. 1. Mandel-Q parameter for different values of the total
mode number D. (a) The Mandel-Q parameter reaches maximal
near the phase-transition points given by Eq. (16). (b) For the
external source at high intensity, the Mandel parameter becomes
negative. Parameters are n̄s = 16, φ = 5 GHz, � = 10 GHz, and
χ = 0.07 GHz.

of condensate phonons is reduced to

〈n0〉
〈N〉 �

(
1 + 1

n̄s

)
(

1 + 1
n̄s+δn

)

×
2F1

[
2,−〈N〉; −

(
1 + 1

n̄s+δn

)
〈N〉; 1 + 1

n̄s

]
2F1

[
1,−〈N〉; −

(
1 + 1

n̄s+δn

)
〈N〉; 1 + 1

n̄s

]
/

〈N〉.

(12)

It can be shown that for large integer values of 〈N〉 and δn <

0, the ratio of the hypergeometric functions is finite and the
fraction vanishes

〈n0〉
〈N〉

D→∞−−−→ 0 for δn < 0 and 〈N〉 ∈ Z+,

d

d nex

( 〈n0〉
〈N〉

)
D→∞−−−→ 0 for δn < 0 and 〈N〉 ∈ Z+. (13)

For the case of δn > 0, the hypergeometric functions
are unbounded as b goes to infinity and the ratio

2F1(2,−b; −c; d )/2F1(1,−b; −c; d ) scales as b. This leads to

〈n0〉
〈N〉 > 0 for δn > 0 and 〈N〉 ∈ Z+

d

dnex

( 〈n0〉
〈N〉

)∣∣∣∣∣
δn=0+

> 0 for 〈N〉 ∈ Z+. (14)

One can verify easily that the limit lim
δn→0

〈n0〉/〈N〉 = 0 in the

large-D limit and the derivative is discontinuous at the tran-
sition point δn = 0. This confirms that as the external source
intensifies, the NESS of the system goes through a continuous
phase transition, similar to the second-order phase transition
in the equilibrium superfluidity to the condensate phase. Near
the transition point, i.e., 0 < (nex − n̄s)/(n̄s) � 1, we apply
the leading-order saddle-point approximation and obtain the
fraction of the condensate,

〈n0〉
〈N〉 � 1

n̄s

�

φ + �
(nex − n̄s). (15)

This confirms the result obtained by applying the decorrela-
tion approximation Eq. (6) and the critical exponent β = 1.

For finite values of D, an equivalent condition for the
condensation to occur, besides directly computing the fraction
of condensation in Eq. (9), is to look at the statistics of the con-
densate phonons, namely, when P(ncr + 1) > P(ncr ) for some
ncr � 1. This inequality gives the condensation condition,

nex >
(D − 1)� − 2φ

(D + 1)�
n̄s +

(
φ + �

χ
+ ncr − 1

)
φ + �

(D + 1)�
.

(16)

The transition point can be directly computed from Eq. (16)
by setting ncr = 1. Note that in the large-D limit, the critical
number density reduces to the same as the surrounding sol-
vent,

nex = n̄s, (17)

which is the same as the condition given in Eqs. (6) and (15).
In contrast with the cold atom equilibrium BEC, the Fröhlich
condensate is a result of the nonequilibrium driving. In this
case, the pump plays a role of setting the number of particles,
and the medium plays a role of setting the temperature. There-
fore, BEC either arises by reducing the medium temperature
at the fixed pump (equilibrium case), or by increasing the
pump at fixed medium temperature (nonequilibrium case).
On the other hand, the emergence of the condensation also
infers the off-diagonal long-range order in the system in-
dicated by the Penrose-Onsager criterion [46,47]. In the
long-distance limit, the single-particle density matrix be-
comes ρ(x, x′) = 〈ψ†(x)ψ (x′)〉 → nc where nc stands for the
density of the condensate. The emergence of the conden-
sate, though obtainable from the dequantized or semiclassical
equations, suggests a strong enhancement of nonclassicality
of the system.

The phase behavior was studied in the case of a clas-
sical pumping field [22] where the pump coupling Vp =∑

s[F
∗

s (t )ase−iωst + H.c.] is featured by a broad spectrum
〈Fs(t ′)F ∗

s (t )〉 = r
2δ(t − t ′) with the control parameter r denot-

ing the pumping rate. However, the issue with the classical
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pumping field is that it is qualitatively similar to an external
source at an infinitely high temperature in that the emission
and absorption rates are the same in a microprocess. The only
parameter describing such classical pumps is the pumping
rate r. Since the key to determine the phase transition is the
comparison of the pump particle density with that of the bath,
this requires a quantum description of not only the bath but
also the pump. By treating the pump classically, all modes
obtain the same gaining rate due to the pump regardless of the
number of phonons already on the modes. Therein many of the
critical properties at low temperatures and near the transition
are erased. For instance, the critical energy supply at which
the condensation emerges, in this situation, approaches zero

in the large-D limit: r = φ

D+1 (1 + φ

χ
)

D→∞−−−→ 0. It means that
the condensate phonons at the lowest mode start to accumulate
from the zero pumping and increase with the strength of the
pumping field until saturation. It can be further shown that the
fraction of the condensation in the large-D limit is roughly

r/φ
r/φ+n̄s

. As shown in Figs. 2 and 3, the condensation will
emerge regardless the types of irradiating energy, but the tran-
sition to the condensation phase is a continuous crossover with
no real distinction between the phases in this case (Fig. 3).

In Fig. 1, we show that the Mandel-Q parameter reaches the
maximal at the transition point near nex = n̄s = 16 [the exact
value is given in Eq. (16)] and decays rapidly away from the
phase transition point. For an extremely large energy input, Q
becomes negative, and it suggests a sub-Poissonian statistics
similar to that in the resonance fluorescence of a single atom.
In Fig. 2, the fraction of condensate phonons as the occupation
of the external source is simulated. For a relatively small total
phonon numbers (e.g., 〈N〉 = 200), the transition from the
ordinary nonequilibrium phase to the condensation phase is
similar to a continuous crossover due to the finiteness of the
system. In particular, in this case the condensation fraction
is nonzero even for zero external energy input due to the
finiteness of the system and the thermal equilibrium with the

FIG. 2. Fractions of condensate for different values of D demon-
strate the second-order phase transition at the critical external
occupation number. Parameters are n̄s = 16, φ = 5 GHz, � =
10 GHz, and χ = 0.07 GHz. The inset: Comparison between the
decorrelation solution Eq. (5) (semiclassical) and the solution with-
out the decorrelation assumption (quantum) according to Eq. (9) for
D = 200.

FIG. 3. Fraction of condensate vs energy input for classical
pumping field. The vertical lines are the threshold pumping values.
For larger-D values, the behaviors are similar, but the threshold
values are much closer to the vertical axis r = 0. Parameters are
n̄s = 16, φ = 5 GHz, χ = 0.07 GHz.

surrounding solvent. However, in the large-D case, the transi-
tion becomes sharp and the fraction is negligible at zero input,
which is expected for the thermodynamic limit. This agrees
with the findings reported in a recent experiment [21]. We
compare the solution with the decorrelation approximation
Eq. (5) and the solution without the assumption Eq. (9). The
relative difference maximizes near the transition point (for
D = 200, the critical point is at nex � 17.4). The numerical
simulations verify that the transition behaves in accordance
with our analytical result Eq. (16). In Fig. 3, we show that
in the case of a classical broad-spectrum pumping, such a
transition does not show up.

Conclusions. It has been long debated if molecules go
through certain phase transitions to the condensate states dur-
ing the Fröhlich process. In this Letter, we derived a full
quantum theory of the Fröhlich condensation and demon-
strated the critical phenomenon. In particular, we presented an
analytical proof of the existence of the nonequilibrium phase
transition based on the Wu-Austin Hamiltonian and outlined
the conditions for witnessing such transitions. We analyzed
the phonon distributions and fluctuations near the transition
and showed that the phase transition is only realizable in the
large-D limit. In biological systems, this condition can be nat-
urally realized, and the analysis demonstrates the viability of
broad experimental prospect to observe such a nonequilibrium
phase transition of the molecular vibrations into a coherent
quantum state in much broader systems than the equilibrium
BEC. Recent experiments have made tremendous progress in
the nonequilibrium condensation in biological systems, and
signs of such phase transition as shown in Fig. 2 were wit-
nessed. Further experimental investigations and smoking-gun
evidence are in need to exclude all potential artifacts and to
confirm the finding. It is hopeful that this will open a new
door for further explorations of out-of-equilibrium collective
oscillations in broader nonequilibrium systems.
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