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Acoustic metafluids of shear modulus enabling surface waves
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Metafluids, the version of metamaterials with fluid background, are generally characterized by two parameters:
the effective mass density and bulk modulus. However, we recently theoretically demonstrated that a metafluid,
with built-in quadrupolar resonances, can counterintuitively accommodate a third parameter, the effective
shearlike modulus. In this letter, we go further to experimentally implement this metafluid, realized as a square
lattice array of hollow steel cylinders in water. The effective parameters are extracted by matching the measured
dispersion curves with the effective medium theory. By virtue of the emergent parameter, the metafluid can
intrinsically support surface waves at the interface with water, which updates the knowledge that surface waves
cannot exist at the interface of two fluids. Our work has potential in expanding the applications of metafluids.

DOI: 10.1103/PhysRevB.106.L220102

In the past two decades, great progress has been made
in the development of acoustic metamaterials because of
their manipulation functionalities on acoustic waves beyond
the defined limits of those found in nature [1,2]. Acoustic
metafluids are the version of acoustic metamaterials with
fluid background, a concept which was proposed to describe
artificial fluids with anisotropic mass density tensor [3–5].
Later, acoustic metafluids were generally seen as metamate-
rials with fluid background with abnormal parameters such
as negative effective mass density [6–8], modulus [6,7,9], or
anisotropic parameters [10]. Owning to the flexible regulation
and design of the effective parameters, acoustic metafluids
can offer many surprising possibilities for engineering sound
waves in fluid such as negative refraction [6,7,11], acous-
tic subwavelength imaging [12,13], and acoustic cloaking
[3,14–16].

Usually, acoustic metafluids (metafluids for short) acquire
their abilities through the interaction between sound and var-
ious building units termed meta-atoms, which are remarkably
smaller than the wavelength in the background medium in
general. Therefore, metafluids can be described by effective
parameters, and the wave propagation characteristics can be
conveniently understood by using these effective parameters.
It is known that, in conventional metafluids, the effective
mass density and bulk modulus govern the propagation of
acoustic waves, and the two parameters are associated with
monopolar and dipolar scatterings, respectively [6,17]. In a
recent work [18], we have theoretically shown that a metafluid
consisting of periodic hollow solid cylinders immersed in
fluid can provide, in addition to the effective mass density
and bulk modulus, an effective parameter, i.e., effective shear-
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like modulus, which is determined by the strong quadrupolar
resonances. However, this metafluid has not been realized in
experiments, and its properties and applications have not been
fully studied.

In this letter, we construct a metafluid using a square lattice
array of hollow steel cylinders immersed in water. The band
structures of the metafluid are measured experimentally, and
the effective parameters are retrieved from these band struc-
tures. The experimental results validate our previous theory
that the effective shearlike modulus can be introduced to
describe the strong quadrupolar resonances of the metafluid.
We extend the previous effective medium theory (EMT) [18]
to characterize the metafluid as an anisotropic medium with
effective stiffness tensor derived from the shearlike modulus.
We further find that the interface between the metafluid and
water can support surface waves, which updates the knowl-
edge that surface waves cannot exist at the interface of two
fluids. The dispersion curve of the surface wave can be ob-
tained analytically using the effective stiffness tensor. It is
also found that the dispersion curve changes with the angle
between the principal axis of the stiffness tensor and the
interface. This surface wave is completely different from the
previous surface states in acoustic metamaterials that require
a negative effective mass density [19,20] and from spoof
acoustic surface waves propagating along a corrugated rigid
surface [21–26]. Finally, we perform experiments to measure
the dispersion curve and pressure field distribution of the
surface wave. The experimental results are in good agreement
with the analytical and simulated results.

The experimental metafluid with effective shearlike modu-
lus is shown in Fig. 1(a). The unit cell of the metafluid consists
of a hollow steel (ρ = 7670 kg/m3, cl = 6010 m/s, and ct =
3230 m/s) cylinder (R = 0.53 mm and r = 0.415 mm) im-
mersed in water (ρ0 = 1000 kg/m3 and κ0 = 2.22 GPa).
Since the length of the cylinder along the z axis is much larger
than the acoustic wavelength of water in the frequency range
of interest, the experimental metafluid can be considered as a
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FIG. 1. Experimental realization of the metafluid with effective
shearlike modulus. (a) The metafluid consisting of square lattice
hollow steel cylinders with R = 0.53 mm, r = 0.415 mm, and a =
1.5 mm. (b) Experimentally measured and numerically simulated
band structures of the metafluid. The solid lines denote the numerical
results (red for active branches and blue for uncoupled branches).
The purple circles denote the experimental results. The inset shows
pressure field distributions of the eigenmodes corresponding to
A–D labeled on the band structures. (c) and (d) Effective parameters
retrieved from the experimental and numerical band structures along
the �X and �M directions, respectively. All effective parameters
have been normalized to the acoustic parameters of water.

two-dimensional (2D) system. We choose the parameters of
this metafluid because they possess a clean quadrupolar mode
without the interference of the monopolar and dipolar modes.
Figure 1(b) shows the experimentally measured (purple cir-
cles) and numerically simulated (red and blue solid lines) band
structures of the metafluid. There are two flat bands associated
with the quadrupolar resonances indicated by the pressure
field distributions of the eigenmodes in Fig. 1(b). These bands
exhibit anisotropic coupling behavior with the linear band
starting from zero frequency. The lower frequency flat band
couples with the linear band along the �X direction and does
not along the �M direction, whereas the opposite occurs for
the higher frequency flat band. The group theory analysis of
the symmetry of eigenmodes has been used to explain the
anisotropic coupling behavior of the quadrupolar bands with
the linear band [18,27,28]. When the pressure field of the
quadrupolar mode is symmetric along the �X /�M direction
(shown in the field distribution C/B), the corresponding shear-
like modulus μ1eff /μ2eff is generated [shown in Figs. 1(c) and
1(d)]. Note that only the active branches can be measured in
the experiment since the incident plane wave cannot excite
the uncoupled branches. Our previous EMT has succeeded in
describing the low-frequency quadrupolar resonances, which
can be used to reproduce the main features of the band struc-
tures by introducing the effective shearlike modulus [18]. As
described in our previous work, the dispersion of the active

branch in the �X direction is expressed as

(k1L )2 = ω2 ρeff

μ1eff + κeff
, (1)

and the dispersion of the active branch in the �M direction is
expressed as

(k2L )2 = ω2 ρeff

μ2eff + κeff
. (2)

Figures 1(c) and 1(d) show the retrieved effective shear-
like modulus and bulk modulus from the experimental and
numerical band structures along the �X and �M directions,
respectively. Two shearlike moduli μ1eff and μ2eff are related
to the two nondegenerate quadrupolar resonance modes in the
square lattice metafluid. They only play a significant role near
the resonance frequencies. The perfect consistency between
the experimental and the numerical results affirms the realiza-
tion of the metafluid with the shearlike modulus.

We note that, in our previous EMT, the shearlike moduli
μ1eff and μ2eff can only be used to describe the acoustic wave-
propagation characteristics in the high-symmetry directions
for the metafluid with a square lattice. Here, we would like to
extend the previous EMT to characterize the metafluid for ar-
bitrary propagation directions. Because the metafluid exhibits
anisotropic properties, it is natural to introduce the stiffness
constants C11, C12, and C66 for this metafluid. By comparing
the wave velocity equations calculated by the constitutive
relation and Newton’s second law with Eqs. (1) and (2), the
unknown stiffness constants C11, C12, and C66 can be derived
as a function of the effective parameters μ1eff , μ2eff , and κeff .
More details are shown in the Supplemental Material [29] (see
also Ref. [30] therein). Thus, the metafluid can be mapped
to an effective anisotropic medium (EAM) with the effective
stiffness tensor:

[C] =

⎛
⎜⎝

C11 C12 0

C12 C11 0

0 0 C66

⎞
⎟⎠

=

⎛
⎜⎝

κeff + μ1eff κeff − μ1eff 0

κeff − μ1eff κeff + μ1eff 0

0 0 μ2eff

⎞
⎟⎠, (3)

to note that the effective medium description is generally
suitable in the subwavelength limit. By virtue of the effective
stiffness tensor, the dispersions and the associated modes of
the metafluid can be obtained from Christoffel’s equation [31].

According to the above analysis, Fig. 2 shows the mapping
of the metafluid to an EAM. As an example, Fig. 2(b) shows
the slowness surfaces of the equivalent anisotropic medium at
a frequency of 0.277 MHz.

It is well known that there are many different types of
surface acoustic waves [32] depending on the nature of the
two media forming the interface, such as solid-solid and
solid-fluid interfaces. Surface waves in acoustic metamate-
rials are closely analogous to a surface plasmon polariton
in the optical case. They exist either at the interface be-
tween two semi-infinite homogeneous fluids with different
signs of effective mass density [19,20] or on the rigid surface
artificially modulated with arrays of subwavelength grooves
or holes [21–26]. However, since our metafluid possesses
unique effective stiffness tensor and positive effective mass
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FIG. 2. Mapping the metafluid to an effective anisotropic
medium (EAM). (a) Schematic of the metafluid consisting of hollow
steel cylinders immersed in water. (b) The equivalent anisotropic
medium and its slowness surfaces at a frequency of 0.277 MHz. The
red and blue lines represent quasilongitudinal and quasitransverse
waves, respectively.

density (Supplemental Material [29]), we will explore
whether the metafluid can support Rayleigh-like surface wave.

Figure 3(a) shows the schematic of the analytical model for
thoroughly investigating the dispersion of the surface wave by
using the effective stiffness tensor. Semi-infinite medium I is
the EAM and medium II is water. The 2D constitutive relation
of the EAM in a global coordinate xoy can be expressed as⎛

⎜⎝
Txx

Tyy

Txy

⎞
⎟⎠ =

⎛
⎜⎝C′

11 C′
12 C′

16

C′
12 C′

11 C′
26

C′
16 C′

26 C′
66

⎞
⎟⎠

⎛
⎜⎝Sxx

Syy

2Sxy

⎞
⎟⎠. (4)

Here, [C′] is the general stiffness matrix which can
be obtained from the effective stiffness tensor [Eq. (3)]

in the principle coordinate system by the coordinate
transformation:

⎛
⎜⎝

C′
11 C′

12 C′
16

C′
12 C′

11 C′
26

C′
16 C′

26 C′
66

⎞
⎟⎠ = [N]

⎛
⎜⎝

C11 C12 0

C12 C11 0

0 0 C66

⎞
⎟⎠[N]T , (5)

where

[N] =

⎛
⎜⎝

cos2θ sin2θ sin 2θ

sin2θ cos2θ − sin 2θ

− sin θ cos θ sin θ cos θ cos2θ − sin2θ

⎞
⎟⎠

is the coordinate transformation matrix, and θ denotes a rota-
tion angle of the principal axis with respect to the y axis in the
global coordinate. The displacement field in the EAM is

u =
(

ux

uy

)
=

(
u0

x

u0
y

)
exp (ikxx) exp

(
ikyy

)
exp (−iωt ), (6)

where u0
x and u0

y are the displacement polarizations, kx and ky

are the wave numbers along the x and y axes, respectively, and
ω is the circular frequency. By substituting the displacement
field into the dynamic elasticity equation −ω2ρeffu = ∇ · T,
the eigenvalue equation can be obtained [31]:

⎡
⎣C′

11k2
x + C′

66k2
y + 2C′

16kxky − ρeffω
2 C′

16k2
x + C′

26k2
y + (C′

12 + C′
66)kxky

C′
16k2

x + C′
26k2

y + (C′
12 + C′

66)kxky C′
66k2

x + C′
11k2

y + 2C′
26kxky − ρeffω

2

⎤
⎦(

ux

uy

)
= 0. (7)

We can get two dispersion relations from the above equa-
tion, one corresponding to the quasilongitudinal (qL) mode
and the other to the quasitransverse (qT ) mode:

2ρeffω
2 = (C′

11 + C′
66)

(
k2

xqL + k2
yqL

) + √
�qL, (8)

2ρeffω
2 = (C′

11 + C′
66)

(
k2

xqT + k2
yqT

) − √
�qT , (9)

�qL = [
(C′

11 − C′
66)

(
k2

xqL − k2
yqL

) + 4C′
16kxqLkyqL

]2

+ 4
[
C′

16
(
k2

xqL − k2
yqL

) + (C′
12 + C′

66)kxqLkyqL
]2

, (10)

�qT = [
(C′

11 − C′
66)

(
k2

xqT − k2
yqT

) + 4C′
16kxqT kyqT

]2

+ 4
[
C′

16
(
k2

xqT − k2
yqT

) + (C′
12 + C′

66)kxqT kyqT
]2

.

(11)

Displacement fields for the qL and qT modes are

uqL =
(

1
tan βqL

)
exp(ikxqLx) exp(ikyqLy) exp (−iωt ), (12)

uqT =
(

1
tan βqT

)
exp(ikxqT x) exp(ikyqT y) exp(−iωt ), (13)

respectively. Thus, the total displacement field in the EAM is
in the form of u = MqLuqL + MqT uqT ,

ux = MqL exp(ikxqLx) exp(ikyqLy) exp(−iωt )

+ MqT exp(ikxqT x) exp(ikyqT y) exp(−iωt ),

uy = MqL tan βqL exp(ikxqLx) exp(ikyqLy) exp(−iωt )

+ MqT tan βqT exp(ikxqT x) exp(ikyqT y) exp(−iωt ),

(14)

where MqL and MqT are the amplitudes of the qL and qT
modes. We write the displacement field in water as

u0 =
(

1
ky0

kx0

)
exp(ikx0x) exp(iky0y) exp(−iωt ).

Here k2
x0 + k2

y0 = k2
0 = ω2

c2
0

, and c0 is the wave speed of water.
We study the surface wave propagating along the x axis in
the global coordinate xoy, so the wave numbers kx of all
the displacement fields should be coincident [33]. Thus, the

L220102-3



ZHANG, WANG, KE, LIU, HE, YE, AND LIU PHYSICAL REVIEW B 106, L220102 (2022)

(a)(a) (b)

X

Y

Z
Propagation 
directionθ

Principal axis

kx (2π/a)
Fr

eq
ue

nc
y 

(M
H

z)
0.50.40.3

0.270

0.275

0.280

θ = 0
θ = π/8
θ = π/6
θ = π/5
θ = π/4

II: Water 

I: EAM 

FIG. 3. The surface wave at the interface between the semi-
infinite metafluid and water. (a) Schematic of the analytical model for
analyzing the surface wave. The metafluid is mapped to an effective
anisotropic medium (EAM) with the principal axis orientated at an
angle θ with respect to the y axis in the global coordinate. (b) Ana-
lytically obtained dispersion curves of the surface wave for different
rotation angles θ . The black dashed line denotes the water line.

displacement fields in the EAM and water can be obtained:

uI
x = MqL exp(ikxx) exp(ikyqLy) exp(−iωt )

+ MqT exp(ikxx) exp(ikyqT y) exp(−iωt ),

uI
y = MqL tan βqL exp(ikxx) exp(ikyqLy) exp(−iωt )

+ MqT tan βqT exp(ikxx) exp(ikyqT y) exp(−iωt ),

uII
x = M0 exp(ikxx) exp(iky0y) exp(−iωt ),

uII
y = M0

ky0

kx
exp(ikxx) exp(iky0y) exp(−iωt ). (15)

By considering the continuous conditions, we can calculate
the dispersion curve of the surface wave by solving the derived
secular equation. Figure 3(b) shows the dispersion curves of
the surface wave for different rotation angles θ . The results
not only confirm the existence of the surface wave at the
interface between the metafluid and water but also exhibit
intriguing dispersion features. The dispersion curve changes
significantly with the rotation of the principal axis, which is
not achievable in conventional acoustic metamaterials. Thus,
we have found a way to manipulate acoustic surface waves.

To verify the above theoretical analysis, we experimentally
measure the dispersion and pressure field distribution of the
surface wave. Figure 4(a) shows the schematic of the experi-
mental setup. The metafluid sample consists of 38 × 16 unit
cells and is placed in a water tank. An incident plane wave is
injected on the interface between the water and the metafluid
sample at an angle of 75◦, and a probe can be applied to
record the pressure field distribution by scanning the surface
above the metafluid. Through the Fourier transformation of
the pressure fields, the dispersion of the surface wave can be
obtained. More experimental details are shown in the Sup-
plemental Material [29]. Figure 4(b) shows the dispersions
of the surface wave along the kx direction. The color maps
represent the experimental results, while the cyan dotted line
is the result of full-wave simulation by the supercell method.
The dispersion curve of the surface wave lies in the projected
bands gap and below the water line (black dashed line). In
addition, the analytically calculated dispersion curve of the
surface wave (the blue solid line located in the red dashed box
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FIG. 4. Experimental demonstration of the surface wave at the
interface between the metafluid and water. (a) Schematic of the ex-
perimental setup. (b) The dispersions of the surface wave. The color
maps represent the measured data, the cyan and black dotted lines
denote the simulated dispersions of the surface wave and projected
bulk states, and the right panel (enlarged view of the red dashed
box in the left panel) shows the analytical calculation result with
a blue solid line. The black dashed line denotes the water line.
(c) The simulated pressure field distributions of the surface wave
outside and inside the metafluid at the frequency of 0.274 MHz.
(d) The experimental pressure field distribution of the surface wave
outside the metafluid at the same frequency.

in the right panel) is plotted in Fig. 4(b). All results obtained in
three different ways agree well over most of the range of kx,
which strongly indicates that the metafluid can intrinsically
support surface acoustic waves at the interface with water. To
show more intuitive properties of the surface wave, we further
give the simulated and measured field distributions [Figs. 4(c)
and 4(d), f = 0.274 MHz] in real space near the interface. We
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can clearly see that the pressure fields decay in both water
and the metafluid perpendicular to the interface in Fig. 4(c).
The experimental measured field distribution in Fig. 4(d) also
shows the same attenuation characteristic in water. It should
be noted that it is too difficult for the experimental oper-
ation to observe the field distribution inside the metafluid.
The localized pressure fields at the interface evidently exhibit
the characteristics of surface waves. Due to the unavoidable
loss in the experiment, the measured surface wave [Fig. 4(d)]
decays fast after propagating ∼22 units as compared with
the simulated result [Fig. 4(c)]. The experimental results still
agree well with the numerical results.

In conclusion, we have experimentally implemented an
acoustic metafluid with effective shearlike modulus which
consists of a square lattice array of hollow steel cylinders in
water. We have also extended the previous EMT to charac-
terize our metafluid as an EAM with effective stiffness tensor
derived from the shearlike modulus. By virtue of the emergent

parameter, we further indicate that the metafluid can intrinsi-
cally support Rayleigh-like surface wave at the interface with
water, which updates the knowledge that surface waves cannot
exist at the interface of two fluids. The theoretical prediction
of the surface wave between water and the metafluid has been
perfectly demonstrated by experimental measurements of the
dispersion curve and pressure field distributions near the in-
terface. Our work not only updates the traditional knowledge
of fluid but also has potential in expanding the applications of
metafluids.
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