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We augment the time-linear formulation of the Kadanoff-Baym equations for systems of interacting electrons
and quantized phonons or photons with the GW̃ approximation, the Coulomb interaction W̃ being dynamically
screened by both electron-hole pairs and bosonic particles. We also show how to combine different approxima-
tions to include simultaneously multiple correlation effects in the dynamics. The final outcome is a versatile
framework comprising 212 distinct diagrammatic methods, each scaling linearly in time and preserving all
fundamental conservation laws. The dramatic improvement over current state-of-the-art approximations brought
about by GW̃ is demonstrated in a study of the correlation-induced charge migration of the glycine molecule in
an optical cavity.
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Introduction. After Feynman’s visionary idea in 1949 [1],
the Green’s function (GF) diagrammatic theory developed
into a powerful and versatile approach in nearly every field
of theoretical physics. In condensed-matter theory [2–5], ef-
forts toward the nonequilibrium extension of the formalism
(NEGF) [6,7] culminated in the so-called Kadanoff-Baym
equations (KBE) [8,9]. The KBE govern the dynamics of cor-
related electrons and bosons and give access to the electronic,
magnetic, and optical properties of any quantum system,
from simple molecules to bulk materials. As for any exact
reformulation of the many-body Schrödinger equation, the
applicability of the KBE relies on accurate approximations
and efficient implementation schemes [10–13].

In Ref. [14] we built on the generalized Kadanoff-Baym
ansatz (GKBA) for electrons [15] and bosons [16] and on
the time-linear formulation of the GKBA-KBE with electron-
electron (e-e) [17,18] and electron-boson (e-b) [16] interac-
tions to map a broad class of NEGF approximations onto
a coupled system of ordinary differential equations (ODEs).
Available methods to treat e-e correlations include GW [19],
T -matrix (either without or with exchange) and Faddeev [20],
while e-b correlations are described by Ehrenfest and second-
order diagrams in the e-b coupling [21–24]. Every method in
this NEGF toolbox guarantees the fulfillment of all fundamen-
tal conservation laws [9,25,26].

In this work we present a substantial advance in the treat-
ment of correlations, requiring no extra computational cost
and preserving all conserving properties. Specifically, we in-
clude the effects of dynamical screening due to both e-e and
e-b interactions (GW̃ approximation) [27,28]. The GW̃ exten-
sion opens the door to a wealth of phenomena, ranging from
carrier relaxation [29,30] and exciton recombination [31,32]
to molecular charge migration and transfer in optical or plas-

monic cavities [33–36]. We further show how to combine
different methods without incurring any double counting. The
final outcome is a NEGF toolbox that can be used to inves-
tigate the correlated dynamics of electrons and bosons in 212

distinct diagrammatic approximations. Real-time simulations
of the correlation-induced charge migration of the glycine
molecule in an optical (or plasmonic) cavity demonstrates the
superiority of the GW̃ method over other approximations.

Preliminaries. We consider a system of electrons with
one-particle time-dependent Hamiltonian hi j (t ) and e-e inter-
action vi jmn (Latin indices i, j, . . . etc. specify the spin orbitals
of an orthonormal basis) coupled linearly to the displace-
ment φ̂μ,1 ≡ x̂μ = (â†

μ + âμ)/
√

2 and momentum φ̂μ,2 =
p̂μ = i(â†

μ − âμ)/
√

2 of a set of bosonic modes of frequency
ωμ. Introducing the Greek index μ = (μ, ξ ) with ξ = 1, 2,
we denote by gμ,i j the interaction strength of the e-b cou-
pling. The equation of motion (EOM) for the one-electron
density matrix ρ<

i j (t ) ≡ 〈d̂†
j (t )d̂i(t )〉 [with d̂ (†)’s the electronic

annihilation (creation) operators] and one-boson density ma-
trix γ <

μν (t ) ≡ 〈�φ̂ν (t )�φ̂μ(t )〉 [with �φ̂ν ≡ φ̂ν − 〈φ̂ν〉 the
bosonic fluctuation operator] reads [16]

i
d

dt
ρ<(t ) = [he(t ), ρ<(t )] − i(Ie(t ) + Ie †(t )), (1a)

i
d

dt
γ<(t ) = [hb(t ), γ<(t )] + i(Ib(t ) + Ib†(t )), (1b)

where he
i j (t ) = hi j (t ) + ∑

mn[vimn j (t ) − vim jn(t )]ρ<
nm(t ) +∑

μ gμ,i j (t )φμ(t ) is the mean-field electronic Hamiltonian

[φμ = 〈φ̂μ〉 for brevity], whereas hb(t ) = 2α�(t ), with

αμμ′ ≡ δμμ′
( 0 i
−i 0

)
ξξ ′ and �μμ′ (t ) ≡ 1

2δμνωμ(t ), is the

free-boson Hamiltonian. To distinguish matrices in the
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one-electron space from matrices in the one-boson space
we use boldface for the latter. The time dependence of
the e-e coupling vi jmn(t ) and e-b coupling gμ,i j (t ) could
be due to the adiabatic switching protocol adopted to
generate a correlated initial state [37], whereas the time
dependence of the one-particle Hamiltonian hi j (t ) and
bosonic frequencies ωμ(t ) could be due to some external
field, e.g., laser fields [38,39], phonon drivings [40], etc. As
the mean-field Hamiltonian he depends on φμ(t ), the EOM
(1) must be complemented with the Ehrenfest EOM for the
displacements and momenta of the bosonic modes, see below.

The collision integrals Ie and Ib account for all effects
beyond mean field. They can be written in terms of two
high-order GFs according to [16] Ie

l j = i
∑

μ,i gμ,liGb
μ,i j −

i
∑

imn vlnmiGe
im jn and Ib

μν = −i
∑

ν,mn αμνgν,mnGb
ν,nm, where

Ge
im jn(t ) = −〈d̂†

n (t )d̂†
j (t )d̂i(t )d̂m(t )〉c, (2)

Gb
μ,i j (t ) = 〈d̂†

j (t )d̂i(t )φ̂μ(t )〉c. (3)

The subscript “c” in the averages signifies that only the
correlated part must be retained. The EOM (1) fulfill all fun-
damental conservation laws if Ge and Gb are obtained from
the functional derivatives of the correlated part �c of the
Baym functional [26] with respect to the e-e and e-b coupling,
respectively, i.e.,

Ge
im jn(t ) = i

δ�c

δv jnmi(t )
+ i

δ�c

δvn jim(t )
, (4a)

Gb
μ,i j (t ) = 1

i

δ�c

δgμ, ji(t )
. (4b)

In Ref. [16] we have considered the correlated func-

tional full lines represent electronic GFs

G, zigzag lines bosonic GFs D, and empty circles the e-b
coupling g. The mathematical expression of the considered
functional reads (time integrals are over the Keldysh contour)

�c = −1

2

∫
dt̄dt̄ ′ Tr[g†(t̄ )D(t̄, t̄ ′)g(t̄ ′)χ0(t̄ ′, t̄ )], (5)

where we have defined the matrix g with elements gμν =
g

μ,
j
i

= gμ,i j (hence the second Greek index ν = ( j
i ) labels

a pair of electronic indices) and the electronic response
function χ0

μν (t ′, t ) = χ0
q j
si

(t ′, t ) ≡ −iGq j (t ′, t )Gis(t, t ′). Con-

sistently with our notation, matrices with Greek indices are
represented by boldface letters. Through Eqs. (4) one obtains
Ge = 0 and Gb(t ) = i

∫
dt̄D(t, t̄ )g(t̄ )χ0(t̄, t+). Implementing

the GKBA for electrons and bosons [15,16],

G≶(t, t ′) = −GR(t, t ′)ρ≶(t ′) + ρ≶(t )GA(t, t ′), (6)

D≶(t, t ′) = DR(t, t ′)αγ≶(t ′) − γ≶(t )αDA(t, t ′), (7)

one can show that Gb satisfies a first-order ODE [16] whose
coefficients are given by simple functionals of the density
matrices ρ<, ρ> ≡ ρ< − 1 and γ<, γ> ≡ γ< + α. This is
pivotal for constructing a time-linear scheme. The result-
ing GKBA+ODE are equivalent to the original KBE — in
the GKBA framework — with electronic self-energy in the

−1
2

−1
4

−1
6

−...

= +
g†Dgvṽ

Σe =

=

=

+

+

W̃ ṽ

χ0

Σb =

χ χ0

ṽ

(a)

(c)

Φ(r)
c =

(b)

FIG. 1. (a) Diagrams of the reducible GW̃ functional �(r)
c . Full

lines are used for G, zigzag lines are used for D, empty circles are
used for g, wavy lines are used for v, and gluon lines are used for ṽ.
(b) Electronic self-energy in terms of the doubly screened interaction
W̃ . (c) Bosonic self-energy in terms of the doubly screened response
function χ .

GD approximation [23,41,42] and bosonic self-energy pro-
portional to χ0. The feedback of electrons (bosons) on the
bosonic (electronic) subsystem underlies the fulfillment of all
conservation laws.

The doubly screened GW̃ method. The functional �c in
Eq. (5) is independent of the e-e interaction; hence electronic
screening of the e-b coupling is not accounted for. This is a se-
vere drawback for extended systems [43,44]. State-of-the-art
calculations of electronic lifetimes [45], polaron dispersions
[46], and carrier dynamics [30] are indeed performed with
a statically screened electron-phonon coupling [47–49]. For-
mally, static screening does not involve any generalization of
the GD equations: it is sufficient to replace one of the g’s in
Eq. (5) with gs = g(1 + χsv), where vim

n j

≡ vi jmn and χs is the

random phase approximation (RPA) response function, χ =
χ0 + χvχ0, evaluated in equilibrium and at zero frequency.
Although gs is an improvement over the bare g, retardation
effects and nonequilibrium corrections are still lacking. In the
following we show that a time-linear GKBA+ODE scheme
can be formulated for the two-times dynamically screened
coupling gd = g(1 + χv).

It is fundamental to observe that the GKBA GFs in
Eqs. (6) and (7) are mean-field-like GFs. The theory can
therefore be improved in a conserving fashion by calcu-
lating Ge and Gb from the reducible Baym functional �(r)

c
[9]. Let �(r)

c be the GW̃ functional in Fig. 1(a) where
ṽ = v + g†Dg. This functional is reducible with respect to
D, but no double counting occurs if D is evaluated from
Eq. (7). Remarkably, a time-linear GKBA+ODE scheme
can be formulated in this case too. The zeroth-order con-
tribution (in g) is the well-known GW approximation,
while the second-order contribution corresponds to the
aforementioned approximation with dynamically screened gd ,
and henceforth GW̃ (2).
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The high-order GFs of the doubly screened GW̃ scheme
follow from Eqs. (4) with �(r)

c in place of �c (time integrals
are over the Keldysh contour):

Ge(t ) = −i
∫

dt̄dt̄ ′χ(t, t̄ )̃v(t̄, t̄ ′)χ0(t̄ ′, t+), (8a)

Gb(t ) = i
∫

dt̄D(t, t̄ )g(t̄ )χ(t̄, t+). (8b)

In analogy with χ and v, we have defined Ge as a matrix
in the two-electron space with elements Ge

μν = Ge
m j
ni

= Ge
im jn,

and in analogy with g we have defined Gb as a matrix with
elements Gb

μν = Gb

μ,
j
i

= Gb
μ,i j . The solution of the EOM (1)

with Ge and Gb from Eqs. (8) is equivalent to solving the KBE
with electronic (nonskeletonic) self-energy �e = −iGW̃ , see
Fig. 1(b), and bosonic (reducible) self-energy �b = gχg†, see
Fig. 1(c). The nonskeletonicity and reducibility is equivalent
to dressing of the GKBA D.

The GKBA in Eqs. (6) and (7) can be used to transform
Ge and Gb into functionals of ρ< and γ<, see Supplemental
Material [50], thus closing the EOM for these quantities. In-
terestingly, however, the EOM for these high-order GFs form
a closed system. We separate the two-particle GF into a purely
electronic part Gee ≡ Ge|g=0 (diagrams with no e-b vertices)
and a rest Geb, hence Ge = Gee + Geb, and show that [50]
(omitting the dependence on the time variable)

i
d

dt
Gee = −�e + he

effGee − Geehe†
eff , (9a)

i
d

dt
Geb = ρ�g†Gb − Gb†gρ� + he

effGeb − Gebhe†
eff , (9b)

i
d

dt
Gb = −�b − αgGe − Agρ� + hbGb − Gbhe†

eff , (9c)

i
d

dt
A = Gbg†α − αgGb† + hbA − Ahb, (9d)

where A is an auxiliary quantity needed to close the EOM.
The driving terms �e and �b are functionals of ρ< and γ<.
They have been already encountered in Refs. [16,17] in the
context of the simpler GW and GD approximations. In partic-
ular,

�e(t ) ≡ ρ>(t )v(t )ρ<(t ) − ρ<(t )v(t )ρ>(t ), (10)

�b(t ) ≡ γ>(t )g(t )ρ<(t ) − γ<(t )g(t )ρ>(t ), (11)

and he
eff = he − ρ�v with ρ� = ρ> − ρ<. The matrices he

and ρ≷ in the two-electron space (hence represented by bold-
face letters) are defined with elements he

μν = he
i j
mn

= he
i jδnm −

δi jhe
nm and ρ

≶
μν = ρ

≶
i j
mn

= ρ
≶
i j ρ

≷
nm.

Equations (1) and (9) together with the Ehrenfest equa-
tion for φμ, see below, form a system of seven first-order
ODEs that can be conveniently solved numerically using a
time-stepping algorithm. This is the first main result of our
work. The GW̃ (2) approximation is easily derived by dis-
carding terms of order higher than g2. Taking into account
that [50] Geb = O(g2), Gb = O(g), and A = O(g2), the right-
hand side of Eq. (9c) can be calculated with gGe → gGee and
gA → 0; this implies that in GW̃ (2) the EOM for A decou-
ples. We also observe that the EOM in the GD approximation,
see Ref. [16], are recovered from the GW̃ (2) method upon
setting v = 0 (in this case we are left with only the equa-
tion for Gb). The EOM in the GW approximation [17,18,20]
are instead recovered from the full GW̃ method upon setting
g = 0 (in this case we are left with only the equation for
Gee).

Combining different methods. The treatment of pure elec-
tronic correlations is not limited to the GW approximation. By
properly modifying the index order of the matrices Gee, ρ≶,
he, and v in Eq. (9a) we can explore a large variety of meth-
ods [20]. They include the one-bubble or second-order direct
(2Bd ), second-order exchange (2Bx), GW , exchange-only
GW (XGW ), GW plus exchange (GW + X ), T -matrix in the
particle-hole channel (T ph), exchange-only T ph (XT ph), T ph

plus exchange (T ph + X ), T -matrix in the particle-particle
channel (T pp), and exchange-only T pp (XT pp) [50]. Let “c”
be the index for one of these correlated methods, and let
us denote by Gee(c)

im jn the corresponding two-particle GF. Dif-
ferent methods can be combined to simultaneously include
several types of correlation effects if the full Gee is evaluated
according to

Gee
im jn(t ) =

∑
c

ncGee(c)
im jn (t ). (12)

In the Supplemental Material [50] we discuss how to choose
the integers nc to avoid double countings. By decorating the
electronic two-particle matrices ρ≶, he, and v in the EOM for
Gee(c) with the superscript c, the whole GKBA+ODE toolbox
for interacting electrons and bosons can then be summarized
as (omitting the dependence on the time variable)

i
d

dt
φμ = hb

μνφν +
∑

ν,i j
αμνgν,i jρ ji, (13a)

i
d

dt
ρ<

l j =
{∑

i

he
liρ

<
i j −

∑
imn

vlnmi
[
Gee

im jn + s1dGeb
im jn

] + d
∑
μ,i

gμ,li Gb
μ,i j

}
− {l ↔ j}∗, (13b)

i
d

dt
γ <

μν =
{∑

β

hb
μβγ <

βν + d
∑
β,mn

αμβgβ,mn Gb
ν,nm

}
− {μ ↔ ν}∗, (13c)

i
d

dt
Gee(c) = −�e(c) + he(c)

eff Gee(c) − Gee(c)he(c)†
eff , (13d)
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FIG. 2. (a) Illustration of the Gedanken experiment. A Gly molecule is ionized by a laser pulse and a cavity photon is emitted. (b) The four
MOs involved in the charge migration of Gly when the electron is ionized from the 12a′ MO. Electrons (black dots) on the MOs identify the
state �i after ionization. (c) Shake-up process leading to state �shake-up (left); scattering between electrons in the 4a′′ and 5a′′ MOs responsible
for a sizable renormalization of the energy of the shake-up state (middle); electron-photon scattering leading to transition �shake-up ↔ �cation

(right). (d) Spectrograms of the occupancy of the 12a′ MO in different schemes.

i
d

dt
Geb = ρ�(GW )g†Gb − Gb†gρ�(GW ) + he(GW )

eff Geb − Gebhe(GW )†
eff , (13e)

i
d

dt
Gb = −�b − s1αg[Gee(GW ) + s2Geb] − s1s2Agρ�(GW ) + hbGb − Gb[he(GW ) − s1ρ

�(GW )v(GW )], (13f)

i
d

dt
A = Gbg†α − αgGb† + hbA − Ahb. (13g)

The control parameters d , s1, and s2 refer to the treatment of
e-b correlations. The Ehrenfest approximation is recovered
for d = 0 — in this case the only equations to solve are
those for the displacements and momenta, i.e., Eq. (13a), and
the electronic equations (13b) and (13d). e-b correlations are
included choosing d = 1. In this case we can set (s1, s2) =
(0, 0) (GD), (s1, s2) = (1, 0) (GW̃ (2)), and (s1, s2) = (1, 1)
(GW̃ ). The number of equations (13d) depends on the cho-
sen treatment of electronic correlations, i.e., on the values of
nc’s. If nc = 0 the corresponding Gee(c) is not needed. The
only exception is for c = GW : if s1 = 1 then the EOM for
Gee(GW ) must be solved even for nGW = 0, see Eq. (13f).
The GKBA+ODE toolbox in Eqs. (13) generalizes the one
published in Ref. [14] in two ways: (i) it includes the GW̃ (2)

and GW̃ methods, and (2) it allows for combining different
treatments of electronic correlations, for a total of 212 distinct
diagrammatic methods [50]. This is the second main result of
our work.

Charge migration in a cavity. We consider the Gly I
conformer of the glycine molecule and study the correlation-
induced charge migration due to the removal of an electron
from the 12a′ molecular orbital (MO), see Fig. 2(b). In free
space this case has been investigated at length [20,51–54].
Coulomb interaction is responsible for a shake-up process
where an electron from the 16a′ MO fills the photo-hole
and another electron is promoted from the 4a′′ MO to the
initially empty 5a′′ MO, left of Fig. 2(c). We refer to our
previous works for the electronic structure and basis repre-
sentation [54,55]. In Ref. [20] we showed that the energy of
the shake-up state is strongly renormalized by the exchange
interaction between electrons in the 4a′′ and 5a′′ MOs, middle
of Fig. 2(c), and that capturing this renormalization requires
a GW treatment. Here we analyze how the dynamics is af-
fected by a single cavity mode that couples the shake-up state

�shake-up to the lowest-energy cationic state �cation (one hole
in 16a′ MO), right of Fig. 2(c).

Let � = Eshake-up − Ei = 0.522 a.u. be the energy differ-
ence between �shake-up and the state �i of Gly just after
photoionization. In Fig. 2(d) we show the Fourier transform
of the occupancy of the 12a′ MO for different frequencies ω0

of the cavity mode. The coupling g = λd4a′′,5a′′
√

ω0 is propor-
tional to the dipole moment d4a′′,5a′′ between the MOs involved
in the transition �shake-up → �cation. The electron-photon cou-
pling strength λ is determined by the mode wave function at
the location of the molecule [56]. We take d4a′′,5a′′ = 0.125
a.u. as the average dipole moment along three orthogonal
directions and choose λ = 0.212 a.u. Details on the numerical
simulations can be found in the Supplemental Material [50].

The first panel of Fig. 2(d) displays the configuration
interaction (CI) spectrogram. For ω0 
 � cavity photons
are hardly emitted and the only possible transition is �i ↔
�shake-up. Correspondingly, the spectrum has only one peak at
frequency �CI = 0.544 a.u. � �. As ω0 approaches �, an
Autler-Townes doublet of entangled electron-photon many-
body states becomes visible [57,58]. It is due to the photon
dressing of the cationic state which makes the transition �i ↔
�cation bright and dominant when ω0 > �.

For a diagrammatic approximation to reproduce CI, the
electronic self-energy must account for all three mechanisms
illustrated in Fig. 2(c). In the second panel of Fig. 2(d) we
report the 2B+GD spectrogram. This approximation captures
only the shake-up process, thereby yielding a ω0-independent
structure at energy �2B = 0.356 a.u. As expected [20], the
GW + GD method renormalizes �2B to �GW = 0.503 �
�2B + 2vx

4a′′,5a′′ , see third panel, where vx
4a′′,5a′′ = 0.08 a.u. is

the exchange Coulomb integral responsible for the scattering
in Fig. 2(c) (middle). Achieving the CI value � calls for
vertex corrections which, however, are beyond the current

L201408-4
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GKBA+ODE formulation. The most severe deficiency of the
GW + GD spectrogram is the absence of the Autler-Townes
doublet. In fact, photon dressing requires a nonperturbative
treatment in the e-b coupling like the GW̃ method. The GW̃
spectrogram is shown in the fourth panel. Although the inten-
sity of the low-ω0 peak is weaker than in CI, the improvement
over GW + GD is quantitatively and qualitatively substantial.

In conclusion, we have extended the time-linear
GKBA+ODE formulation for interacting fermions and
bosons to the doubly screened GW̃ method and shown
how to combine different diagrammatic approximations
to account for multiple correlation effects simultaneously
while preserving all conserving properties. The case of
correlation-induced charge migration of glycine in an optical

cavity exemplifies the superiority of GW̃ over current
state-of-the-art approaches. We emphasize that the scaling of
a GW̃ calculation with the system size is the same as for GW ,
thus making the method potentially available for real-time
first-principles simulations of finite [20,55] and extended
[19,59] systems. Last but not least, the GKBA+ODE
formulation lends itself to studies of multiscale phenomena
through the implementation of adaptive time-stepping
algorithms.
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