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Creating and detecting poor man’s Majorana bound states in interacting quantum dots
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We propose and theoretically investigate an alternative way to create the poor man’s Majorana bound states
(MBSs) introduced in Phys. Rev. B 86, 134528 (2012). Our proposal is based on two quantum dots (QDs) with
strong electron-electron interactions that couple via a central QD with proximity-induced superconductivity. In
the presence of spin-orbit coupling and a magnetic field, gate control of all three QDs allows tuning the system
into sweet spots with one MBS localized on each outer dot. We quantify the quality of these MBSs and show how
it depends on the Zeeman energy and interaction strength. We also show how nonlocal transport spectroscopy
can be used to identify sweet spots with high MBS quality. Our results provide a path for investigating MBS
physics in a setting that is free of many of the doubts and uncertainties that plague other platforms.
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Introduction. The realization of Majorana bound states
(MBSs) [1–4] is one of the most heavily pursued goals in con-
densed matter physics. The motivation is their theoretically
predicted nonabelian and nonlocal properties. In addition to
being of fundamental interest as a new physics phenomenon,
these properties allow for protected ways to store and manip-
ulate quantum information [5]. The simplest toy model where
MBSs arise is the Kitaev model [6], a tight-binding chain
with spinless electrons and p-wave superconducting pairing.
An explosion in experimental activities was motivated by
various theoretical proposals showing that different quantum
systems can be engineered such that the Kitaev model arises
as an effective description of the low-energy degrees of free-
dom [7–13].

By now, experiments have revealed signatures consis-
tent with MBSs in several of the proposed platforms, see
Refs. [12,14–22] for a few examples. However, it has also
become increasingly clear that the disorder that plagues all
real materials can give rise to other, nontopological states that
can provide an alternative explanation for most experimental
observations [23–33]. So far, the nonabelian and nonlocal
properties of MBSs have not been experimentally demon-
strated.

One way to avoid the problem of imperfect materials is
to engineer an artificial Kitaev chain in quantum dots (QDs)
coupled via narrow superconducting regions [34]. In fact, it
was shown in Ref. [35] that two QDs are enough to obtain
MBSs, named poor man’s MBSs because they possess all the
properties of MBSs but only exist at fine-tuned sweet spots
in parameter space. The poor man’s MBSs system closely
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resembles Cooper pair splitter devices [36–39], but requires
both strong crossed Andreev reflection (CAR) and the ability
to fine-tune either the spin-orbit coupling strength or the angle
between noncollinearly polarized QD spins. In addition, given
the lack of topological protection, it is unclear how close
one can come to ideal MBSs in a realistic system with finite
Zeeman energy and electron-electron interactions on the QDs.

In this work, we show a way to overcome the difficulties
and uncertainties associated with the original proposal for
poor man’s MBSs. A key ingredient is to couple the QDs
via a central QD which is, in turn, strongly proximitized by
a superconductor. The advantage is that gating the central
QD provides control of the relative amplitudes of CAR and
elastic cotunneling (ECT), which allows realizing the poor
man’s MBSs with a constant spin-orbit coupling (or a constant
finite angle between the effective magnetic fields on the two
QDs). The underlying physics is the same as a recent proposal
for coupling the QDs via an Andreev bound state [40]. We
analyze the role of finite Zeeman splitting (including both
spin states on all three QDs) as well as strong Coulomb
interactions. We show that sweet spots in parameter space
exist where the system exhibits three characteristics that are
prerequisites for MBSs with nonabelian properties as follows:
(i) degenerate even and odd (electron number) parity ground
states; (ii) a substantial gap to the excited states; and (iii)
localized MBSs of high quality, which we quantify with the
Majorana polarization (MP) [41–43]. Our results also show
how the MP depends on the interaction strength and Zeeman
energy. This is important because there are regions in param-
eter space associated with apparent sweet spots that fulfill (i)
and (ii), but have poor MP. Finally, we calculate the nonlocal
transport signatures of the interacting system and show that
they can be used to identify sweet spots and distinguish be-
tween true sweet spots and apparent sweet spots with low MP.

While finalizing the present paper, a report of experimental
signatures consistent with poor man’s MBSs appeared [44]
based on the Andreev bound state coupling proposed in
Ref. [40]. The experiments were compared with a noninter-
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FIG. 1. (a) Setup with three QDs (L,C, R) coupled via spin-
conserving tunneling t and (spin-orbit-induced) spin-flip tunneling
tSO. QD C is strongly coupled to a grounded superconductor. B is an
external Zeeman field and BSO is a spin-orbit field. (b) QD orbitals
ε j and examples of tunnel processes. Electron-electron interactions
increase the energy cost of occupying a QD with two electrons. Two
normal leads with chemical potentials μL,R (controlled by voltages
VL,R) couple to QDs L and R and can be used for tunnel spectroscopy.

acting model with infinite Zeeman energy, similar to Ref. [35].
The ground-state properties of interacting double QDs harbor-
ing poor man’s MBSs were also investigated in Refs. [45–47].

Proposed device and model. To create and detect poor
man’s MBSs, we propose a device with three coupled QDs.
The setup is shown in Fig. 1(a), while Fig. 1(b) shows a sketch
of the involved energies and tunnel processes. The system is
described by the Hamiltonian [excluding for now the normal
(N) leads]

HQDs =
∑

σ, j

ε jn jσ +
∑

j

Ujn j↑n j↓ +
∑

j

EZ jn j↓

+
∑

σ, j �=C

[t jd
†
jσ dCσ + H.c.]

+
∑

j �=C

[
tSO

j d†
j↑dC↓ − tSO

j d†
j↓dC↑ + H.c.

]

+�[d†
C↑d†

C↓ + H.c.]. (1)

Here, d†
jσ creates an electron with spin σ =↑,↓ in QD j =

L,C, R with occupation njσ = d†
jσ d jσ , single-particle orbital

energy ε j , charging energy Uj , and Zeeman energy EZ j . t j

is the amplitude for spin-conserving tunneling between QDs
j = L, R and QD C, while tSO

j is the amplitude for spin-flip
tunneling, which results from a spin-orbit interaction with
spin-orbit field BSO along the y-axis, perpendicular to the ex-
ternal Zeeman field B chosen here to be along the z-axis [48].
We include the proximity-induced superconductivity on QD
C through a pairing term of amplitude �, which is a reason-
able approximation for energies below the superconducting
gap [49–52].

Relation to the original poor man’s MBS model. In the
original model for poor man’s MBSs [35], a superconduc-
tor mediates two different types of couplings between two
fully spin-polarized QDs: CAR and ECT — corresponding,
respectively, to the pairing and hopping terms in the Kitaev
model [6]. The CAR and ECT amplitudes scale in the same
way with the QD-superconductor coupling strength, but their
ratio can be controlled via the angle between the QD spins.
The MBS sweet spot occurs when the CAR and ECT ampli-
tudes are equal and both QD levels are at zero energy (i.e.,
aligned with the chemical potential of the superconductor).
At this point, the Kitaev chain hosts one MBS fully localized
on each end site; then two sites — or two QDs — suffice to
have spatially separated MBSs.

The relation between HQDs in Eq. (1) and the simple poor
man’s MBS model is most easily understood in the regime
where |ε j |, |t j |, |tSO

j |, |EZC | � |�|, |EZL,R| (although our fu-
ture analyses will not be limited to this regime). Then, in
the ground state, QDs L and R are occupied by zero or one
electron each, while QD C is in a superposition of empty
and doubly occupied (single occupation being suppressed by
the large superconducting pairing). Second-order perturbation
theory in t j and tSO

j gives a coupling between QDs L and
R, both through ECT (∝tLtR) and CAR (∝tLtSO

R + tRtSO
L , as

the singlet nature of the Cooper pairs means that a spin flip
is needed to populate the lowest spin state of each QD).
HQDs conserves the parity (even or odd) of the total elec-
tron number. Couplings within the even (odd) parity sector
are mediated by CAR (ECT) which therefore lowers the en-
ergy of the even (odd) parity ground state. However, because
of interference between different tunnel processes, the am-
plitudes of CAR and ECT depend differently on εC , such
that ECT is suppressed around εC = 0. A similar control
of the CAR and ECT relative amplitudes can be achieved
using a closely related model with an Andreev bound state
mediating the coupling between two QDs, as proposed in
Ref. [40] and exploited in the experiments presented in
Refs. [44,53].

Based on the original poor man’s MBS model, a sweet spot
is expected when the ECT and CAR amplitudes are equal and
εL = εR = 0. To some degree this still holds in our model for
finite EZ j and Uj , but we need to compensate for renormal-
izations of εL,R due to the coupling to QD C. Away from the
perturbative regime (in t j, tSO

j ), the concepts of CAR and ECT
are no longer well defined, but the processes coupling states
within the even parity sector and within the odd parity sector
still depend differently on εC .

Sweet spots and MBS quality. Throughout the rest of the
paper we, for simplicity, consider a symmetric system tL =
tR = t , tSO

L = tSO
R = tSO, UL = UR = U , EZL = EZR = EZ . We

assume that the strong coupling of QD C to the grounded su-
perconductor quenched its charging energy by a combination
of capacitive effects and tunnel-induced renormalization and
reduced its Zeeman splitting (because of the small g-factor
of the superconductor). We therefore take UC = EC = 0, but
verified that relaxing these assumptions does not qualitatively
change the results, see the Supplemental Material (SM) [54].
Unless otherwise stated, we choose the following values for
the remaining parameters (e = h̄ = kB = 1): U = 5�, t =
0.5�, tSO = 0.2t, EZ = 1.5�.
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FIG. 2. (a) δE0 as a function of εL = εR and εC . Cuts marked
A, B, and C are explored in (c, d) and in Fig. 3, while O and
E mark regions where the global ground state has odd and even
parity, respectively. The purple cross marks the εC < 0 sweet spot at
εC ≈ −0.319�, εL = εR ≈ −0.151�, while the εC > 0 sweet spot
is marked by the black cross at εC ≈ 0.634�, εL = εR ≈ 0.0785�.
(b) |M| as a function of εL = εR and εC . The crosses mark the same
points as in (a). (c) |δEn| (left axis, purple lines) as a function of
εL = εR along cut A (purple line) in (a). The lowest excited state
(full line) has different parity (odd in this case) than the ground state
(even in this case); one of the two higher excited states shown (dotted
lines) has even parity and the other odd. The black line shows |M|
(right axis) as a function of εL = εR along cut A in (a). (d) Same as
(c) but along cut B (green line) in (a). The vertical dash-dotted lines
in (c) and (d) indicate the maximum of |M|.

We first focus on δE0 = EO − EE , the energy difference
between the odd and even parity ground states of HQDs in
Eq. (1). As explained above, εC affects the even and odd
ground-state energies by changing the relative strengths of
couplings within the even and odd parity sectors. For |εC | <

|�| and εL = εR, the ground state is dominated by an even
electron number on QD C. For large positive εL,R, QDs L
and R are both mainly empty and the global ground state of
all three QDs thus has even parity. For negative εL,R with
|εL,R| < U , the global ground state is also even because it is
dominated by single occupations of both QDs L and R.

The above behavior is seen in Fig. 2(a), which shows δE0

as a function of εC and εL = εR. When changing εL,R along
a vertical cut we start and end with an even parity ground
state, but if |εC | is large enough there is a region in between

with an odd parity ground state [blue color in Fig. 2(a)]. This
happens for values of εC such that couplings within the odd
parity sector are stronger than those within the even parity
sector. There are two values of εC where this region reduces
to a point as a function of εL,R [marked with purple and black
crosses in Fig. 2(a)] and we will see that these points are the
closest we come to sweet spots with MBSs.

From Fig. 2(a) we see that we have lines in parameter
space with degenerate even and odd parity ground states
(white color). To determine whether these degeneracies are
associated with MBSs, we quantify the MBS quality using
the MP [41]. In our case, it corresponds to the degree that a
Hermitian operator localized on one of the outer QDs j �= C
can switch between the lowest-energy even and odd states

Mj =
∑

σ

(
w2

σ − z2
σ

)
∑

σ

(
w2

σ + z2
σ

) , (2)

wσ = 〈O|(d jσ + d†
jσ )|E〉, (3)

zσ = 〈O|(d jσ − d†
jσ )|E〉, (4)

where |E〉 (|O〉) is the lowest-energy even (odd) parity state.
This definition guarantees that 0 � |Mj | � 1, where |Mj | =
1 would indicate a single MBS perfectly localized on QD j,
with no other MBS operator having any weight there. For the
presented results, ML = −MR and in the following we drop
the index j and focus on |ML| = |MR| = |M|

Figure 2(b) shows |M| plotted over the same range in εC

and εL = εR used in Fig. 2(a). There is a line where |M| comes
very close to 1, but this line only coincides with an even-odd
degeneracy at two isolated points (marked with purple and
black crosses). The discontinuity in |M| arises because the two
lowest-energy odd-parity states undergo a crossing. This turns
into an avoided crossing for εL �= εR and occurs in a regime
far from even/odd ground-state degeneracy where the MP has
little meaning.

Figures 2(c) and 2(d) show |M| together with |δE0| and the
excitation energies above the global ground state (|δEn|, n �
1) as a function of εL = εR for two different values of εC

[purple and green cuts in Fig. 2(a)]. Along both cuts, we find
even/odd degeneracies with a substantial separation to excited
states. However, it is only in Fig. 2(c) that this degeneracy
coincides with a large |M| (≈0.986), while in Fig. 2(d) the
peak in |M| lies in between the two degeneracy points. Similar
results are found for the region where εC > 0.

We also investigate another important property of the
MBSs in our system, namely, their chargeless nature. For that
purpose, we calculate

δQL,R = 〈O|nL,R|O〉 − 〈E |nL,R|E〉, (5)

i.e., the lowest-energy even and odd parity states have a charge
difference δQj on QD j. At the sweet spots in Fig. 2 we
find |δQL,R| ≈ 5 × 10−3, with significantly larger values away
from the sweet spots. In summary, based on our results above,
we draw the important conclusion that it is indeed possible to
find sweet spots with localized MBSs in our system.

Transport spectroscopy. Next we focus on how to exper-
imentally find the sweet spots with significant MP based
on transport spectroscopy. We consider a transport setup ac-
cording to Fig. 1(a) with QDs L and R coupled with tunnel
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FIG. 3. (a), (c), and (e) Energy difference δE0 between even and odd parity ground states as a function of εL and εR, with the same εC as in
the lines marked (a) A, (c) B, and (e) C in Fig. 2(a). (b), (d), and (f) Same as (a), (c), and (e), but showing GLR instead.

couplings �L = �R = � to normal leads with applied voltages
VL and VR (the superconductor is kept grounded). The normal
leads are kept at temperature T = �/40. Focusing on the
regime � � T , we calculate the current based on first-order
rate equations [54,55]. In this regime, cotunneling, Kondo
correlations and renormalization of the QD energies due to
the coupling to the normal leads are negligible.

Figures 3(a), 3(c), and 3(e) show δE0, just as in Fig. 2(a),
but now as a function of εL and εR with εC as in the lines
marked A [Fig. 3(a)], B [Fig. 3(c)], and C [Fig. 3(e)] in
Fig. 2(a). The local zero-bias conductance Gj j = dIj/dVj

at VL = VR = 0 is plotted in the SM [54] and shows peaks
along the even-odd degeneracy lines. However, depending
on T relative to the gap to excited states, it can be hard to
accurately determine the sweet spot based on a local conduc-
tance measurement. It is known that nonlocal conductance,
for example, GLR = dIL/dVR, can reveal additional informa-
tion about subgap states [56–59]. Figures 3(b), 3(d), and 3(f)
show GLR corresponding to the parameters in Figs. 3(a), 3(c),
and 3(e). The MBS sweet spot, present only in Fig. 3(b), gives
rise to a distinct GLR texture, with GLR = 0 at the degeneracy
lines which cross at the sweet spot, and equal magnitudes of
positive and negative GLR. In contrast, for parameters where
there is no sweet spot, zeros of GLR do not coincide with
degeneracy lines and GLR is dominated by either positive
or negative values. This is in qualitative agreement with the
experimental findings in Ref. [44].

Low-quality MBSs. Finally, we investigate how the MBS
quality, as quantified by the MP, depends on the different
parameters, and how we can avoid being fooled by an apparent
sweet spot with low MP (“low-MP sweet spot” in the follow-

ing). Figure 4(a) shows |M| as a function of EZ = EZL = EZR

for different values of U with εC and εL = εR adjusted to
an even-odd degeneracy with the highest possible |M| (all
other parameters are the same as above). For large EZ we
find that |M| → 1, which is to be expected as the model

FIG. 4. (a) |M| as a function of EZ for different U . (b) GLR as
a function of εL and εR for EZ = 0.15� and U = 5�. There is an
apparent sweet spot at εC ≈ −0.558�, εL = εR ≈ −0.316� (marked
with a green cross) with a low |M| ≈ 0.661. (c) Same as (b) but for
the same parameters as in Fig. 3(a) [zoomed in version of Fig. 3(a)].
At the sweet spot marked with the green cross in (c), |M| ≈ 0.985.
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then approaches the original poor man’s MBS model [35].
Importantly, however, we note that the values of EZ required
for a good MP are much larger than the gap to the nearest
excited states which is ∼0.15� in Fig. 2(c). A large U helps to
maintain high MP for smaller EZ , which is also to be expected
as it suppresses local Andreev reflection and prevents double
occupation of the outer QDs.

The appearance of low-MP sweet spots presents a chal-
lenge for experiments aiming to identify and eventually utilize
MBSs. Figure 4(a) shows what to expect for a given set
of parameters, but a direct experimental signature that can
distinguish between high- and low-MP sweet spots would be
desirable. As we show in the SM [54], δE0(εL, εR, εC ) (and
therefore the local conductances) are rather similar for high-
and low-MP sweet spots. We also find a similarly small δQ
[see Eq. (5)] for high- and low-MP sweet spots. Fortunately,
a distinction can, in principle, be made based on a measure-
ment of GLR. Figure 4(b) shows GLR for parameters such
that the MP maximum is |M| ≈ 0.661, while Fig. 4(c) shows
the same plot for parameters such that the MP maximum is
|M| ≈ 0.985. For relatively low |M| the zero lines in GLR

do not cross, and the avoided crossing does not coincide
with the location of the low-MP sweet spot (marked with a
green cross). The nonlocal conductance is thus finite at the
degeneracy.

Conclusions. In this work, we considered a system with
three QDs for engineering fine-tuned MBSs, the so-called
poor man’s MBSs. These states require proximity-induced

superconductivity on the central QD, spin-orbit coupling be-
tween the QDs, Zeeman splitting due to an external field, and
fine-tuning of the energies of the QD orbitals. We quantified
the MBS quality using the MP, showing that onsite Coulomb
repulsion in the outer dots and Zeeman field increase their
quality. A good MBS is characterized by the simultaneous
occurrence of a degenerate ground state and a high MP value
for the same parameters. In contrast, a bad MBS shows low
MP values at the ground-state degeneracy. This characteristic
leads to different nonlocal transport properties, which can be
used to identify high-quality MBSs.

Although the poor man’s MBSs are not topologically pro-
tected, they preserve the remaining topological properties,
including the nonabelian exchange properties. For this rea-
son, they become a promising alternative to experimentally
demonstrate the exotic physics of MBSs. Proposals to mea-
sure noise [60–63] or entropy [64–67] associated with MBSs,
and to measure Majorana fusion [68,69] and braiding [70–72]
are compatible with the present proposal, allowing for a
definitive demonstration of the topological superconducting
phase.
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