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Moiré phonons and impact of electronic symmetry breaking in twisted trilayer graphene
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Twisted trilayer graphene is a particularly promising moiré superlattice system, due to its tunability, strong
superconductivity, and complex electronic symmetry breaking. Motivated by these properties, we study lattice
relaxation and the long-wavelength phonon modes of this system. We show that mirror-symmetric trilayer
graphene hosts, aside from the conventional acoustic phonon modes, two classes of shear modes, which are
even and odd under mirror reflection. The mirror-even modes are found to be gapless and equivalent to the
“phason” modes of twisted bilayer graphene, with appropriately rescaled parameters. The modes odd under
mirror symmetry have no analog in twisted bilayer graphene and exhibit a finite gap which we show is directly
proportional to the degree of lattice relaxation. We also discuss the impact of mirror-symmetry breaking,
which can be tuned by a displacement field or result from a stacking shift, and of rotational- as well as
time-reversal-symmetry breaking, resulting from spontaneous electronic order. We demonstrate that this can
induce finite angular momentum to the phonon branches. Our findings are important to the interpretation of
recent experiments concerning the origin of superconductivity and of linear-in-T resistivity.
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Introduction. Stacking and twisting different layers of
graphene has emerged as a popular route to creating correlated
superlattices over the last few years [1–5]. Besides the most
well-studied system, twisted bilayer graphene (TBG), many
other geometries have been explored both experimentally and
theoretically. Among them, mirror-symmetric twisted trilayer
graphene (TTG) [6–21], which consists of three graphene
layers with alternating twist angles (see Fig. 1), stands out:
it is the first system that can be efficiently tuned with a
perpendicular displacement field D0 while exhibiting strong
and reproducible superconductivity. Recently, another unique
behavior was observed experimentally on decreasing the twist
angle θ slightly below the magic angle [12,13]: while the
system still exhibits superconductivity with roughly the same
critical temperature, the linear-in-temperature (T ) resistiv-
ity seen at the magic angle disappears. Motivated by these
outstanding properties of TTG and the fact that both supercon-
ductivity and linear-in-T resistivity [22,23] are considered to
be linked to phonons in graphene moiré systems [23–29], here
we theoretically study the long-wavelength and low-energy
phonons of this system that are crucially determined by the
moiré superlattice and thus depend on the twist angle.

Long-wavelength phonon modes have recently attracted
significant attention [26,30–32] in TBG. Besides the conven-
tional acoustic phonons, the moiré lattice allows for gapless
shear modes, often referred to as phasons. Phason modes
have a rich history in the study of quasicrystals [33] and
charge-density-wave materials [34]. In our case, they can be
intuitively thought of as the relative displacements of the
two layers of TBG, which shift the moiré pattern and are
thus gapless. However, a proper description [26,30] requires
taking into account lattice relaxation, and the phasons then

correspond to the sliding of domain walls. Figure 1 illustrates
that TTG allows for three types of long-wavelength phonon
modes: on top of the regular acoustic phonons, where all
three layers move in phase, there is another mirror-even set
of modes, where the middle layer moves against the outer
two layers. It is shown to be gapless and (modulo rescaling
of parameters) exactly equivalent to the phasons of TBG.
We further show that TTG also allows for mirror-odd shear
modes, which have no analog in TBG and are found to be
gapped; the existence of a gap is intuitively understood by
noting that a mirror-odd displacement of the layers does not
just correspond to a translation or rotation of the moiré pattern
but rather to a nontrivial distortion of the superlattice.

In this work we not only investigate the twist-angle
evolution of the phonon properties—which bear important
consequences for the interpretation of experiments [12,13]—
but also the impact of reduced electronic symmetries on the
phonon spectrum. This includes both the effects of an ap-
plied displacement field or stacking shifts, which break the

FIG. 1. Illustration of TTG in a perpendicular displacement field
D0 and its low-energy phonon modes.
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mirror symmetry, leading to an admixture of the gapless
and gapped shear modes, and the consequences of spon-
taneous electronic symmetry breaking. Theoretical [18–21]
and experimental [6–13] studies of TTG indicate a variety
of symmetry-broken electronic phases and studying their in-
fluence on the phonons is therefore crucial. We show how
different electronic orders can induce finite angular momen-
tum in the phonon branches.

Formalism. To begin, we first focus on the mirror-
symmetric limit of TTG (i.e., in the absence of a displacement
field) with no symmetry breaking in the electronic sector. The
total free energy is a sum of two pieces F = Fel + Fad, where
Fel describes in-plane elastic distortions of the graphene layers
and Fad accounts for the interlayer adhesion energy. Labeling
the layers from bottom to top by l = 1, 2, 3, and their corre-
sponding in-plane [35] displacements by the two-component
fields s(l ), the first term can be written as [36]

Fel =
3∑

l=1

∫
dr

[
λ

2
(∇ ·s(l ) )2 + μ

4

(
∂is

(l )
j + ∂ j s

(l )
i

)2
]
,

where λ � 3.25 eV/Å2 and μ � 9.57 eV/Å2 are the Lamé
coefficients of graphene [37,38]. We briefly discuss the out-
of-plane field component in Sec. I C of the Supplemental
Material (SM) [35]. The elastic theory is more naturally ex-
pressed in terms of the relative displacements, u ≡ s(3) − s(1)

and v ≡ s(3) + s(1) − 2s(2), which are odd and even under
mirror reflections, respectively, and the total displacement,
w ≡ s(1) + s(2) + s(3) (cf. Fig. 1). While changes in u and v

correspond to shear modes, the mode w represents an in-
phase displacement of all three graphene sheets. The adhesion
energy Fad is a functional of the relative displacement fields
only, i.e., Fad = ∫

drVad[r, u(r), v(r)], where Vad represents
the adhesion potential gluing the layers together; we expect
Vad to be well described as the sum of pairwise interlayer
interactions between nearest-neighboring layers. Restricting
its Fourier expansion to the smallest nonzero reciprocal lattice
vectors Gν , rotational symmetry implies that [35]

Vad =
∑
l=1,3

Vl

3∑
ν=1

cos

[
bν

2
· (v + plu) − Gν ·r

]
, (1)

with p1 = −1, p3 = +1, where bν are the reciprocal lattice
vectors of a single graphene sheet; mirror symmetry implies
V1 = V3 ≡ V . Putting Fel and Fad together and solving the
coupled Euler-Lagrange equations of motion for harmonic os-
cillations about the self-consistently determined equilibrium
configurations {u(0)(r), v(0)(r)}, we obtain the spectrum of
lattice vibrations.

Mirror-symmetric limit. The relaxation of the moiré su-
perlattice due to the interlayer couplings is captured by the
displacement textures {u(0), v(0)}. We see that this atomic
reconstruction leads to a nontrivial v(0) �= 0 [Fig. 2(b)], which
illustrates that the lattice reorganizes itself to maximize (mini-
mize) the regions of energetically (un)favorable AB/BA (AA)
stackings in each bilayer. We find that this relaxation is equiv-
alent to that of TBG, apart from a rescaling of parameters [35].
Furthermore, we obtain that u(0)(r) is identically zero ∀ r.
While spontaneous breaking of mirror symmetry by the lattice
is possible in principle, u(0) �= 0 is not favorable energetically.

FIG. 2. (a) Phonon spectra of TTG in the mirror-symmetric limit
at the magic angle θ = 1.56◦. (b) Lattice relaxation texture for v(0);
the AA (AB/BA) stacking regions at the center (corners) of the moiré
unit cell—demarcated by the solid hexagon—shrink (expand) under
such relaxation. (c, d) Phason velocities for the lowest two branches;
the solid lines mark the transverse (vTA, blue) and longitudinal (vLA,
red) acoustic phonon velocities. (e) Gap of the mirror-odd shear
mode as a function of the twist angle.

This can be understood intuitively by noting that simultaneous
maximization of local AB/BA stacking regions in the top and
bottom bilayers via v(0) �= 0 is most effective when the outer
two layers are aligned, as seen in experiments [9,11].

The fully relaxed spectra of the three distinct classes of
vibrational modes, arising from the displacements u, v, and
w, are arrayed in Fig. 2(a) in units of ω0 = (2π/LM )

√
λ/ρ,

where ρ is the mass density and LM is the moiré lattice con-
stant. Physically, the acoustic phonon modes, w(q), represent
the in-phase vibrations of all three layers. On the other hand,
the gapless phason modes, v(q), correspond to the sliding mo-
tion of the domain walls. As shown in Sec. I B of the SM [35],
the phason mode for TTG is equivalent to that of TBG modulo
rescaling of the adhesion potential V → 2V/3. The phasons
can be thought of as acoustic modes of the emergent moiré
superlattice, and the soft nature of this lattice can be seen from
the velocities in Figs. 2(c) and 2(d). Unlike the acoustic mode
velocities, which, within the harmonic approximation, are just
constants given by vLA = √

(λ + 2μ)/ρ and vTA = √
μ/ρ,

for longitudinal and transverse phonons, respectively, we see
that the velocities of the low-frequency phason modes are
extremely sensitive to twisting and can thus be used as an
indirect probe to infer the twist angle. The existence of these
soft phason modes is also expected to modify (and imprint
signatures in) various experimental observables, including the
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low-temperature specific heat [39], thermal conductivity [40],
and frictional properties such as superlubricity [41–44].

Finally, there also exists a gapped shear mode, u(q), which
is unique to TTG. This mode corresponds to a distortion of the
moiré lattice and is thus massive, but the C3 symmetry guaran-
tees that the lowest two branches (the two polarizations) have
the same mass. In Fig. 2(e) we see that the gap 	 decreases
monotonically with increasing twist angles, and this behavior
of the gap can be understood from the expression

	2 = 3V

2ρ
|b|2α; α = 〈− cos(bνv

(0)/2 − Gνr)〉�, (2)

obtained from perturbation theory (see Eq. (S32) [35]). Here,
|b| ≡ |bν |, and 〈. . .〉� denotes the spatial average over the
system. Without any relaxation, i.e., v0(r) = 0, we have α = 0,
while relaxation will result in α > 0 to optimize the adhesion
potential. This is also expected since, in the absence of relax-
ation, the top and bottom layers can be moved independently
without any energetic cost in our elastic theory. Therefore
the gap of the mirror-odd shear mode—a thermodynamically
observable quantity—is directly proportional to the dimen-
sionless measure α of lattice relaxation. Furthermore, we now
also immediately understand that, for smaller twist angles,
the impact of the relaxation will be stronger such that α,
and hence, 	, increases, in accordance with Fig. 2(e). Given
that the gap varies from 10.5 to 5.6 cm−1 over this range
of θ , the mirror-odd shear modes can be directly probed by
Brillouin-Mandelstam spectroscopy [45,46].

Mirror-symmetry breaking. One particularly interesting as-
pect of TTG is that an electric displacement field D0 can
be applied perpendicular to the graphene layers (see Fig. 1),
which breaks the mirror symmetry. D0 is known to strongly
affect the electronic degrees of freedom, as seen in ex-
periments [6–13], and thus is expected to also modify the
phononic properties. In our elastic theory, we model this
phenomenologically by allowing for the adhesion potential
strength to differ between the bottom and top bilayers, taking
V1,3 = V ∓ γ D0 in Eq. (1).

The broken mirror symmetry has two crucial conse-
quences. Firstly, while v(0) continues to resemble the previ-
ously found profile in Fig. 2(b), lattice relaxation now also
occurs in the mirror-odd sector, i.e., u(0) �= 0. This can be
seen in Figs. 3(a) and 3(b), where we plot the texture u(0)(r),
which closely follows that of v(0), and how its strength evolves
approximately linearly with γ D0. Specifically, we see that
u(0) → v(0)/3 as the extreme limit γ D0/V = 1 is approached;
this corresponds to the absence of relaxation in the top layer,
which becomes completely decoupled in this case. While
slightly unphysical, this limit helps us understand qualitatively
the behavior of the second key modification—the change of
the shear mode spectra. As can be seen in Fig. 3(c), the gapless
phason mode at D0 = 0 stays gapless for finite D0 while the
gap of the originally mirror-odd mode decreases. This is be-
cause the spectrum must approach that of the acoustic phonon
of a single graphene layer and the phason of TBG (with
doubled adhesion potential) in the above-mentioned limit of
γ D0/V = 1.

Another route to breaking mirror symmetry is via lateral
stacking shifts [47], which naturally arise in experimental
samples. For concreteness, let us consider a case in which

FIG. 3. (a) Mirror-odd lattice relaxation u(0), and (b) its strength
relative to the mirror-even v(0) for θ = 1.56◦ TTG in the presence
of a displacement field. (c, d) Spectra of shear modes as the field
is varied. (e) The phonon spectrum for the shear modes when the
mirror-symmetry breaking is induced by a lateral stacking shift of
magnitude d0 = 0.25; for clarity, we omit the acoustic phonons in
(c–e). (f, g) The corresponding relaxation textures in this case.

the topmost layer is displaced from the original “A-twist-A”
stacking by a vector d = d0 a/2; here, a is chosen such that
d0 = 1 corresponds to “A-twist-B” stacking, which we find
to be structurally unstable, as signaled by imaginary phonon
frequencies. Interestingly, however, for d0 � 0.5 we discover
metastable configurations that are fundamentally distinct from
our previous ones. This is most clearly seen from the lattice
relaxation textures in Figs. 3(f) and 3(g): since u(0) measures
the static shift between the outer layers, the fact that it is a
nonconstant vector (i.e., u(0) �= −d ∀ r) implies that the
system does not just relax back to the earlier mirror-symmetric
configuration but instead finds a different local minimum, os-
cillations about which yield the phonon spectrum in Fig. 3(e).
The broken threefold rotational symmetry now lifts the prior
degeneracy of the mirror-odd shear modes at the 
 point.

Spontaneous electronic symmetry breaking. Besides ex-
plicit symmetry breaking via external fields, TTG also
exhibits a variety of electronic phases with spontaneously
broken symmetry, as indicated by experiments [6–13]; some
of these states coexist with superconductivity [6,7,10,13] and
appear in the same regime of the phase diagram as the
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FIG. 4. Angular momentum of the lowest band of the (a) acoustic
phonon, (b) gapped shear, and (c) phason modes in the presence of
broken time-reversal symmetry at θ = 1.56◦, using a phenomeno-
logical value of η/

√
ρ = 1 (eV)1/2 (see Fig. S4 [35] for the variation

with η). The lower panel shows the angular momentum for the lowest
band of the (d) gapped shear mode, and (e) phason when C2z is
broken for a value of φ = π/6 (cf. Fig. S5 [35] for variation in
φ). In this case, the angular momentum of the acoustic phonon is
identically 0.

linear-in-T resistivity. As such, it is important to analyze
the consequences of these electronic orders for the phonons.
The combination C2z� of time-reversal (�) and twofold-
rotation symmetry (C2z) is not only relevant to the stability
of the electronic Dirac cones of the system but also for
the phonon modes: the phononic angular momentum [48],
Lz

q = ∫
dr

∑3
l=1(δs(l )

q × δṡ(l )
q )z, is constrained by � (C2z) to

obey Lz
q = −Lz

−q (Lz
q = Lz

−q) and thus vanishes if C2z� is
a symmetry [49]. Recent theory [18] finds the emergence of
sublattice-polarized phases at finite D0, which break C2z�,
gapping out all Dirac cones, in consistency with the more
resistive behavior seen experimentally [6,7] in this regime.
Whether this proceeds via breaking of C2z or � depends on
details of the exact interactions present and can be thought
of as the spontaneous emergence of loop currents on the
moiré scale with opposite or same chirality in the two valleys,
respectively.

To begin with the latter, broken time-reversal symmetry
induces a Hall viscosity term in the elastic theory [50,51],
which, owing to C6z rotation symmetry, can be parame-
terized (Sec. SIII B [35]) by a single real number, η, as
Fη = η

∫
dr

∑
l ([∂

2
j δs(l )] × δṡ(l ) )z. Here η has to scale as

η ∼ g2M for small electron-phonon coupling strength g and
magnitude M of the sublattice polarization [52]. As shown in
Figs. 4(a)–4(c), this induces a finite angular momentum in all
low-energy modes, the overall scale of which increases with
η [35]. Most importantly, by virtue of resulting from broken �

rather than C2z symmetry, the integral of Lz
q over the Brillouin

zone of a given band does not vanish, which crucially differs
from previous discussions of angular momentum bands in

moiré systems [53,54]. Interestingly, the contributions from
the different modes have the same sign, as opposed to acoustic
and optical phonons in regular crystals [48]. Consequently,
the phononic system exhibits a finite ground-state angular mo-
mentum, which has to decay at sufficiently large temperature
due to the Bohr–van Leeuwen theorem. Fingerprints of the an-
gular momenta in the phononic bands could potentially even
be probed experimentally via the Einstein–de Haas effect [48]
or the phonon thermal Hall effect [55], which has attracted
much attention recently in the context of cuprate superconduc-
tors [56] and Kitaev materials [57]. For completeness, we also
studied [35] sublattice polarization which breaks C2z instead
of �; practically, this corresponds to adding a phase φ to each
cosine of Vad in Eq. (1). In this case, Lz

q is odd in q, as clearly
seen in Figs. 4(d) and 4(e), and the net angular momentum
vanishes at any temperature.

Discussion. Making the natural [10] assumption that
electron-phonon coupling is an important driving force of
superconductivity in TBG and TTG, our results provide a nat-
ural explanation for why both systems show superconductivity
with comparable Tc. As we have shown, the phason modes are
equivalent in the two systems, modulo an O(1) rescaling of
parameters, and we expect the additional mirror-odd mode to
only provide a subleading enhancement of Tc for vanishing
D0, since it couples the flat (TBG-like) bands to the highly
dispersive (graphenelike) bands of TTG. When turning on a
finite D0, the two sectors mix and we expect the gapped shear
mode to become more relevant; this might play an important
role in the observed enhancement [6] of superconductivity for
small D0. In this picture our results are also consistent with re-
cent experiments, where the transition temperature was found
to be approximately the same at the magic angle (θ � 1.5◦)
and in the “small-twist-angle regime” (θ � 1.3◦) [58], since
we find that the phonon properties change by only a small
amount in this range of θ , see Figs. 2(c)–2(e).

If electron-phonon coupling is also responsible for the
linear-in-T resistivity, � ∝ T , which is considered to be a
plausible scenario [23–26], the observed suppression [12]
of it around θ = 1.3◦ will have to be due to at least one
of the following reasons: (i) the temperature scale below
which phonons do not give rise to a linear-in-T contribu-
tion increases significantly. This temperature scale is an O(1)
fraction [59] of the Bloch-Grüneisen-like temperature scale
TBG = ω(k∗), where k∗ is the characteristic momentum transfer
required to change the direction of the electronic group veloc-
ity significantly. Choosing k∗ to be half the vector connecting
the 
 and K point as an example, we find TBG � 25 K and
30 K for the mirror-even and mirror-odd modes at θ = 1.5◦.
These scales even decrease further, to 18 K and 24 K, re-
spectively, when reducing the angle to θ = 1.3◦. So we are
left with possibility (ii) that the magnitude of the phonon-
induced contribution to � decreases rapidly with θ . Focusing
on the gapless phason mode, the slope d�/dT is proportional
to [24,26] |g|2/(v2

F ρmv2
ph), where g is the electron-phonon

coupling matrix element, vF (vph) the Fermi (phonon) velocity,
and ρm ∝ sin(θ/2) the soliton-network mass density [26].
From our phonon spectra, we find ρmv2

ph decreases by about
20% from θ = 1.5◦ to 1.3◦, corresponding to an increased
contribution to �. Furthermore, the approximately identical
phonon spectra at these two angles imply that the resulting
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superconducting Tc should be primarily determined by
|g|2/vF, since the density of states at a fixed filling fraction
scales as 1/vF. Experimentally, Tc is seen [12] to be about
the same for the two angles, so the only way to explain the
absence of linear-in-T behavior at small θ is if vF increases
significantly from θ = 1.5◦ to 1.3◦; this, however, is not plau-
sible either, as the measured [12] bandwidth is even smaller in
the small-twist-angle regime. Consequently, the recent data of
Ref. [12] is not consistent with a picture based on phonons
alone and points towards another origin. This is not only
in accordance with a very recent low-temperature study on
TBG [60] but is also reminiscent of transport behavior in the
“strange metal” phase of the cuprate superconductors [61].

Note added. Recently we became aware of a publication
on a similar subject [62], discussing the symmetry origins of
lattice vibrational modes in TTG.
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