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Hydrodynamic magnetoresistance in graphene Corbino devices
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We study hydrodynamic electron magnetotransport in graphene devices. We show that in these systems a
distinct mechanism of magnetoresistance appears which is absent in systems with Galilean-invariant electron
liquid. The resulting magnetoresistance depends on the intrinsic conductivity and viscosity of the electron liquid,
and becomes especially pronounced near charge neutrality. We obtain analytic expressions for magnetotransport
coefficients of Corbino devices and obtain estimates for the electrical and thermal magnetoresistances for
monolayer and bilayer systems at charge neutrality. Magnetoresistance becomes strong (of order 100 %) at
relatively weak fields, at which the kinetic coefficients of the electron liquid are practically unaffected by the
magnetic field.
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I. INTRODUCTION

Much of the recent interest in the electronic transport
properties in high-mobility two-dimensional electron systems
(2DES) concerns the possibility of electron hydrodynamic be-
havior [1–5]. This transport regime can be realized in samples
of sufficient purity and only in a certain range of tempera-
tures where the mean free path due to electron collisions �ee

becomes short compared to other relevant length scales [6,7].
Various experiments in graphene devices, including transport
measurements [8–14] and local imaging techniques [15–19],
provided numerous pieces of evidence for realization of hy-
drodynamic electron flow.

The Corbino disk geometry [20,21] is an attractive
alternative to conventional Hall effect measurements of mag-
netotransport properties of 2DES in rectangular devices.
Thermoelectric transport in graphene Corbino devices was
studied experimentally [22–27]. Hydrodynamic theory was
applied to these systems to identify viscous effects in electron
transport [28–33].

Because of the potential character of the flow in Corbino
geometry, the manifestations of viscosity in hydrodynamic
transport are rather unusual. In particular, the viscous force
density vanishes. Therefore the Bernoulli law, which gener-
ally works only for ideal liquids, applies in this case [34].
Since in the creeping flow regime, which is realized in linear
response, the net force density also vanishes, this means that
the density of external force driving the flow vanishes as
well. In the context of electron hydrodynamics, expulsion of
the external force from the flow produces drops of applied
voltage and temperature at the sample boundaries [31,32]
which are proportional to the fluid viscosity. It is interesting
to note that the energy dissipation associated with these drops
occurs in the bulk of the flow. Indeed, the vanishing of the
viscous force in Corbino flow does not imply vanishing of the
viscous stress tensor, only its divergence. The viscous stresses

arising from the deformation of fluid elements by the flow
produce the required energy dissipation.

Previous theoretical treatments of hydrodynamic magneto-
transport assumed Galilean invariance of the electron liquid
[30,31,35]. Therefore their results do not apply to graphene
devices near charge neutrality. Motivated in part by experi-
ments [24–27], here we develop a theory of hydrodynamic
magnetotransport in graphene Corbino devices near charge
neutrality. We show that the mechanism of hydrodynamic
magnetoresistance (MR) in this case is qualitatively different
from that in systems with Galilean-invariant electron liquid,
which is caused primarily by the modification of the hydrody-
namic flow by the Lorentz force [35]. The difference becomes
most striking at charge neutrality, where charge current is
decoupled from the hydrodynamic flow in the absence of a
magnetic field. In contrast, in a nonzero field the flow remains
coupled to the charge current even at charge neutrality. The
mechanism of the coupling can be understood as follows.
Though the electric current is caused entirely by the intrinsic
conductivity, its magnitude is proportional to the electromo-
tive force (EMF) acting on the electrons. The latter corre-
sponds to the electric field evaluated in the frame moving with
the liquid. Therefore in the presence of a magnetic field the
EMF depends on the flow velocity [36]. In turn, the Lorentz
force caused by the current affects the flow velocity. The mag-
netoresistance arising from this mechanism depends both the
intrinsic conductivity and the viscosity of the electron liquid.

II. HYDRODYNAMIC DESCRIPTION

We consider a Corbino disk geometry with radii r1 and
r2, and aspect ratio p = r2/r1 > 1, see Fig. 1. The interior of
the disk r ∈ [r1, r2] is assumed to be either graphene mono-
layer (MLG) or bilayer (BLG); more generally, trilayer and
multilayers are also possible. The device is subjected to an
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FIG. 1. Graphene Corbino disk geometry top view is depicted
on panel (a). The panel (b) shows the side view of the same de-
vice, where a sheet of graphene is encapsulated between the layers
of hexagonal boron nitride. The whole device is deposited on the
substrate with added gate control.

external magnetic field H = H ẑ applied perpendicular to the
xy plane of the disk. We consider a setup in which a voltage
V and a temperature difference �T are applied between the
inner and outer electrodes. The electric and heat currents
arising in response are denoted by, respectively, I = eIn and
IQ = T Is (for convenience we also introduce particle In and
entropy Is currents, where e is the electron charge and T is the
temperature).

The 2 × 2 thermoelectric resistance matrix R̂ can be de-
termined by equating the Joule heat P to the rate of energy
dissipation in the flow:

P = �IT R̂�I, �IT = (I, IQ). (1)

Here we introduced the two-component column vector of
currents �I, with the superscript T denoting transposition. The
linear response electrical (Rel) and thermal (Rth) resistances,

Rel(H ) = (V/I )�T =0, Rth(H ) = (�T/IQ)I=0, (2)

can be expressed in terms of the matrix elements of
R̂ as follows: Rel(H ) = DetR̂/R22, and Rth(H ) = TR22.
The off-diagonal elements, R12 = R21, define thermoelec-
tric response. The Seebeck coefficient is given by S(H ) =
−(V/�T )I=0 = −R12/(TR22). From the Onsager relation,
S = �/T , we can easily determine the Peltier coefficient
� = (IQ/I )�T =0.

The dissipated power in an electron flow,

P = 1

2

∫
�i j (∂iu j + ∂ jui )d

2r +
∫

�XT
ϒ̂ �Xd2r, (3)

comprises of two independent contributions. The first term
accounts for the viscous dissipation arising from the hydrody-
namic transport mode. In it the stress tensor is given by [37]

�i j = η(∂iu j + ∂ jui ) + (ζ − η)δi j∂kuk, (4)

where u(r) is the hydrodynamic velocity, while η and ζ are,
respectively, the shear and bulk viscosities. The form of �i j

in Eq. (4) is written for two spatial dimensions. Note also that
in Eq. (3) the summation over the repeated indices is implicit.
The second term in Eq. (3) captures the entropy production
rate due to transport in the relative mode, i.e., charge and
energy transport relative to the liquid. In Eq. (3) the column
vector of thermodynamic forces �X consists of the EMF and

the temperature gradient. It can be written in the form [36]

�X = �X − e

c
[u × H] ��, ��T = (1, 0). (5)

The first piece in the expression above is given by a pure
gradient, �X = (−eE,∇T ), where eE represents the potential
part of the EMF defined by the gradient of electrochemical
potential. The second term above describes the contribution to
EMF arising from the motion of the liquid in the presence of a
magnetic field. The sum of the two contributions corresponds
to evaluating the electric field in the frame moving with the
liquid [36]. Finally, the matrix ϒ̂ in Eq. (3) characterizes the
dissipative properties of the electron liquid. In the absence of
Galilean invariance, it is given by

ϒ̂ =
(

σ/e2 γ /T
γ /T κ/T

)
(6)

and consists of the thermal conductivity κ , the intrin-
sic conductivity σ , and the thermoelectric coefficient γ ,
see Refs. [38,39]. For Galilean-invariant liquids, we have
σ = γ = 0. In the consideration below we neglect the depen-
dence of the kinetic coefficients in Eq. (6) on the magnetic
field. This approximation assumes that �ee is shorter than the
electron cyclotron radius. We will see that the effects con-
sidered below lead to magnetoresistance that becomes strong
at very weak magnetic fields, where this approximation is
justified.

In order to determine P in Eq. (3) as a quadratic form of
the currents I and IQ, we need to determine the flow pattern,
i.e., the spatial profile of u(r) and �X (r). The hydrodynamic
velocity is related to the driving forces by the Navier-Stokes
(NS) equation,

η∇2u + ζ∇(∇ · u) = �xT �X + [ jn × ẑ]/l2
H , (7)

which expresses the force balance condition in the bulk of
the flow. The first term on the right-hand side of Eq. (7)
describes the potential force on the liquid, which is caused
by the temperature and voltage bias. In it we introduced a two-
component column vector �xT = (n, s), whose components are
the densities of particles n and entropy s. The last term on the
right-hand side of Eq. (7) is the Lorentz force, where jn is
the particle current density, and we introduced the magnetic
length lH = √

c/|e|H .
The remaining hydrodynamic equations are given by the

continuity equations for the particle current jn and entropy

current js. Using the column vector notation �JT = ( jn, js)
they can be written as

∇ · �J = 0, �J = �xu − ϒ̂ �X . (8)

In the absence of a magnetic field the flow is purely radial.
The corresponding thermoelectric matrix, and the distribution
of temperature and the electric potential, were determined in
our previous work [32]. In the present study we extend this
analysis to study thermoelectric transport in weak magnetic
fields.

III. MAGNETOFLOW PATTERN

The magnetohydrodynamic description of electron liquids
formulated above applies to any device geometry and does
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not assume Galilean invariance of the electron liquid. To
make further progress, we specialize to the Corbino geometry
and work in polar coordinates (r, φ). Owing to the angular
symmetry of the Corbino disk, the radial and azimuthal com-
ponents of the currents and forces do not depend on the polar
angle φ. Therefore, the NS equation (7) projected onto the
radial (r) and azimuthal (φ) directions reduces to two coupled
equations:

(η + ζ )�̂ur − �xT �Xr − ( jn)φ/l2
H = 0, (9a)

η�̂uφ + ( jn)r/l2
H = 0. (9b)

Here �̂ denotes the radial component of the Laplace oper-
ator, �̂ = 1

r
d
dr (r d

dr ) − 1
r2 , and the azimuthal component of the

particle current density is given by

( jn)φ = nuφ + σ

e2

ur

l2
H

. (10)

The continuity equation (8) for the current densities reads

�Jr = �I
2πr

= �xur − ϒ̂ �Xr − ϒ̂ �� uφ

l2
H

, (11)

where �IT = (In, Is) is the column vector of particle and en-
tropy currents. In these notations the NS equation for the
angular component of the hydrodynamic velocity [Eq. (9b)]
reduces to the equation

�̂uφ = − In

2πrηl2
H

. (12)

Its solution is given by

uφ (r) = − Inr1

4πηl2
H

(
Aρ + B

ρ
+ ρ ln ρ

)
, (13)

where we introduced a dimensionless radial coordinate
ρ = r/r1 ∈ [1, p]. The values of the integration constants A
and B are determined by the boundary conditions. Assuming
the standard no-slip boundary condition uφ (r1,2) = 0 we ob-
tain A = −B = −p2 ln p/(p2 − 1).

Next, we analyze the radial part of the NS equation (9a).
For this purpose we use the continuity equation (11) to express
�Xr in terms of ur,φ . Then, using Eq. (10) we obtain

(
k2

H − �̂
)
ur = �xT ϒ̂−1 �I

2πr(η + ζ )
, k2

H = 1

l2
+ σ

e2(η + ζ )l4
H

,

(14)

where the characteristic length scale l is given by

l−2 = �xT ϒ̂−1�x
(η + ζ )

=
n2κ
T − 2nsγ

T + s2σ
e2

(η + ζ )
(

κσ
Te2 − γ 2

T 2

) . (15)

We note that in graphene the bulk viscosity is expected to
be negligible [40,41]. Therefore, it will be omitted in what
follows.

To motivate further approximations it is useful to estimate
the order of magnitude of l in different transport regimes. For
instance, in the case of MLG in the low-density limit close to
charge neutrality (Dirac fluid), one gets l ≈

√
κη/T s2 ∼ lT ,

where lT = v/T is the thermal de Broglie length. To arrive at
this estimation we have used s, η ∝ (T/v)2 and κ ∝ T near

the neutrality point [42]. In the high-density regime (Fermi
liquid), one has instead l ≈

√
η/n2 ∼ lT , where we have used

the estimation of viscosity η ∼ n(EF /T )2 in the Fermi liquid
regime [43]. The field dependence of kH , and thus ur , is
manifested through the parameter l2/(ηl4

H ) ∼ (lT /lH )4 	 1,
which is negligible in the hydrodynamic regime since lT is a
microscopic length scale. Consequently, we can set k2

H = l−2,
thereby neglecting the dependence of ur on the magnetic
field. This is accurate within our approximation, in which we
neglect the field dependence of the viscosities η and ζ , and the
kinetic coefficients in matrix ϒ̂ .

The solution of Eq. (14) consists of the general solution
of the homogeneous equation and the particular solution of
the inhomogeneous equation. In our approximation the for-
mer is given by a linear combination of modified Bessel
functions of the first and second kinds, I1(r/l ) and K1(r/l ).
These exponentially decaying and growing solutions of a ho-
mogeneous equation are localized on the length l near the
inner and outer boundaries and describe deviations of the
hydrodynamic flow from that in the bulk. These solutions
contribute to the thermoelectric resistance of the contacts.
We are interested in the contribution to the resistance matrix
due to the hydrodynamic flow in the interior of the disk.
The latter corresponds to the particular solution, which is
given by

ur (r) = 1

2πr
�xT ϒ̂−1 �I
�xT ϒ̂−1�x . (16)

Note that for given charge and heat currents the radial com-
ponent of the flow is independent of the magnetic field. In
contrast, the azimuthal component of the flow velocity in
Eq. (13) does get modified by the magnetic field. The strength
of this modification is characterized by a single dimension-
less parameter β = nr2

1/(2ηl4
H ). This parameter measures the

relative strength of the Lorentz and viscous Stokes forces and
determines the number of turns the flow makes between the
electrodes. For β > 1 the flow swirls around electrodes the
integer of β times.

To illustrate the hydrodynamic magnetoflow in Fig. 2, we
took β = 0.5 and used Eqs. (13) and (16) for a particular
biasing scenario with Is → 0 at the high-density limit n � s.
The velocity in the resulting flow pattern is normalized to
u0 = In/(2πr1n). It is worth noting that in the situation cor-
responding to charge neutrality, n → 0, the radial component
of the flow velocity in Eq. (16) vanishes and the charge trans-
port occurs only through the relative mode. In contrast, the
azimuthal component uφ remains nonzero in the presence of a
magnetic field, so that hydrodynamic magnetoflow at charge
neutrality is purely vortical.

IV. VISCOUS MAGNETORESISTANCE

Let us now determine the rate of energy dissipation in
this hydrodynamic transport. The derivation naturally breaks
down into two steps. First, we use ur (r) and uφ (r) to deter-
mine the nonvanishing components of the stress tensor:

�rr = 2η
∂ur

∂r
, �φφ = 2η

ur

r
, �rφ = η

(
∂uφ

∂r
− uφ

r

)
.

(17)
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FIG. 2. Illustration of hydrodynamic flow of electron liquid in a
Corbino device in a perpendicular magnetic field. The stream plot
for the velocity u(r) is generated for the disk with the inner to outer
radius ratio p = r2/r1 = 5 and non-slip boundary conditions.

These expressions enable us to calculate the first term in
Eq. (3). The second step is to resolve the continuity equa-
tion (11) in order to determine the radial dependence of the
forces in the bulk of the flow �Xr (r). The particular expressions
we need read

eEr = 1

Detϒ̂

[( sγ

T
− nκ

T

)
ur + κ

T

In

2πr
− γ

T

Is

2πr

]
+ uφ

l2
H

,

(18a)

∇rT =
[( sσ

e2
− nγ

T

)
ur + γ

T

In

2πr
− σ

e2

Is

2πr

]
. (18b)

These terms define the second contribution to P in Eq. (3),
which stems from the relative mode. The remaining spatial in-
tegrations are elementary but yield cumbersome expressions.
Below we focus on the regime near charge neutrality working
in leading order in n/s 	 1, and furthermore retain only the
leading correction in the magnetic field dependence.

For the electrical and thermal magnetoresistance we thus
find

Rel(H ) = R0

[
1 + σ

e2

r2
2

ηl4
H

f1(p)

]
, R0 = ln p

2πσ
, (19a)

Rth(H ) = Rth

[
1 + σ

e2

r2
2

ηl4
H

f2(p)

]
, Rth = η(p2 − 1)

πT (r2s)2
, (19b)

where the dimensionless functions of the aspect ratio are
f1(p) = (p2−1)2−4p2 ln2 p

8p2(p2−1) ln p , and f2(p) = ln p
2(p2−1) . In order to ex-

tract the thermopower we must retain finite density. In the
limit n/s 	 1 we determine

S(H ) = S0

[
1 − σ

e2

r2
2

ηl4
H

f2(p)

]
, S0 = 1

e

ns

n2 + �2
. (20)

f1(p)

f3(p)
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FIG. 3. Dependence of the dimensionless functions f1,3(p) that
define MR in Eqs. (19) and (21) on the aspect ratio of the Corbino
disk.

The characteristic width in the density dependence across the
charge neutrality is given by �2 = σ

e2
2η(p2−1)

r2
2 ln p

. It corresponds
to electron densities, which are much smaller than the charac-
teristic thermal density s.

We see that, just as for Galilean-invariant liquids [35], MR
is positive, but its magnitude is proportional to the intrin-
sic conductivity and inversely proportional to the viscosity
of the electron liquid. The temperature dependence of MR
is primarily governed by the fluid viscosity since the in-
trinsic conductivity is only weakly T dependent. From the
weak-coupling analysis, it is known that σ behaves logarith-
mically with temperature [44–46]. The inverse proportionality
of MR to the viscosity is consistent with the earlier results
for correlated electron liquids subject to long-range disorder
potential [35,47]. This behavior seems to be universal in the
hydrodynamic regime. Indeed, extending the above analysis
to the opposite limit of high density, n � s, one finds for
MR

Rel(H ) = R0 + 1

πe2

r2
2

ηl4
H

f3(p), R0 = η(p2 − 1)

πe2(r2n)2
, (21)

with f3(p) = p2−1
16p2 [1 − 4p2 ln2 p

(p2−1)2 ]. We note that the functions
f1(p) and f3(p), which characterize the magnitude of MR in
Eqs. (19) and (21), exhibit sensitive dependence on the aspect
ratio p. As illustrated in Fig. 3, these functions range between
zero at p → 1 and practically saturate for p > 10.

It is worth noting that at charge neutrality magnetoresis-
tance in Eq. (19) reaches a value of order unity at rather small
fields, where l2

H ∼ r1lT , and our approximation of neglecting
the dependence of the kinetic coefficients in Eq. (6) and kH

in Eq. (14) on the magnetic field still holds. At large densi-
ties MR becomes independent of the intrinsic conductivity.
In this regime the absence of Galilean invariance becomes
inessential.

V. CONCLUSION

In conclusion, to facilitate possible comparison to experi-
ments, we present estimates for relative MR for both electrical
and thermal parts. It is convenient to express them in the
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form δRel,th(H ) = Ael,thH2, where the factors Ael,th(n, T ) can
be measured independently. Exactly at charge neutrality, we
determine that their ratio is Ael/Ath ∝ T s2/η. For MLG de-
vices, we thus expect Ael/Ath ∝ T 3. In BLG, η(T ) has not
been microscopically calculated near charge neutrality, since
this is a problem of strong-coupling theory. Nevertheless, we
can infer the temperature dependence of η from the viscosity
to entropy density bound conjecture [48]. It thus suggests
η ∼ s(T ) ∼ m∗T , where m∗ is the effective mass of the band
structure. Therefore, for BLG we expect Ael/Ath ∝ T 2.

Note added. Recently we became aware of the related work
of Ref. [49] that also addresses MR in a graphene Corbino
disk at charge neutrality.
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