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Interference and parity blockade in transport through a Majorana box
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A Majorana box—two topological superconducting nanowires coupled via a trivial superconductor—is a
building block in devices aiming to demonstrate non-Abelian physics, as well as for topological quantum
computer architectures. We theoretically investigate charge transport through a Majorana box and show that
current can be blocked when two Majoranas couple to the same lead, fixing their parity. In direct analogy to a
Pauli spin blockade in spin qubits, this parity blockade can be used for fast and high-fidelity qubit initialization
and readout, as well as for current-based measurements of decoherence times. Furthermore, we demonstrate that
transport can distinguish between a clean Majorana box and a disordered box with additional unwanted Majorana
or Andreev bound states.
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Introduction. Topological p-wave superconductors host
Majorana bound states (MBSs) [1–7] at edges and defects,
which have nonlocal and non-Abelian properties. Semicon-
ductor nanowires are one of the most promising systems
for creating and detecting MBSs, where a combination
of spin-orbit coupling, proximity-induced superconductivity,
and external magnetic field can lead to p-wave supercon-
ductivity [8,9]. By now, many experiments have observed
zero-bias conductance peaks, consistent with MBSs at the
nanowire ends (see Refs. [10–15] for a few examples; similar
results have been obtained also in other MBS platforms).
However, nontopological states provide an alternative expla-
nation for most of the experimental observations [16–24].

A measurement of the non-Abelian properties of MBSs
is still missing, but would provide definite evidence of a
topological superconducting phase, constituting at the same
time a first step towards topological quantum computing.
One promising path towards a demonstration of non-Abelian
physics uses repeated measurements of MBS pairs to perform
topologically protected qubit operations [25], with a possibil-
ity to move towards a scalable quantum computer platform
[26–29]. A simple building block for these technologies is the
Majorana box qubit [30], where a qubit is encoded in four
MBSs with overall parity fixed by a large charging energy.
Qubit readout can be done by charge sensing of a quantum
dot coupled to two MBSs [31–34], or by measuring the inter-
ference of cotunneling currents when the box is connected to
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external leads [35]. Furthermore, coupling the Majorana box
to more than two leads enables measurements of the topolog-
ical Kondo effect [36–39], and networks of coupled Majorana
boxes exhibit additional interesting transport physics [40–45].
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FIG. 1. (a) Sketch of Majorana box, where two topological
superconducting wires (blue), connected by a nontopological super-
conductor (dark blue), host four end MBSs (red crosses, operators
γrm). Disorder might lead to additional unwanted MBSs (orange
crosses). The box is tunnel coupled (amplitudes trm) to two normal
leads (L and R), subject to a voltage bias Vb. Magnetic fluxes �L, �R

are threaded through the loops associated with leads L, R and cause
relative phase differences φL, φR between tLu and tLd , tRu, and tRd . A
gate voltage Vg controls the equilibrium number of electrons on the
Majorana box. (b) Current I through the Majorana box as a function
of Vb and Vg with the remaining parameters specified in the text. (c) I
at Vg = 0 V, Vb = 20T red cross in (a) as a function of φL at φR = 0.
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In this Letter, we develop and employ a quantum master
equation approach to investigate charge transport through a
Majorana box where the source and drain contacts couple to
two MBSs each [see Fig. 1(a)]. We show that the same mecha-
nism that allows quantum-dot-based parity readout [31,32,34]
induces a parity blockade in our transport setup, where the
current is quenched and the qubit is stuck in a well-defined
state. This is in close analogy to the Pauli spin blockade in
double quantum dot spin qubits [46,47]. Just as the Pauli spin
blockade, a parity blockade can simplify various important
qubit experiments. Fast and high-fidelity qubit initialization
can be achieved by driving a current through the Majorana
box which quickly gets stuck in the blocked state. The same
principle can be used for readout, by applying a bias voltage
such that an electron tunnels if the system is not in the block-
ing state. Single-shot readout can then be accomplished by
charge detection on the box. Alternatively, measuring the cur-
rent resulting from repeated operations provides an averaged
readout. We solve the quantum master equation analytically
for the clean box with four end MBSs and numerically for a
disordered Majorana box with additional unwanted MBSs or
topologically trivial Andreev bound states (ABSs). We show
that the qubit coherence time can be read off from the remnant
steady-state current in the blocking regime. This measurement
requires neither fast manipulation, nor fast readout, only a dc
transport measurement. Finally, we explain how to distinguish
the clean Majorana box from the disordered system with ad-
ditional MBSs or ABSs inside the box.

Model and transport theory. We consider the Majorana
box transport setup sketched in Fig. 1(a). Two topological
superconducting nanowires are connected by a conventional
(nontopological) superconductor and are tunnel coupled to
electrically biased normal source and drain contacts. The
Hamiltonian is H = HMB + Hres + HT . The Majorana box is
described by (e = h̄ = kB = 1)

HMB =
∑

m=u,d

i

2
εmγLmγRm + EC (N − ng)2 + Hdis

MB, (1)

where γrm are MBS operators and εm is the overlap between
MBSs in the same wire (our results remain qualitatively the
same in the presence of additional overlaps between MBSs
in different wires), EC is the charging energy, N counts the
number of electrons (including Cooper pairs) on the Majorana
box, and ng is the background charge controlled by the gate
voltage Vg, ng = αgVg with a gate lever arm αg. Hdis

MB describes
a number of additional unwanted MBSs [orange crosses in
Fig. 1(a)] induced by disorder, which may overlap with each
other and with the edge MBSs γrm (see specific examples
below). In this low-energy Hamiltonian we neglect the quasi-
particle states above the superconducting gap.

The lead Hamiltonian is Hres = ∑
r Hr , with Hr =∑

k ξrkc†
rkcrk , where the c†

rk create spinless electrons in lead
r = L, R with energies ξrk . We assume the leads to remain in
thermal equilibrium at temperature T and chemical potential
μL,R = ±Vb/2. The tunneling between the leads and Majorana
box is described by

HT =
∑
rmk

γrm(trmcrk − t∗
rmc†

rk ) + Hdis
T , (2)

with tunnel amplitudes trm which we take to be energy inde-
pendent (wideband limit). We include magnetic fluxes �L,�R

threaded through the loops formed by leads L, R and the end
MBSs [Fig. 1(a)] by adding a phase φr = 2π�r/�0 to the up-
per tunnel amplitude of the left and right leads, tru = |tru|eiφr ,
trd = |trd |, where �0 is the flux quantum. The amplitude
for a tunneling-induced transition between two many-body
eigenstates a and b of the Majorana box is related to the
tunnel matrix element T ab

r = ∑
m=u,d〈a|γrm|b〉. The typical

timescale of electron tunneling is then given by the tunnel
rates 	ab

r = 2πνr |T ab
r |2, where we take the density of states

νr to be energy-independent within the bandwidth chosen as
D = 100T . Unless stated otherwise, we will throughout this
Letter consider all tunnel amplitudes and densities of states
to be equal, trm = t and νr = ν, and define 	 = 2πν|t |2. Hdis

T
describes the tunnel coupling of the disorder-induced MBSs
to the leads.

Let us comment on two model assumptions which will be
important for the results and which place some constraints
on an experimental realization. First, the way γru and γrd

couple to the same lead channel in Eq. (2) is only strictly
correct for an effectively one-dimensional (1D) lead, but is
a good approximation whenever tunneling from γru and γrd

occurs into points of the lead separated by less than the Fermi
wavelength. Second, considering spinless lead electrons is
valid either when the magnetic field needed to induce the
topological superconducting phase has fully spin polarized
the lead electrons around the Fermi level, or when the spin
directions associated with allowed tunneling into γru and γrd

are aligned [48] (which is the case for two identical wires).
Quantum master equations. We focus on the regime of

weak tunneling, 	 � T , but strong electron-electron inter-
action EC . Then it is appropriate to use a quantum master
equation for the reduced density matrix ρ of the Majorana
box:

∂tρ = −i[HMB, ρ] + W ρ. (3)

The quantum master equation consists of a unitary time evo-
lution determined by HMB and a dissipative part introduced by
the attached leads. We diagonalize the Majorana box Hamil-
tonian in Eq. (1) to obtain the many-body eigenstates |ai〉 and
solve the master equation for the stationary state reduced den-
sity matrix ρa1a2 and current I , where tunneling is treated in
leading-order perturbation theory. We emphasize that, because
of the near-degenerate ground state, it is important to solve
for the full nondiagonal density matrix. All results presented
below are obtained within a first-order von Neumann quantum
master equation [49] (equivalent to real-time diagrammatics
in first order [50–52]). We have cross-checked that other ap-
proximations [53,54] provide similar results, and details are
given in the Supplemental Material (SM) [55].

Because of the large EC we consider only two charge states,
arbitrarily denoted by N = 0 and N = 1, corresponding to the
total parity of the MBSs being even or odd. We tune Vg such
that the two parity sectors are almost degenerate. The density
matrix is diagonal in total parity, and a term in the master
equation describing an electron tunneling onto or out of the
Majorana box connects the two parity sectors.

Parity blockade. We first consider the clean box with
Hdis

MB = 0 and εm = 0. The current I as a function of Vb and
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Vg for φL = φR = 0 [Fig. 1(b)] shows the Coulomb blockade
pattern characteristic of transport through quantum dots [56].
The current is finite for Vb,Vg such that there are available
electrons in one contact that can tunnel into the Majorana
box (N → N + 1) and available empty states in the other
contact that can accept electrons tunneling out of the box
(N + 1 → N). Otherwise, current is suppressed by charging
effects (Coulomb blockade).

For the remainder of this Letter, we fix the voltages within
the conducting regime [at the point marked by the red cross in
Fig. 1(b)]. We now vary φL [see Fig. 1(c)] and find I (φL ) ∝
cos2 φL, meaning that the current is blocked for φL = (2n +
1)π

2 , n ∈ Z . To understand the blockade, we construct fermion
operators using the two left and the two right MBSs: fL =
(γLu + iγLd )/2, fR = (γRd + i γRu)/2. The eigenstates of the
number operators n̂r = f †

r fr , r = L, R, |nLnR〉, are also eigen-
states of HMB when εm = 0 and Hdis

MB = 0. Note that the even
eigenstates, |0L0R〉 and |1L1R〉, are degenerate, and so are the
odd eigenstates, |0L1R〉 and |1L0R〉. With this choice of basis
and in this simple limit, the density matrix is diagonal. At the
chosen voltages, electrons tunnel into the Majorana box from
lead L and out to lead R. For a current to flow, the state of the
Majorana box must change according to |0L0R〉 → |1L0R〉 →
|1L1R〉 → |0L1R〉 → |0L0R〉 → · · · (electron tunnels in from
the left, out to the right, in from the left, out to the right,
etc.). Note that because the number states nL,R are not charge
eigenstates, it is possible to, for example, switch from nL = 1
to nL = 0 by an electron entering the box from contact L.
Taking the tunneling term that adds an electron from the left
lead in Eq. (2), and writing it in terms of the left/right fermion
operator, we obtain

HT,L → t
∑

k

[ck (eiφL + i) f †
L + ck (eiφL − i) fL], (4)

which is not Hermitian as we neglect tunneling terms from the
box into the left lead. For φL = π/2 the second term in Eq. (4)
vanishes, which results in the transition |1L1R〉 → |0L1R〉 be-
ing suppressed. Therefore, the system becomes trapped in the
blocking state |1L1R〉 and no current can flow. For φL = 3π/2
the blocking state is instead |0L0R〉. Reversing Vb or changing
φR at the right lead causes blocking instead in an odd state
(|0L1R〉 or |1L0R〉). We note that, in direct analogy with the
Pauli spin blockade [46,57], this parity blockade can be used
for fast and high-fidelity initialization of a Majorana box qubit
in any of the blocking states, as well as for readout in the
corresponding basis.

Finite overlap between MBSs. We now move on to inves-
tigate how the blockade is lifted and how to read off qubit
lifetimes from the remnant current Irem = minφL [I (φL )] in the
blocked regime. First, we note that the blockade is lifted
for asymmetric tunnel couplings to the upper/lower MBSs.
We will quantify this more explicitly below and for now
assume tLu = tLd . For now we keep the assumption Hdis

MB = 0
but take εm 	= 0. Then the eigenstates are |nund〉 rather than
|nLnR〉, associated with the up/down fermions with operators
fm = (γLm + iγRm)/2 for m = u, d . The eigenenergies Enund

within each parity sector are split by the MBS overlap, 2 e =
E11 − E00 = εu + εd and 2 o = E01 − E10 = εu − εd . More-
over, the coupling to the leads introduces a Lamb shift given

by

HLS = 	IP

(
σx(sin φL + sin φR) 02

02 −σx(sin φL − sin φR),

)

(5)
proportional to the principle value integrals IP (see
Refs. [55,58,59]).

We can write the master equation in terms of the probabil-
ity pe/o to be in the even/odd sector, and a pseudospin 
se/o

that describes the density matrix within each sector, where
we choose the z axis to be along |nLnR〉. In the SM [55], we
derive Bloch-like equations for the pseudospin and show that
the current is given by

I = 2e 	(pe + sin φL sz
e). (6)

Without MBS overlaps, sz
e,o are decoupled from sx,y

e,o. Finite
overlaps correspond to a magnetic field of strength e,o along
the x direction. In leading-order perturbation theory, e,o in-
duces an additional loss term of magnitude 2/	2(1 + I2

P )
in the master equation for ∂t sz

e at φL = π/2. The blocking
state corresponds to pe = 1 − 1

22/	2(1 + I2
P ), sz

e = −1 +
2/	2(1 + I2

P ), resulting in a current Irem = e2
e/	(1 + I2

P ).
This result can be generalized to any mechanism that allows
parity to escape from the left Majorana pair (nL = 0 → nL =
1) without changing the total charge on the Majorana box. If
the parity escape rate is ̃/h̄, the resulting remnant current
is Irem = ẽ2/	(1 + I2

P ) in the blocking regime. Interestingly,
a larger tunnel coupling to the leads enhances the lifetime of
the blocking state and suppresses current. Thus, even though a
measurement of the remnant current directly gives the inverse
lifetime of the blocking state 1/τ = Irem/e, this is not the same
as that for the isolated Majorana box. The Lamb shift is not
experimentally accessible and experiments can only extract
the decay rate of the coupled Majorana box qubit ̃coup ≡
̃/(1 + I2

P )1/2 which is always smaller but of the same order
of magnitude as the decay rate ̃ of the isolated Majorana box.
To measure ̃coup one should first extract 	 from the current
in the nonblocked regime [see Fig. 1(c)], and then measure
̃2

coup/	 from the current in the blocked regime.
Finite overlap with unwanted MBSs. We illustrate this with

a specific model for a disordered device containing unwanted
MBSs. We assume that these MBSs are uncoupled to the
leads, Hdis

T = 0, and

Hdis
MB = i

2

∑
m=u,d

∑
r=L,R

ε̃rmγrmγ̃rm + �mγ̃Lmγ̃Rm, (7)

where the γ̃ ’s are four additional disorder-induced MBSs with
couplings �m between each other and couplings ε̃rm to the end
MBSs. For ε̃Lu � ε̃Ld ,�m, the relevant parity escape rate is
̃ ≈ (ε̃Lu ± ε̃Ld )/2 ≈ ε̃Lu/2. Figure 2 shows the current as a
function of 	. For 	 � ̃ the current is proportional to 	, it
peaks at 	 ≈ ̃, and then decays with larger 	 as ̃2

coup/	

(dotted black line in Fig. 2).
Asymmetric tunnel couplings. We also introduce deviations

from the ideal blocked situation |tLd/tLu| = 1 − δt , φL = π
2 +

δφ , δ =
√

δ2
t + δ2

φ . These deviations lead to a contribution to

the current that is linear in 	 (dashed black line) which dom-
inates Irem for 	 > ̃coup/2δ [55]. In particular, the different
scaling in 	 makes it possible to distinguish experimentally
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FIG. 2. Inset: Lifting of the blockade at φL = π

2 for εLu = 2 ×
10−4T and δt = 10−2. The main plot shows Irem as a function of 	 for
δt = δφ = 10−2. After a sharp increase linear in 	 until 	 ≈ ̃coup,
Irem decreases as e ̃2

coup/	 (black dotted line) before it increases
again as 2e δ2	 (black dashed line).

between a remnant current caused by an escape rate (I ∝ 1/	)
compared to one due to finite δ (I ∝ 	).

Distinguishing clean from disordered box. Now we move
on to showing that the phase dependence of the Lamb shift
offers the possibility to distinguish between the clean box
with only four MBSs in total, and the disordered box with
additional MBSs or ABSs [Fig. 3(a)]. We model each ABS as
two closely spaced MBSs which both couple to the leads by

Hdis
T =

∑
rmk

γ̃rm(trmcrk − t∗
rmc†

rk ), (8)

but with no overlaps with the MBSs on the other side of the
box, �m, εU = 0. For each of these three cases, we block
the current from the left lead with φL = π

2 and investigate
the dependence of Irem on φR. Figure 3(b) shows that the
result is qualitatively different for the clean box (blue lines)
compared with the disordered box (red lines) and ABS box
(green lines), and this difference is robust to various parameter
choices (different line styles).

In the case of the clean box the Lamb shifts introduced by
both leads either add up (φR = π

2 ) or subtract (φR = 3π
2 ) [see

Eq. (5)]. This leads to a decrease, respectively increase, in Irem.
This qualitative dependence is stable under all investigated
parameter settings. For a large overlap, there appears a peak
at φR = π

2 , which corresponds to an additional blockade at the
right lead interfering with the blockade at the left lead.

For the disordered box with additional MBSs or ABSs, the
line shape is qualitatively different, with only very narrow dips
(width ∝ ̃coup/	) around φR = π

2 , 3π
2 . They mark a transi-

tion from a blockade at the left lead to a blockade at the right
lead with a smaller overlap/escape rate.

The qualitative difference of Irem(φR) is due to the different
escape mechanism from the parity blocked state to the next
pair of MBSs [see Fig. 3(a)]. In the clean box this nearest

0 π/2 π 3π/2 2π
φR

0

1

I r
em

/I
re

m
(φ

R
=

0)

(a) (b)

FIG. 3. (a) Escape rate mechanisms leading to Irem for the clean
box (blue), the disordered box (red), and the ABS box (green).
(b) Irem as a function of φR at φL = π

2 and 	 = 10−2T renormalized
by Irem(φR = 0) for all three box models in line colors that match
colors in (a). The overlaps are chosen as εU , εLu = 10−5T . For each
model we plot Irem for the perfectly fine-tuned setting (solid lines),
deviation in the fine-tuned tunneling δt = 10−4 (dotted lines), mis-
match in tunneling to the left/right lead 	R = 	L/2 (dashed-dotted
lines), and a very large overlap εU , εLu = 10−3T (dashed lines).

pair of MBSs is connected to the right lead. Accordingly,
the adjustment of the Lamb shift via φR affects the remnant
current. But for the disordered and ABS boxes the nearest pair
is located in the inner part/at the left end of the setup. There is
no connection to the right lead and accordingly no dependence
on the phase φR.

Conclusions. We have used a quantum master equa-
tion approach to investigate transport through a Majorana box
coupled to normal leads. There is a blocking regime, where
the Majorana box becomes trapped in a well-defined state
and the current is suppressed. In analogy with the Pauli spin
blockade, this parity blockade can be used for qubit initial-
ization and readout, as well as for measuring qubit coherence
times from dc transport. We believe that this can become a
key enabling technique for a first generation of MBS qubit
experiments, where single-shot readout might be challenging
due to limited control or short qubit coherence times. Further-
more, the proposed setup makes it possible to experimentally
distinguish between a clean Majorana box and a box with
additional disorder-induced MBSs or ABSs.

If we assume that T = 100 mK ≈ 10 μeV, the choice of
parameters used in this Letter corresponds to Vb ≈ 200 μV
and 	 ≈ 1 μeV ≈ 200 MHz. It is then possible to measure
qubit lifetimes < 1/	 ≈ 5 ns.

In our model, the parity lifetime is limited by MBS over-
laps, but we expect that if some other form of relaxation
or decoherence dominates (e.g., quasiparticle poisoning), the
proposed measurement of the remnant current will instead
reveal the corresponding timescale.

We acknowledge stimulating discussions with Karsten
Flensberg, Michele Burello, and Jens Schulenborg, and fund-
ing from Nanolund, the Swedish Research Council (VR), and
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
under Grant Agreement No. 856526.
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