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Non-Hermitian topological exciton-polariton corner modes
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Non-Hermitian topological corner modes can be formed in exciton-polariton lattices under nonresonant
pumping. Signals propagating in the bulk of the system can travel around defects, which is not possible in
one-dimensional topological lattices or two-dimensional lattices with Hermitian edge states. In the presence of
nonlinear interactions, the system remains topological, as evidenced by the winding of the complex fluctuation
spectrum. Finally, as all polariton states are localized, the system offers an opportunity for more accurate
measurement of the polariton-polariton interaction strength as one can avoid condensing in a state with large
overlap with the pump-induced exciton-reservoir.
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Introduction. Exciton-polaritons are part-light part-matter
quasiparticles formed in semiconductor microcavities [1–4].
Their matter component offers significant nonlinearity, while
their optical component allows manipulation [5] and obser-
vation on optical lengthscales. With their pseudospin [6], this
offers a unique system to study spinor wave behavior in a con-
trollable and accessible environment. One of the most famous
physical phenomena in this system is known as polariton
superfluidity, which is traditionally characterized by the prop-
agation of a polariton wave packet around a defect without
coupling to backscattered states [7]. After its prediction [8]
it was generalized to the spinor case [9] and later observed
experimentally [10], up to room temperature in modern mate-
rials [11].

The absence of coupling to backscattered states is not
a unique effect of nonlinearity. Topological Chern systems
are also famous for the same claim and well established in
topological photonics as well as in polaritonic crystals formed
by the etching of semiconductor microcavity lattices [12].
The difference though in the observable behavior (aside the
underlying physical mechanism) is that the backscattering
suppression for a polariton superfluid should occur for a
wave packet propagating in the bulk of the system, while the
suppression in a Chern insulator occurs for a wave packet
propagating along the edge of a lattice. The first situation
seems more favorable for application in coherent polariton
devices [13].

While topological Chern systems are an example of
Hermitian physics, it should be noted that polaritons are
non-Hermitian systems [14,15]. Non-Hermitian systems can
possess unique properties. During the past two decades,
parity-time (PT) symmetry has attracted a lot of research
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interest [16–18]. In contrast to the view that only Hermitian
Hamiltonians have real eigenvalues, non-Hermitian Hamilto-
nians that commute with the parity-time operator can also
have real spectra. In the polariton system, the application of
a nonresonant optical field, which can be spatially patterned
or modulated, represents a gain in the system, while the finite
lifetime of polaritons represents a natural loss. The gain-loss
control of polaritons makes it a great platform to study non-
Hermitian physics and energy spectra may be complex.

Non-Hermitian lattices allow non-Hermitian topological
effects, such as the skin effect [19–23] where all the eigen-
states of a system become localized at an edge and a new
bulk-boundary correspondence requires a generalized Bril-
louin zone (GBZ) method for its explanation [24–27]. The
simplest one-dimensional (1D) skin effect can be realized
in the Hatano-Nelson (HN) model [28,29], which assumes a
nonreciprocal hopping between lattice sites. The Chern num-
ber is replaced with a different topological invariant, namely,
a winding number describing the angular direction in which
eigenenergies encircle a point in the complex plane when the
wave vector is scanned across the Brillouin zone. If the skin
effect is present, then the eigenenergies calculated for an infi-
nite lattice with periodic beriodic boundary condition (PBC)
should also encircle the eigenenergies calculated for a finite
lattice with otherwise the same parameters and open bound-
ary condition (OBC) [21,26,30]. To realize the skin effect,
coupled resonant optical waveguides [31–33] are typically
considered for coupling ring resonators in a lattice [34–38].
In exciton-polariton systems, the skin effect was predicted in
a one-dimensional lattice [38,39] using a circularly polarized
gain [40] to break spin symmetry and induce an effective
asymmetric coupling between sites.

Here, we design a two-dimensional (2D) polariton lattice,
where all eigenstates are localized at its corners. Wave packets
propagating in the bulk of the system are found to travel
around defects, in analogy to polariton superfluids although
there is coupling to other forward propagating states and the
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underlying physical mechanism is very different: The skin
effect does not require particle-particle interactions for its
realization. In such a regime, the spectral winding number
of the linear Hamiltonian constitutes an effective topological
invariant.

Even though particle-particle interactions are not required
for the skin effect, it is instructive to ask whether they
would affect the topology. This is not a straightforward
question: Topological invariants are defined from the eigen-
states of linear Hamiltonians, which no longer exist in the
nonlinear regime. To address this, we first point out that
driven-dissipative systems often form in a dominant state (of
highest gain) or stationary state (if there is gain saturation).
However, if only a single such state appears, it is not enough to
determine the system topology: We need other states to exist.
These can only be the states of fluctuations on top of the dom-
inant or stationary state and we indeed show that a non-trivial
fluctuation spectral winding exists. As this spectrum exists in
the presence of interactions, we can still identify nonlinear
driven-dissipative systems as topological.

Finally, we note that a critical challenge in the field has
been the measurement of the polariton-polariton interaction
strength. This is inferred from the energy shift of interact-
ing polaritons, however, this is also affected by interactions
of polaritons with a reservoir of higher-energy states. Un-
fortunately, as polaritons typically form in the state with
maximum overlap with this reservoir, that is, the state of
highest gain, the unwanted interaction is heavily maximized.
This resulted in spurious measurements spanning orders of
magnitude [41]. An exceptional case is in ultra-high-quality
factor microcavities, where polaritons live long enough to
transition from states with maximum overlap with the reser-
voir to those that have small overlap [41,42]. However, this is
not possible in most microcavities, especially those in novel
materials [43,44]. In the case of the skin effect though, as all
states are localized at the corners, one can avoid condensing
in a state that has high overlap with the exciton reservoir to
begin with.

We consider first a tight-binding model of a spinor square
lattice with onsite gain

ih̄
∂ψm,n,±

∂t
= Ae±2iπ (m+n)/Nψm,n,∓ − i�±ψm,n,±

+ J (ψm−1,n,± + ψm+1,n,± + ψm,n−1,± + ψm,n+1,±). (1)

Here m and n are site indices. ± denotes an on-site spin degree
of freedom, where different spins have different decay rates
�±. J is the intersite coupling strength, and A is a coupling
strength between spins, where the phase of the coupling is
site dependent with N the number of sites in each direction of
the unit cell. Such a lattice could be realized with exciton-
polaritons in microcavities. The coupling between spins is
equivalent to a local polarization splitting, which could be
arranged using elliptical micropillars [40,45]. The orientation
of the pillars [illustrated by the grey ellipses in Fig. 1(b)]
define a site-dependent phase of the coupling between spin
components. The different gain for different spin components
could be achieved with an elliptically polarized nonresonant
pumping. We begin by considering linear physics, but will
later consider the effect of interactions as well as gain satu-
ration.

2

0

Π 2

2

0

Π 2

5 0 5
0.6

0.5

0.4

0.3

2Re E Γc

2I
m
E
Γ c

(a) (b)

FIG. 1. (a) Complex energy spectrum of Eq. (1) for open (black)
and periodic (grey) boundaries. The colored loops show the energies
for periodic boundaries for a diagonal contour across the Brillouin
zone with the values of the wave vector marked. (b) The state
corresponding to maximum gain marked by the black dot in (a).
The light gray ellipses mark the orientation of micropillars used to
realize local polarization splitting. The radial size of elliptical arcs
shows the amplitude of + (red) and − (blue) spin components. The
arc lengths are proportional to their corresponding phases, with a
complete revolution corresponding to 2π . Parameters: J = h̄γC/2,
A = 2h̄γC , �+ = 0.05h̄γC , �− = 0.4h̄γC , N = 8. γC sets the inverse
timescale of the system, corresponding to the decay rate in polariton
systems.

Non-Hermitian corner modes. The eigenstates of Eq. (1)
have a complex energy spectrum shown in Fig. 1(a) for a
finite lattice with OBC (black) and an infinite lattice with PBC
(grey). Along a diagonal contour in the reciprocal space corre-
sponding to m and n directions the eigenenergies with periodic
boundaries form the loops illustrated with colors. These loops
define complex spectral winding numbers [26,46,47], ±1,
which represent a nontrivial topology in the system. The OBC
energies are encircled by the PBC in the complex plane, which
is a key characteristic of the non-Hermitian skin effect [30,48–
51]. Figure 1(b) shows the state of highest gain in the system
with PBC. Note that the phase gradient is along the diagonal
direction; indeed it is because states on the edge of the shaded
region in Fig. 1(a) correspond to states with diagonal wave
vectors that a contour along such wave vectors in the Brillouin
zone is the best for defining the winding number [52].

Furthermore, all positive energy states are localized at the
top-right corner of a finite lattice, while all negative energy
states are localized at the bottom-left corner [53–55], as shown
in Fig. 2. In contrast to the corner states of Hermitian sys-
tems [56–59], we stress that it is all the states of the considered
non-Hermitian system, not just a selection, that are localized
at corners. Although throughout the main text we base our
results on a tight-binding model (where the elliptical shape of
the pillars manifests in a polarization splitting with specific
alignment), we consider a continuous model that accounts
explicitly for the spatial shape of the elliptical pillars and find
similar results [60].

Signal propagation. The skin effect gives all wave
functions a nonreciprocal flux toward a boundary. In one-
dimensional lattices showing the skin effect (e.g., in the HN
model) this may enhance propagation in one direction while
weakening propagation in the other. However, if there is a
defect in the lattice, the signal has a low chance to cross the de-
fect and most of the propagation will stop at the defect (aside
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FIG. 2. (a) Intensity distribution of selected eigenstates with dif-
ferent energies along the n-direction (the distribution is the same
along the m-direction due to symmetry). (b), (c) show the spatial dis-
tributions of the lowest- and highest-energy states, respectively. The
40 × 40 sites used in this calculation are obtained by repeating
the unit cell in Fig. 1 five times in each direction. Parameters are the
same as in Fig. 1. Although attained with a tight-binding model, the
intensity of each site is drawn as an elliptical Gaussian to illustrate
the orientations of micropillars in an exciton-polariton realization.

from a small amount allowed by quantum tunneling). The
higher-dimensional non-Hermitian corner modes give more
flexibility for the signal to propagate efficiently and allow
direction to be controlled. Defects can be circumvented and
do not stop propagation, as shown in Fig. 3.

Here an initial wave packet localized at the center of the lat-
tice initially appears to spread out in all directions [Fig. 3(a)].
At intermediate times, the wave packets appear to propagate
around the defects [Figs. 3(b) and 3(c)], while some intensity
from slower moving components of the wave packets remains
in between the two defects. At longer times, we see clearly
that the entire wave packet moved to the top-right corner
[Fig. 3(d)] showing the directional behavior of the propaga-
tion in this system. There is no intensity in the lower left-half
of the lattice, implying no backscattered component.

We also considered a system with a line defect as shown
by the white dashed line in Fig. 4. The line defect divides
the system into two parts: The left part has potential V =
−0.1h̄γC ; the right part has potential V = 0.1h̄γC . Here the
energy difference we choose is less than the energy gap. We
can still see polaritons passing the line defect, which shows
that our proposed system has robustness to the line defect.

Topology in the nonlinear regime. In systems with a
Kerr nonlinearity, such as exciton-polaritons, Eq. (1) should
be supplemented with a term g|ψn,m,±|2ψn,m,± in the right-
hand side, with g the interaction strength. In this case the
winding number can no longer be defined as we have no

FIG. 3. Time evolution of an initial wave packet with two defects
at (n, m) = (15, 15) and (25,25) sites (white ellipses). Parameters are
the same as in Fig. 1. The defect sites have an added potential energy
of 6h̄γC . In all panels the intensity is normalized to the maximum
value. In practice, the overall intensity changes in time according to
the imaginary components of the eigenvalues calculated in Fig. 1(a).
For our parameters, the imaginary components are negative, corre-
sponding a decay. In principle, by increasing the pumping strength
the decay can be slowed or even turned into growth.

FIG. 4. Time evolution of the 2D polaritons with a line defect,
which is along the y direction as shown by the white dashed line
(a)–(d). Parameters are taken the same as in Fig. 1 with the added
line defect potential.
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(a) (b)

FIG. 5. Fluctuation spectrum of Eq. (1) constructed on top of the
highest gain state with (a) g = 0 and (b) g = 25h̄γC .

eigenstates. However, it can also be noted that the system
can be expected to form dominantly in a state of highest
gain [Fig. 1(b)]. In the presence of such a highly occupied
state, the spectrum of the system is rather defined by the
Bogoliubov–de Gennes fluctuation spectrum obtained by sub-
stituting ψn,m,± = e−iω0t (ψ (0)

m,n,± + um,n,±e−iωt + v∗
m,n,±eiω∗t ),

where ψ
(0)
m,n,± is the dominant (possibly growing) state of

the system with (complex) energy ω0; um,n,± and v∗
m,n,± are

the amplitudes of small fluctuations with frequency ω and
−ω∗, respectively. Substitution into Eq. (1) and keeping linear
terms in um,n,± and v∗

m,n,± defines an eigenvalue problem for
attaining the energies of fluctuations [61]. These are shown in
the absence and presence of interactions in Fig. 5. We note
that the spectral winding is present in the fluctuation spectrum
of the driven-dissipative and propose that it is an equally
valid measure of topology as the eigenstates of the linear
Hamiltonian. The fluctuation spectral winding persists in the
presence of interactions, confirming that the system is still
topological. We note that Hermitian topology was predicted
for fluctuation spectra in different geometries, but as far as we
know non-Hermitian topology such as the one that we study
here was not considered [62,63].

For larger nonlinearity, the distribution of the eigenval-
ues in the complex plane becomes more and more distorted,
beyond that shown in Fig. 5(b). Eventually, the eigenvalues
become so distorted that we were unable to define their wind-
ing number. This might be a limitation though of the algorithm
that we use to define the winding number or a limitation of
the contour that we choose in the reciprocal space. Whether
the topology can be destroyed for very strong nonlinearity
remains an open question.

Gain saturation. So far we considered a simplified model
with constant gain represented by �±. While this model may
be accurate at early times, at long times the positive gain in
this model will cause the intensity to grow unphysically to
infinity. Of course this does not happen in real systems as the
gain should be supplemented by saturation. Typically, this is
handled in exciton-polariton systems by the replacement in
Eq. (1)

i�± → ih̄

2
(RNm,n,± − γC ), (2)

where R defines the rate of scattering of excitons from a
reservoir with on-site population Nm,n,± and γC is the polariton

decay rate. The exciton reservoir evolves as

∂Nn,m,±
∂t

= P± − (γR + R|ψn,m,±|2)Nm,n,±, (3)

where P± is the intensity of the circularly polarized compo-
nents of a nonresonant optical field and γR is the reservoir
decay rate. This is not trivial, as the formation of a stationary
state implies a balance of gain and loss, which might be
interpreted as removing the non-Hermiticity of the effective
Hamiltonian. However, we find that it is the nonlinear terms
themselves that preserve the complex winding of the spec-
trum.

Interaction measurement. Despite its importance as a key
parameter in polariton physics, the strength of polariton-
polariton interaction is not easy to distinguish experimentally.
One typically hopes to infer it from a nonlinear shift of the
polariton energies, however, a severe complication is that the
shift in energy of a polariton condensate can be associated to
two terms:

Vc =
∑

m,n,± g|ψm,n,±|4
∑

m,n,± |ψm,n,±|2 , (4)

and

Vr =
∑

m,n,±(gRNm,n,±+GPm,n,±)|ψm,n,±|2
∑

m,n,± |ψm,n,±|2 . (5)

The first represents the interaction strength due to polariton-
polariton interaction, while the second represents the inter-
action strength due to polariton-reservoir interaction. The
reservoir-induced energy shift contains both a shift due to
the modeled reservoir density, where gR is the the reservoir-
polariton interaction constant [64] and a term proportional
to the on-site pumping Pm,n,±, which accounts for other hot
carriers excited by the pumping [65]. In an experiment, the
total measured blueshift is typically measured with increasing
pumping strength, where it can be taken as the shift of the
polariton condensate spectral line from the case at threshold.
That is, if V 0

c and V 0
r denote the above quantities at threshold,

then the measured blueshift is the sum of �Vc = Vc − V 0
c

and �Vr = Vr − V 0
r . Ideally, one hopes that �Vr is small, so

that what is measured can be assumed to be �Vc and from
this g can be extracted from a separate estimate of polariton
densities. In practice though, �Vr is not negligible in typical
geometries since the condensate typically forms in a state
where there is maximum overlap with the exciton reservoir.

To account for the aforementioned interactions in our
case, we include a term gRNm,n,± + GPm,n,± in the right-hand
side of Eq. (1). We consider the case of a spatially uniform
pumping at the condensation threshold, superimposed with an
additional pumping spot in the center of the lattice that takes
us beyond threshold.

For the 2D skin lattice, �Vr is around 20% of �Vc just
above threshold. It is not zero, as there is still a finite overlap
of the corner state with the reservoir, however, it is about three
times smaller than the size of the reservoir-induced blueshift
in the corresponding regular lattice, such that it is a much bet-
ter approximation to neglect the reservoir-induced shift in the
case of the skin lattice. In principle, a similar effect could be
expected in 1D lattices, however, there is less delocalization
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FIG. 6. Contributions to energy blueshift from threshold �Vc

(blue) and �Vr (green) for 2D skin effect lattice [(a), solid, N =
8], corresponding 1D lattice [(a), dashed], and regular 2D lattice
[(b), N = 1]. The insets show the intensity patterns in a 40 × 40
lattice at the indicated intensities. (c) Ratio �Vr/�Vc for N = 8
(solid) and N = 1 (dashed) 2D lattice. Here polaritons are local-
ized at the bottom-left corner which is due to P+ < P−. Parameters:
γR = 4γC/2, R = γC/2, g = 0.06h̄γC , gR = 2g, G = 0.0175 (these
are consistent with [64,65]). The pumping was taken with a uniform
background of P+ = 1.996γC/2 and P− = 5.996γC/2 with an addi-
tional Gaussian spot (width ten sites) of varying intensity P exciting
both spin components. Other parameters were the same as in Fig. 1.

between the edge state and reservoir in this case, resulting in
the dashed lines in Fig. 6(a).

Compared to Figs. 6(a) and 6(b) shows the reservoir-
induced blueshift �Vr (green) and the polariton-polariton
interaction-induced blueshift �Vc (blue) for increasing pump-
ing powers. The corresponding ratio of these two quantities

is around 60% (or even higher for smaller pump powers) and
compared to the ratio for the 2D skin effect lattice in Fig. 6(c).
In other words, our scheme of topological non-Hermitian cor-
ner states reduces the effect of the reservoir on the blueshift
by about three times.

Conclusion. we introduced a scheme for a 2D non-
Hermitian skin effect in an exciton-polariton lattice. The
combination of different gain rates of different spin com-
ponents and a position-dependent phase hopping leads to
non-Hermitian corner modes. As such a system is expected
to form in the state of highest gain, its spectrum should be
defined by that of fluctuations about this state. Topological
invariants in the form of spectral winding numbers can be
defined within this fluctuation spectrum. As the fluctuation
spectrum still exists in the nonlinear regime, we are able to
ascertain that the system remains topological in the presence
of nonlinear interactions.

We give two applications of the higher-dimensional non-
Hermitian topology. First, propagating polariton wavepackets
in the bulk travel around defects. Second, as in the skin effect
all the modes of the system can be localized and we can
avoid the existence of any mode with high overlap with the
exciton-reservoir, the system offers an opportunity to more
accurately access the polariton interaction strength in systems
with limited lifetime.
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