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Higher-dimensional Hofstadter butterfly on the Penrose lattice
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It is now possible to use quasicrystals to search for novel topological phenomena enhanced by their peculiar
structure characterized by an irrational number and high-dimensional primitive vectors. Here, we extend the
concept of a topological insulator with an emerging staggered local magnetic flux (i.e., without external fields),
similar to Haldane’s honeycomb model, to the Penrose lattice as a quasicrystal. The Penrose lattice consists
of two different tiles, where the ratio of the numbers of tiles corresponds to an irrational number. Contrary
to periodic lattices, the periodicity of the energy spectrum with respect to the magnetic flux no longer exists,
reflecting the irrational number in the Penrose lattice. Calculating the Bott index as a topological invariant,
we find topological phases appearing in a fractal energy spectrum similar to the Hofstadter butterfly. More
intriguingly, by folding the one-dimensional aperiodic magnetic flux into a two-dimensional periodic flux space,
the fractal structure of the energy spectrum is extended to a higher dimension, whose section corresponds to the
Hofstadter butterfly.
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The essential characteristics of quasicrystalline physical
properties have continuously been sought and discussed since
the astonishing discovery of quasicrystals [1], because of their
distinct characteristics; higher-order (five-, eight-, or tenfold)
rotational symmetry, an irrational ratio of the numbers of dif-
ferent local structures, fractality in their global structure, and
higher-dimensional primitive vectors, instead of translational
symmetry [1–3]. The first investigations on single-particle
electronic properties have been performed more than three
decades ago [4–13], resulting in several discoveries of quan-
tum properties in quasicrystals, e.g., (critical or confined)
zero-energy eigenstates [9–13], and (multi)fractal structures
in an energy spectrum [6,14–16]. In parallel, the thermody-
namical properties in quasicrystals have also retained much
interest, because of a specific lattice degree of freedom, the
so-called phason, corresponding to a hidden degree of free-
dom related to the higher dimension [14,17,18]. Furthermore,
recent experimental discoveries of quasicrystalline ferromag-
netism, superconductivity, and quantum criticality [19–22],
and successful realizations of aperiodic optical lattices [16,23]
and topological photonic quasicrystals [24–26] have spurred
theoretical investigations of exotic physical properties in
quasicrystals. In addition, recent attempts to discover novel
phases of matter have been focused on the topological
phases in quasicrystals: topological insulators [27–37], topo-
logical superconductors [38–41], higher-order topological
phases [36,42], and hidden topologies in non-Hermitian sys-
tems [43,44].

Despite the recent progress in the topological phases of
quasicrystals, the essential properties in quasicrystals have

still not been completely clarified so far. To extract an essential
property common in quasicrystals, we focus on the irrational
number characterizing the quasicrystalline structure. In qua-
sicrystals, the irrational number corresponds to the ratio of
the numbers of two different tiles and the ratio of surfaces
of the tiles, e.g., the golden ratio (1 + √

5)/2(= τ ) for the
Penrose lattice [see Fig. 1(a)] and the silver ratio 1 + √

2 for
the Ammann-Beenker lattice [45,46]. Yet, how do we capture
the advent of the irrational number in a physical quantity?
Here, we propose a model of a quasicrystalline topological
insulator, which is similar to that used by Duncan et al. [37]
but includes an emerging staggered local magnetic flux (i.e.,
no external fields). Our proposed model thus corresponds to
an extension of Haldane’s honeycomb model [47] to qua-
sicrystals.

In Duncan’s work [37], they apply a uniform magnetic field
and assume local magnetic fluxes proportional to the surfaces
of two tiles. Since the ratio of surfaces corresponds to the
irrational number in quasicrystals, the ratio of local fluxes
becomes the irrational number and breaks the periodicity of
the energy spectrum including topological phases with respect
to the magnetic flux. However, as mentioned in Ref. [37],
the irrational ratio of surfaces is realized even in uniform
crystals. On the other hand, the irrational ratio of the numbers
of two tiles is undoubtedly unique to quasicrystals. Instead of
a uniform magnetic field, if we apply a totally zero staggered
magnetic field and impose an equivalent local magnetic flux
on the same type of tiles, the ratio of the fluxes can be the
irrational number via the ratio of the numbers of tiles. In fact,
with the zero external field condition Nrφr + Nbφb = 0, the
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FIG. 1. (a) Penrose lattice constructed by fat (red) and thin (blue)
tiles. (b) A g = 1 approximant of the Penrose lattice, where the
first to 11th green sites are linked by green bonds. Owing to the
approximant periodicity, we regard the lattice as a unit cell. The
magenta edges linking green to magenta sites denote the bonds bridg-
ing between neighboring unit cells, corresponding to a connection of
boundaries with a periodic boundary condition. The number colored
in red (blue) in each tile counts red (blue) tiles in the unit cell, and
the number of red (blue) tiles amounts to 7 (4).

ratio of local fluxes is equivalent to the ratio of the numbers
of tiles, i.e., the irrational number, φr/φb = −Nb/Nr , where
Nr (Nb) and φr (φb) represents the number of red (blue) tiles in
Fig. 1(a) and the local flux of them, respectively. Therefore,
with a staggered magnetic field, the broken periodicity of
an energy spectrum appears only in quasicrystals. Moreover,
the aperiodic structure with respect to one of the magnetic
fluxes can be folded into a two-dimensional periodic flux
space. Adding an energy axis to the two-dimensional flux
space, we can see a three-dimensional complicated structure
of the energy spectrum, whose vertical section is the so-called
Hofstadter butterfly.

In the following, as a case study showing this behavior, we
focus on the Penrose lattice, though we have also obtained
a qualitatively similar result in an Ammann-Beenker lattice
(not shown). The Penrose lattice is a typical example of two-
dimensional quasicrystals and is composed of two (fat and
thin) rhombuses [see red and blue tiles in Fig. 1(a)]. Although
translational symmetry is absent, it has various structural
properties, such as fivefold symmetry and self-similarity re-
lated to the inflation/deflation rules [45,46]. To demonstrate
the numerical results, we use the approximant method to
generate a Penrose quasicrystal [10,48]. The quasicrystal ap-
proximant has a translationally symmetric structure with a
unit cell resembling a local structure of the original qua-
sicrystal [see Fig. 1(b)]. The unit-cell size is increased with
increasing the approximant generation g, so that the real
quasicrystal is obtained with g → ∞ (see Sec. S1 in the
Supplemental Material [49]). The numbers of the red and
blue tiles in the gth generation are N (g)

r = 3F2g+1 + F2g and
N (g)

b = F2g+1 + 2F2g, respectively, with the ith Fibonacci num-
ber Fi. According to the inflation rule between the gth and
(g − 1)th generations, the number of tiles increases according
to Ng = FNg−1 with

Ng = (
N (g)

r N (g)
b

)T
, F =

(
2 1
1 1

)
. (1)

Since the eigenvalues of the inflation matrix F are {(1 ±√
5)/2}2, in the thermodynamic limit g → ∞, the component

of the number’s vector Ng along the eigenvector with the
smaller eigenvalue vanishes. The eigenvector for the larger
eigenvalue is (τ, 1) with the golden ratio τ , so that the ratio
of the numbers of two tiles converges to the golden ratio,
N (g)

r /N (g)
b → τ (see Table I). This is a feature peculiar to qua-

sicrystals, while in the periodic lattices consisting of several
types of plaquettes, the ratio of the numbers of plaquettes
should be rational. We omit the superscript about the gener-
ation (g) in the following.

The model Hamiltonian is given by

H = −t
∑
〈i, j〉

eıAi j c†
i c j + H.c. − μ

∑
i

c†
i ci, (2)

where c†
i (ci) is the creation (annihilation) operator of a spin-

less fermion at the ith vertex on the Penrose lattice, and ı is
the imaginary unit. The chemical potential and the hopping
integral are denoted by μ and t , respectively. To introduce a
flux in a tile, we use the Peierls phase Ai j , corresponding to
a line integral of a vector potential on the edge 〈i, j〉 from the
ith to jth vertices. In addition, to obtain a periodic boundary
condition, we use one unit cell of the gth Penrose approximant
[see Fig. 1(b)].

In the continuum limit, the vector potential A(r) is related
to the magnetic flux φS penetrating the surface S via

φS =
∮

∂S
A · dr, (3)

where ∂S is the boundary of the surface S. In lattice models,
we can use an alternative of (3) given by

φ(i, j,k,l ) = Ai j + A jk + Akl + Ali, (4)

where φ(i, j,k,l ) is the magnetic flux passing through a tile
constructed by four vertices, (i, j, k, l ), numbered counter-
clockwise. As mentioned above, we assume the same value
of flux for each type of tiles, where there are two types of
flux φ(i, j,k,l ) = φr, φb for the red and blue tiles in Fig. 1(a),
respectively. Moreover, we introduce a constraint on the flux
satisfying the totally zero magnetic field Nrφr = −Nbφb. In
this sense, the two types of flux depend on each other, and are
rewritten by

φr = 2π
nr

Nr
, φb = 2π

nb

Nb
, (5)

with a single parameter n = nr = −nb as the normalized flux.
Note that each magnetic flux has periodicity in the phase space
of [0, 2π ], i.e., the period for nr (nb) corresponds to Nr (Nb).

The Peierls phase Ai j is determined as follows. With a
fixed normalized flux n, we obtain fluxes for two tiles (φr, φb).
We computationally assign the local Peierls phase Ai j for
edges one by one, satisfying Eq. (4) (see Sec. S2 in the
Supplemental Material [49]). Note that the configuration of
Ai j is not uniquely assigned, due to the presence of the gauge
degree of freedom. However, physical properties should not
depend on the gauge transformation: c†

i → eıθi c†
i , ci → e−ıθi ci

with Ai j → Ai j − (θi − θ j ).
With the configuration of the Peierls phase {Ai j}, we obtain

the energy spectrum by means of numerical diagonalization
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TABLE I. The numbers of red and blue tiles, the ratio of them, and the difference from the golden ratio in the Penrose approximants.

g = 1 g = 2 g = 3 g = 4 g = 5 g = 6 g = 7

Nr 7 18 47 123 322 843 2207
Nb 4 11 29 76 199 521 1364
Nr/Nb−τ

τ
O(10−1) O(10−2) O(10−3) O(10−4) O(10−5) O(10−6) O(10−7)

of the Hamiltonian (2). Figure 2 shows the energy spectrum
in a g = 7 Penrose approximant. Since the numbers of tiles Nr

and Nb for a given generation g are coprime, the periodicity
for the normalized staggered flux n is Nr × Nb, corresponding
to [0, 2πNb] for φr and [0, 2πNr] for φb. With increasing the
generation to the thermodynamic limit, i.e., Nb → ∞, the pe-
riodicity of the energy spectrum with respect to the staggered
magnetic flux φr or φb no longer remains.

Next, we discuss the topological features by using the Bott
index [41,50,51] defined by

Bt = 1

2π
Im tr log

(
VUV †U †

)
, (6)

with

U = PXP + (I − P), V = PYP + (I − P), (7)

FIG. 2. Energy spectrum of a g = 7 Penrose lattice (Nr = 2207
and Nb = 1364) with anormalized staggered magnetic flux n. We set
the hopping integral t = 1 as an energy unit. The position of the
colored symbols denotes the chemical potential μ (corresponding
to the value on the energy axis) and the normalized magnetic flux
n, and the colored indicators show the Bott index (6) obtained with
the parameters (μ, n). To calculate the Bott index, we choose the
chemical potential corresponding to the center of the gap. The gaps
are painted with colors representing the Bott index (shown at the
bottom of the panel) together with the upper and lower triangles.
The vertical dashed lines represent multiples of Nr = 2207 (red) and
Nb = 1364 (blue).

where P is the projection matrix onto lower-lying states than
the Fermi level and I is the identity matrix. X and Y are the
diagonal matrices linking the position to a U(1) phase,

Xi, j = exp
(

2π ı
xi − xmin

xmax − xmin

)
δi, j, (8)

Yi, j = exp

(
2π ı

yi − ymin

ymax − ymin

)
δi, j, (9)

where xmin and xmax (ymin and ymax) are the minimum and max-
imum values of the x (y) component of position, respectively,
and δi, j is the Kronecker delta. The Bott index gives nonzero
integer values in nontrivial topological phases as in the case
of other topological invariants. In particular, the Bott index is
useful for real-space representations of wave functions, and
can be obtained with a periodic boundary condition. More-
over, since the Bott index basically suits a model without
time-reversal symmetry, we choose it to calculate the topo-
logical number in our model, where time-reversal symmetry
is broken due to the staggered magnetic flux. In Fig. 2, we
can see some gaps including colored symbols. The colored
symbols represent the Bott index at the parameter point of
the chemical potential and the normalized flux. We have also
checked the appearance of edge modes in the topological
phases with the open boundary condition (see Sec. S3 in the
Supplemental Material [49]).

As mentioned above, the magnetic flux is unique modulo
2π , i.e., φr and φb can be folded into [0, 2π ] × [0, 2π ], cor-
responding to a 2-torus. In Fig. 3, we plot the path of flux for

FIG. 3. The path of the possible region of the staggered magnetic
fluxes (φr, φb) for g = 1, 2, and 3 generations. Since the magnetic
flux φr (φb) is unique modulo 2π , the parameter space of the two
fluxes corresponds to a 2-torus, where the toroidal (poloidal) axis
denotes φr (φb). With increasing the generation, the path densely
covers the whole region of the parameter space, due to approaching
the irrational ratio of the fluxes.

L201113-3
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FIG. 4. Three-dimensional Hofstadter butterfly structure.
(a) Gap structure and (b) Bott index in the energy spectrum as a
function of two independent magnetic fluxes φr and φb in a g = 7
Penrose lattice. In (a), only gaps with a size larger than 0.01t are
shown. In (b), the Bott index is shown for gaps with a size larger
than 0.05t . The colors in (b) are the same as in Fig. 2.

several generations, due to the constraint φb = −(Nr/Nb)φr.
Note that, even though we can change φr continuously, the
folded fluxes in flux parameter space do not occupy a full pa-
rameter space for the given generation. However, the possible
region of (φr, φb) is expanded with increasing the generation,
because of the increase of the smallest common multiple of
Nr and Nb. This is understood in the following way. For a
given φb, we can obtain φr = −Nb/Nrφb − 2πNb/NrN satis-
fying the staggered flux distribution, where N is an arbitrary
integer. Consequently, if Nb, and Nr do not have any common
divisor, then the number of distinguishable φr is obtained by
putting N = 1, 2, . . . , Nr . In the g → ∞ limit, namely in the
quasicrystals, the ratio converges to an irrational number (the
golden ratio) Nr/Nb → τ (see Table I), and Nr, Nb → ∞, so
that the possible region of (φr, φb) densely covers the whole
space of the 2-torus. Consequently, in the quasiperiodic limit,
the magnetic fluxes φr and φb are no longer dependent on each
other, and are regarded as two independent parameters. Note
that this feature is inherent in the quasicrystals, in contrast to
periodic systems such as a kagome lattice [52].

The independence of the magnetic fluxes φr and φb

together with an energy axis implies the existence of a three-
dimensional structure of the energy spectrum. Figure 4 shows
the gap structure in the energy spectrum with two parameters
φr and φb (see Sec. S4 in the Supplemental Material for
the intersection perpendicular to φr, and both intersections
together [49]). We can see that the complicated structure, the
so-called Hofstadter butterfly, spreads out in three dimensions.
By changing the staggered magnetic flux, the system probes
this two-dimensional flux phase space in a trajectory shown in
Fig. 3. Note that the length of this path in a true quasicrystal
limit (g → ∞) is infinite, originating from the golden ratio in
the Penrose lattice. Furthermore, we can map the staggered
magnetic flux model (n = nr = −nb) to a nonzero magnetic

flux model (n′ = n′
r = n′

b), in which the red and blue tiles
contain the same flux (see Sec. S5 for the proof [49]).

Finally, we again insist on the similarity and difference
between our staggered magnetic flux model and a model
with a uniform magnetic field in the quasicrystals proposed
in Ref. [37]. The latter model captures an incommensurate
behavior of magnetic flux due to the irrational ratio of the
surfaces of two tiles, and therefore the phase diagram is an
aperiodic function of the magnetic field similar to our model.
Folding a resulting energy spectrum as a function in (φb, φr )
phase space, one can obtain the same three-dimensional Hof-
stadter butterfly as our model. However, as mentioned in
Ref. [37], one can find the irrational ratio of surfaces of
two tiles even in a uniform lattice, e.g., it consists of two
rectangles whose surfaces have an irrational ratio. This point
is an essential difference between the uniform and staggered
fields. In our model, with the staggered field, the aperiodicity
of the phase diagram stems from the irrational ratio of the
numbers of two tiles. The ratio of the numbers of tiles can be
irrational only in quasicrystals, and thus the present feature
that we found is unique in quasicrystals.

Artificial magnetic flux distribution has been reported in
a chiral phase of an anisotropic XXZ spin model under
a perpendicular magnetic field in a kagome lattice [53],
where the chirality of the spin configuration produces an
effective staggered magnetic flux distribution for coupled con-
ducting electrons [54]. Our preliminary calculations for the
anisotropic XXZ model in Ammann-Beenker and Penrose
quasicrystals also show the emergence of staggered chiral
phases and thus result in a staggered magnetic flux distribution
where nontrivial topological phases for coupled conducting
electrons appear [55].

In conclusion, we have investigated a tight-binding spinless
fermion system on two-dimensional quasicrystals composed
of two types of tiles, with an emergent staggered magnetic
flux, without external magnetic fields. We found that the en-
ergy spectrum and its topological properties are aperiodic as
a function of staggered magnetic flux. Furthermore, due to
the irrationality of the ratio of the number of the two tiles,
two local fluxes are eventually independent in quasicrystals.
Consequently, the flux phase space is two dimensional, and in-
creasing staggered magnetic flux probes this flux phase space
in a nontrivial way, i.e., the ways never overlap. We found
that the energy spectrum in this two-dimensional phase space
produces a Hofstadter butterflylike fractal structure, but lives
in three dimensions.
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