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Transient ordering in the Gross-Pitaevskii lattice after an energy quench within a nonordered phase
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We numerically investigate heating-and-cooling quenches taking place entirely in the nonordered phase of the
discrete Gross-Pitaevskii equation on a three-dimensional cubic lattice. In equilibrium, this system exhibits a
U (1)-ordering phase transition at an energy density which is significantly lower than the minimum one during
the quench. Yet, we observe that the postquench relaxation is accompanied by a transient U (1) ordering, namely,
the correlation length of U (1) fluctuations significantly exceeds its equilibrium prequench value. The longer and
the stronger the heating stage of the quench, the stronger is the U (1) transient ordering. We identify the origin of
this ordering with the emergence of a small group of slowly relaxing lattice sites accumulating a large fraction of
the total energy of the system. Our findings suggest that the transient ordering may be a robust feature of a broad
class of physical systems. This premise is consistent with the growing experimental evidence of the transient
U (1) order in rather dissimilar settings.
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Introduction. The response of an interacting many-body
system to a sudden change of external conditions, a quench,
has recently become a subject of intense experimental and
theoretical research [1–16]. Thermalization after a quench
may take a very long time [7,16] and exhibit a rich variety
of transient regimes [1–7,15–21]. It can also be accompanied
by the spontaneous formation of inhomogeneous structures
[7,10], the latter being regularly discussed in numerous papers
dedicated, among other topics, to superconducting, charge
ordering, and magnetic transitions. There is also mounting
experimental evidence [1–7] that a large variety of many-body
systems may exhibit nontrivial transient ordering in response
to a quench. The proposed interpretations of the nonequilib-
rium transient order revival/enhancement [7,17,21] are often
based on the notion of multiple orders competing against each
other both thermodynamically and kinetically.

In this Letter, we show that, quite surprisingly, a very
simple theoretical model with a single ordered phase is suf-
ficient for observing the transient ordering. We numerically
simulate the discrete Gross-Pitaevskii equation (DGPE) on a
three-dimensional (3D) lattice, which exhibits an equilibrium
phase transition below a certain temperature. In Fig. 1, we
sketch the transient ordering of the system in the process of
quenching. During the quench, the system is subjected to fast
heating followed by fast cooling which ultimately brings the
energy back to the prequench value. It is worth noting that
before, during, and after the quench the energy remains within
the high-temperature nonordered phase on the phase diagram.
Yet, we observe that the transient order, absent in equilibrium,
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emerges during the quench, and persists long after that. We
argue that the mechanism behind the observed transient or-
dering involves the emergence of a small number of lattice
sites with an atypically high concentration of energy. These
sites are the 3D counterparts of the so-called discrete breathers
that are shown to slow down thermalization in 1D DGPE
chains [22–31]. Their concentration may be as little as several
percent, yet they pull a significant fraction of total energy from
the rest of the system, thereby temporarily cooling the latter,
which in turn leads to the detected transient order. Below, we
present a detailed description of our simulations, substantiate
our conclusions about the transient ordering mechanism, and,
finally, discuss the implications of our findings.

The model. The DGPE system on a 3D cubic lattice is a
classical dynamical system describing evolution of complex
variables ψ j (t ) by the following equations,

i
dψ j

dt
= −

∑

m∈NN( j)

ψm + g|ψ j |2ψ j, (1)

where g is the interaction parameter, indices j and m label sites
of the underlying 3D lattice, and notation NN( j) refers to all
sites that are nearest neighbors to site j. The DGPE conserves
total energy E = E (kin) + E (pot), where the kinetic energy is
E (kin) = −∑

j

∑
m∈NN( j) ψ

∗
mψ j , and the potential energy is

E (pot) = g
2

∑
j |ψ j |4. The norm (also called the “total number

of particles”) N = ∑
j n j = ∑

j |ψ j |2 is another integral of
motion associated with the invariance of Eq. (1) relative to
the global “gauge transformation” ψ j → eiαψ j . In this work,
we fix g = 10 and N = V , where V is the total number of sites
(V = 50 × 50 × 50). The energy density, ε = E/V − g/2, is
the only parameter that is being changed in the process of
quenching.

2469-9950/2022/106(20)/L201110(6) L201110-1 ©2022 American Physical Society

https://orcid.org/0000-0003-4320-9755
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.L201110&domain=pdf&date_stamp=2022-11-17
https://doi.org/10.1103/PhysRevB.106.L201110


TARKHOV, ROZHKOV, AND FINE PHYSICAL REVIEW B 106, L201110 (2022)

FIG. 1. Sketch of the quench procedure. The quench starts at
t = 0. The system energy (dashed red line) initially grows, then it
reverts to the prequench value. Due to a high prequench energy
density, the correlation length (green line) is small before the quench,
then grows rapidly due to the quench, relaxing back to the initial
value after a long relaxation period. The cartoons (a)–(d) depict
internal system states at different stages of the quench. The color
represents local energy density, with dark blue being the lowest, and
bright red being the highest, and the arrows correspond to the DGPE
complex variables ψ j . The equilibrium state, with moderately high
energy density and vanishing correlation length, is shown in (a), (d),
and (e). The hot midquench state is in (b) and (f). Transient ordering
is visualized in (c) and (g): The arrow directions are ordered, the
energy density is inhomogeneous, with lumps of high energy shown
by red color, and the rest of the system being significantly cooler.
(e)–(g) Visualization of the DGPE simulation. Local values of nj are
shown by volume and color of the balls: Blue (red) represents “cold”
(“hot”) sites.

Equilibrium state of DGPE system. For sufficiently large
lattice sizes and generic initial conditions the DGPE dy-
namics is chaotic, and exhibits ergodization that has been
checked by various numerical ergodicity tests [32–36]. The
averaged dynamics may be characterized in terms of entropy
and temperature [37] within microcanonical thermodynamic
formalism [38–42]. In equilibrium the microcanonical tem-
perature T and ε are connected by a monotonically growing
invertible function ε = εeq (T ). This function, evaluated nu-
merically and shown in Fig. 2 for g = 10, displays an
inflection point accompanied by a corner of the specific heat,
cv ≡ dε(T )/dT , at Tc ≈ 4.25. It is associated with the transi-
tion into a low-temperature ordered state, characterized by the
U (1) order parameter �(t ) = |�(t )|eiφ(t ) = 1

V

∑
j ψ j (t ). The

equilibrium order parameter |�| = |�|eq (T ) is a decreasing
function of T for T < Tc, vanishing above Tc.

We also define the correlation length lc of the U (1) order
as the characteristic length of the decay of the correlation
function 〈ψ∗

mψ j〉. The specific definition is lc ≡ 1/�k, where
�k is the half width at half maximum for the Fourier-spectrum
intensity |ψ (k)|2 around the peak at the wave vector k = 0
[37]. This peak has a finite width above Tc, implying that lc
has a finite value, which increases as T decreases towards Tc.

Transient ordering. Before the quench, the system is
prepared in an equilibrium state in a nonordered phase
at temperature T0 > Tc. Then, the system is subjected to

FIG. 2. Temperature dependence of the energy density ε, order
parameter |�|eq, and the specific heat cv (inset).

a fast energy increase followed by a cooling step, which
brings the energy back to its prequench value. This is
achieved by introducing a time-dependent “gauge-invariant”
term −Kψ jD j into the right-hand side of Eq. (1). Here,
Dj = i

∑
m∈NN( j)(ψ

∗
mψ j − ψmψ∗

j ), and the real function
K = K (t, κ ) is designed [37] to guarantee that the total
energy grows initially but later returns to the prequench value.
Parameter κ controls the quench strength [37]. Our quench
term directly changes only the kinetic energy of the system,
but this change then quickly affects the potential energy
through the system’s dynamics.

Our main results for various quenches starting from equi-
librium at temperature T0 = 2.3Tc are presented in Fig. 3,
where Fig. 3(a1) shows the correlation length lc(t ) for a fam-
ily of shorter quenches of varying strength, while Fig. 3(b1)
does the same for a family of longer quenches. The profiles
of the quenches are shown in the insets of Figs. 3(a2) and
3(b2), respectively. When t < 0, lc ≈ 3 in units of the lattice
period. Once a quench is launched at t = 0, the system energy
spikes, and the correlation length initially decreases during
the heating stage, but then starts growing during the cooling
stage, reaching the maximum around the end of the cooling
and then very slowly relaxing back to the equilibrium value.
The maximum value of lc(t ) for the shorter quenches is a
factor of three larger than the equilibrium one. For longer
quenches the increase of lc(t ) is even more significant, but
here the maximum of lc is limited by the size of the simulated
lattice (V = 50 × 50 × 50), which means that it would be
even larger in the thermodynamic limit. Overall, the above
phenomenology means that the local U (1) ordering exhibits
a large long-lived transient increase. We also note that the
longer quenches lead to a significantly longer lifetime of the
transient order than the shorter ones.

The origin of the transient ordering. Our analysis indi-
cates that the observed transient ordering is caused by the
emergence of a small number of “hot” lattice sites that have
an anomalously large norm |ψ j |2 and thus carry even more
anomalous local potential energy g

2 |ψ j |4—see the sketch in
Fig. 1. While comprising only a small percentage of all lat-
tice sites, the hot sites trap a significant fraction of the total
energy deposited into the system during the initial stage of
the quench. At the same time, these sites become largely

L201110-2



TRANSIENT ORDERING IN THE GROSS-PITAEVSKII … PHYSICAL REVIEW B 106, L201110 (2022)

(a2)

(a1) (b1)

(b2)

FIG. 3. Correlation length lc(t ) of transient U (1) ordering for shorter quenches (a1) and longer quenches (b1). The quench strength
parameter κ is given in the plot legends. (a2), (b2) The effective temperature Teff (t ) for cold sites corresponding to (a1) and (b1), respectively.
The gray dashed line indicates Teff = Tc. In (a2), Teff stays above Tc but comes close to it. In (b2), Teff drops significantly below Tc. Insets of
(a2) and (b2): Energy density ε(t ) during the quenches.

decoupled from the rest of the system after the quench and
thus relax very slowly [37]. Since after the quench the total
energy of the system returns to the initial value, the trapping of
the energy by the hot sites implies that the energy density after
the quench for the rest of the system must become smaller than
the initial energy density. As a result, the effective temperature
after the quench for the part of the system excluding hot
sites becomes lower than the initial one. This lower effective
temperature gets closer to the ordering temperature Tc and
may even become lower than Tc as was the case for our longer
quenches.

To substantiate the above explanation, we examine the
histograms of local potential energies ε

(pot)
j = g

2 |ψ j |4 as
functions of time. These histograms in equilibrium and at
two different moments of time after a quench are presented
in Fig. 4. While comparing equilibrium and nonequilibrium
histograms, one notices the salient enhancement of the
number of sites with very high values of the potential energy
in far-from-equilibrium states. Energy does not spread evenly
over the whole system, but instead preferably accumulates on
a few sites.

In order to formally divide the system into “hot” and
“cold” sites, we introduce a cutoff for the on-site potential
energy εth 	 E/V : Any site j, for which the potential energy
ε

(pot)
j ≡ g

2 |ψ j |4 > εth, is considered hot, otherwise, it is cold.
We set εth = 100. With such a choice, the percentage of hot
sites xhot for our prequench equilibrium state at T0 ≈ 2.3Tc is
nearly zero, and so is their total potential energy E (pot)

hot . The
quench acts to increase both xhot and E (pot)

hot . For the state rep-
resented in Fig. 4(c), one has xhot ≈ 0.5% and E (pot)

hot /E ≈ 0.7.
As a result, the energy density of cold sites drops significantly
below the initial energy density ε. Since the fraction of hot

sites xhot is minuscule, the ensemble of the cold sites essen-
tially coincides with the whole system.

To demonstrate the overcooling of the cold sites, we mon-
itor their effective temperature Teff . As “a thermometer” for
the cold subsystem, we use the kinetic energy density of the

cold sites obtained as ε
(kin)
cold (t ) = E (kin) (t )−E (kin)

hot (t )
(1−xhot )V

, where E (kin)

is the total kinetic energy of the lattice and E (kin)
hot is the part

involving the hot sites. The values of ε
(kin)
cold are then converted

into Teff using the computed equilibrium plot of temperature
as a function of ε(kin) given in the Supplemental Material [37].
The resulting dependence Teff (t ) is presented in Figs. 3(a2)
and 3(b2). As expected, one sees there that, for both shorter
and longer quenches, lc(t ) grows as Teff (t ) decreases towards
Tc, which indicates that the transient ordering originates from
the overcooling of the cold part of the system.

Discussion and conclusions. The DGPE on a sufficiently
large lattice cluster represents a very simple model of a micro-
canonical thermodynamic system exhibiting a phase transition
into a U (1)-ordered phase. If a time-dependent perturbation,
representing external drive, is included, one can use the DGPE
to study nonequilibrium dynamics near the continuous tran-
sition. The model is characterized by the following three
features: (i) In equilibrium, the model has a single ordered
phase; (ii) by the model’s very design, postquench dynamics
is inseparable from equilibrium state properties, as both are
governed by the same set of differential equations; and (iii) all
equilibrium and postquench properties are controlled entirely
by the energy density ε and the interaction parameter g. Points
(i)–(iii) imply that very little room for fine tuning is available
for the DGPE. Despite that, however, the model demonstrates
a robust transient ordering, which is a remarkable nonequilib-
rium phenomenon.
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(a)

(b)

(c)

FIG. 4. Histograms of local potential energies ε
(pot)
j = g

2 |ψ j |4
corresponding to the shorter quench in Figs. 3(a1) and 3(a2) with
κ = 20. (a) Equilibrium distribution. (b) Distribution immediately
after the quench (t = 10). (c) Distribution during the postquench
relaxation (t = 160). The horizontal axis represents local potential
energy, and the vertical axis shows the fraction of sites with a given
value of ε

(pot)
j . The presence of a larger number of sites with atyp-

ically large potential energy is visible in (b) and (c). The threshold
energy εth = 100 is marked by vertical dashed lines.

In the simulations, the transient ordering manifested itself
as a dramatic increase of the phase coherence length lc. This
increase persists much longer than the duration of the quench;
its relaxation is then remarkably sluggish [see Figs. 3(a1) and
3(b1)]—a consequence of the long lifetime of the hot sites.
The emergence of hot sites is the property of the high-energy
regime of DGPE, which is known to exhibit poorly ergodizing
dynamics. Reaching high energies of the DGPE lattice neces-
sarily requires the potential energy of the system to become
high, but this is only possible when the distribution of norm
|ψ j |2 becomes highly inhomogeneous, thereby facilitating
the large energy contribution g

2 |ψ j |4 from the hot sites. The
strong energy quench just takes the system into that poorly
ergodizing regime, and then the hot sites remain “stuck” in
that regime after the energy density of the system returns to
the initial value.

We remark in this regard that the strength of the quench
in the present investigation is significantly larger than in our
closely related work [43], where the focus was on investigat-
ing vorticity around the phase transition temperature, hence
the quenches did not reach the poorly ergodizing regime.
Another comment is that our numerical implementation of the

quench was based on pumping the kinetic energy associated
with the terms ψ∗

mψ j . This procedure is uniform throughout
the system, and then the hot sites arise dynamically. We sup-
pose that the transient ordering would also be achieved by
pumping the potential energy, but making the potential energy
very high is only possible by distributing the norm |ψ j |2
nonuniformly, which would introduce an additional arbitrary
element into our simulations.

The experimental context of our simulations extends to
physical systems exhibiting phase transitions associated with
U (1) ordering. These, in particular, include superfluid and
superconducting systems, systems exhibiting density-wave
orders, and also magnetically ordered systems with easy-plane
anisotropy. One can coarse-grain these systems into parts that
are smaller than the expected length of the U (1) phase coher-
ence and yet large enough to justify the classical modeling of
each coarse-grained element. Each variable ψ j of our modeled
lattice would then be associated with the average U (1) order
within one coarse-grained element (see, e.g., Ref. [43]). The
quench can be implemented in solid-state systems either by
fast heating of the system by a laser pulse, followed by fast
cooling of the excited degrees of freedom by a much larger
heat reservoir, or by laser-induced temporary modification of
the parameters of the effective time-averaged Hamiltonian for
the relevant degrees of freedom.

Several cases of the transient U (1) ordering have already
been reported in the literature [1–5]. Particularly relevant here
are the observations in the alkali-doped fulleride superconduc-
tor K3C60 [5]. The system there was excited at temperatures
significantly above the superconducting Tc, and then not only
a superconductinglike response was observed as such, but also
its lifetime has become dramatically longer once the duration
of the laser pulse increased. In other words, a longer pulse
resulted in a stronger low-temperature-like response, which
is reproduced by our simulations [compare shorter quenches
in Figs. 3(a1) and 3(a2) to longer quenches in Figs. 3(b1)
and 3(b2)]. Although modeling of a real superconducting
system based on DGPE is a rather oversimplified approach,
it is difficult to ignore the remarkable parallels between the
above experiment and our simulations. In the simulations, the
attainment of the transient ordering required us to pump a lot
of energy into the system to reach the regime, where the po-
tential energy can no longer be uniformly distributed over the
lattice, which, in turn, led to poorly ergodized dynamics char-
acterized by the long-living hot sites. This suggests a generic
mechanism of transient ordering in real systems, namely, (i)
a quench brings the system into a poorly ergodizing regime,
and then (ii) the ordering emerges as a consequence of the
dynamical memory of that regime. We note that the long
life of the hot DGPE sites is simply a consequence of their
dynamical decoupling from the “cold” sites. Such a behavior
can be reasonably expected not only for the on-site potential
energy of the form prescribed by DGPE but also for a broader
class of potential energies, e.g., the capacitive potential energy
terms for superconducting islands. Furthermore, if the U (1)
ordering transition in a superconducting system is due to the
Josephson coupling between superconducting islands, then
the primary action of the laser pulse may be not in heating
the phase degrees of freedom but rather in renormalizing
down the effective Josephson coupling. In terms of the DGPE
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modeling, this would mean the reduction of the prefactor of
the kinetic energy E (kin). (That prefactor was equal to 1 in our
simulations.) Such a change would reduce the ratio of Tc to the
total energy density (including the potential energy), which,
in turn, would correspond to the nonergodic regime described
above.

Our treatment of transient coherence can be compared
with alternative ways of theoretical modeling of light-induced
phase coherence. We note in this regard that the long life of the
superconducting response in the experiment of Ref. [5] after
the end of the laser pulse is a challenge for the theoretical
approaches explaining the laser-induced superconductivity by
a periodic driving of the electron-phonon system [44–51].
Whether the long-lived transient coherence can be explained
using explicitly dissipative modeling, such as done, e.g., in
Refs. [5,52], is yet to be seen.

To conclude, we numerically studied the nonequilibrium
evolution of the 3D DGPE model subjected to an energy
quench. Transient U (1) ordering was consistently observed,
provided that the quench was strong enough. We explain this
phenomenon in terms of long-living hot breatherlike lattice
sites possessing anomalously large potential energies. Such
nonequilibrium behavior may be an intrinsic feature of a broad
class of dynamical models. Our findings may, in particular,
shed light on the experimental observations of the tran-
sient ordering in superconducting and charge-density-wave
systems.

The code is publicly available in a GitHub repository [53].
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