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Layered ruthenates are a unique class of systems which manifest a variety of electronic and magnetic features
from competing energy scales. At the heart of such features lies multi-orbital physics, especially orbital-selective
behavior. Here, we propose that the SrRuO3-SrTiO3 heterostructure is a highly tunable platform to obtain
the various emergent properties. Employing the density functional theory plus dynamical mean-field theory,
we thoroughly investigate the orbital-dependent physics of the system and identify the competing magnetic
fluctuations. We show that the epitaxial strain drives the system towards multi-orbital or orbital selective
Mott phases from the Hund metal regime. At the same time, the two different types of static magnetism,
ferromagnetism and checkerboard antiferromagnetism, are stabilized from the competition with the spin-density
wave instability.
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Introduction.–Various physical phenomena found in the
layered ruthenates have attracted great interest from the
condensed matter physics community. One of the repre-
sentative materials is Sr2RuO4. It shows a strange metallic
behavior, interpreted as a Hund metal phase in high tem-
peratures (�25 K) [1–5], and becomes an unconventional
superconducting state in low temperatures (�1.5 K) [6].
In the metallic phase, it is a paramagnet with various
magnetic fluctuations [7]. These magnetic fluctuations are
thought to be involved as a pairing mechanism of the su-
perconducting state [7–9], but the exact form of the order
parameter is still under dispute almost thirty years after
its finding [10]. Alternately, another representative material,
Ca2RuO4, shows totally different physical properties despite
being isovalent to Sr2RuO4. The ground state is a Mott
insulator with a static antiferromagnetic order [11,12]. In
between the two systems, Sr2−xCaxRuO4, one can find un-
usual structural, electric, and magnetic phases which includes
heavy fermionic phases and crossovers of local and itinerant
magnetism [11,13–15].

One essential source for such interesting behaviors is the
multi-orbital nature of the ruthenates. The orbital-selective
electronic correlations and Hund interactions within t2g man-
ifold are found to be responsible for the emergent properties
such as Hund metal and diverse magnetic phases in the ruthen-
ates [1,2,7,11,12,16–20]. For example, in Ca1.8Sr0.2RuO4,
the orbital-selective feature is well-identified both from the
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angle-resolved photoemission spectroscopy and various the-
oretical frameworks [15,21–23]. This multi-orbital nature
makes ruthenates ideal systems for studying the balance and
interplay of multiple competing physical parameters, such as
bandwidth, inter- and intra-orbital correlation, crystal field
splitting, and spin-orbit coupling [2]. In reality, however, there
are not many materials other than the aforementioned ones,
Sr2RuO4, Ca2RuO4, and inbetween (Sr2−xCaxRuO4), to be
compared with theoretical models on the t2g manifold.

The recent development of the oxide heteroepitaxy has
offered a controllable route to tune the physical parameters
of materials. Employing ample substrates, one can delicately
grow the oxides under various strains with either compres-
sive or tensile way, which enables the control of crystal field
splitting, hopping anisotropy, and strength of the correla-
tion [24,25]. Especially for strontium ruthenates, experimental
demonstrations are readily made with single-layer ruthenates,
which is achieved by sandwiching one layer of SrRuO3 be-
tween SrTiO3 blocks [26,27]. This has prompted the idea
of possible tuning of the magnetism using external stimulus
such as doping [28]. Previously, within the density functional
theory (DFT) framework, some of the authors have demon-
strated (SrRuO3)1-(SrTiO3)1 heterostructure (SRO-STO) as a
possible system to study the superconductivity of Sr2RuO4

based on the similarity of quasi one-dimensional xz/yz and
quasi two-dimensional xy Fermi surfaces to those from
Sr2RuO4 [29]. It is interesting to investigate whether the
conclusions are valid beyond the DFT framework known as
an incomplete description of many-body correlation effects.
Especially for ruthenates, the inclusion of the many-body
effect is crucial in describing the key electronic features such
as Hund-metal, band-renormalization, and metal-insulator
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transition [1,4,5,18,30–32], which, in turn, will change the
relative strengths of the different magnetism. Considering
the prospect of heteroengineering of ruthenates, there lies a
plethora of physics that is yet to be discovered through the
state-of-the-art computational approaches.

In this Letter, we investigate the electronic and mag-
netic structures of SRO-STO within the framework of DFT
plus dynamical mean-field theory (DFT+DMFT) [33–36] for
various epitaxial strain and temperature ranges. We demon-
strate that the epitaxial strain controls the orbital-selective
electronic correlation and moves the system toward two dis-
tinct Mott phase, multi-orbital, and orbital selective ones
away from the Hund phase. An even more interesting point
is that the strain can tune the strength of the different
types of magnetic instabilities and lead to the stabilization
of ferromagnetic (FM) or checkerboard-type antiferromag-
netic (AFM) orders over spin-density wave (SDW) ones.
Here, for completeness, we have employed two different but
representative setups in the DMFT approach, and we map
out the full strain-temperature phase diagram of SRO-STO
system.

Method.–We compute the electronic structure of SRO-STO
under epitaxial strains of −4%, 0%, and +4% within the
DFT+DMFT framework. We have employed both Ru t2g only
and t2g+eg projected basis sets for the DFT+DMFT calcula-
tions to check the possible effect of t2g − eg hybridization and
confirmed that both give similar results for spectral functions
A(k, ω) and density of state A(ω) = ∑

k A(k, ω), see more
details in Supplemental Material (SM) [37] (see also refer-
ences [38–49] therein). The DMFT dynamical spin structure
factors S(q, ω) are obtained in the paramagnetic (PM) phase
of SRO-STO with Ru t2g+eg projector scheme [50], which
covers a wide energy window of [−10, 10] eV from the Fermi
level (EF). Based on the observation that the spectral functions
from the t2g and the t2g+eg projector schemes are consistent
(see SM [37]), we present results with the t2g projector scheme
unless specified in the text.

Electronic correlation and orbital selectivity.–First, we
present the electronic structure of the PM state of unstrained
SRO-STO (0% strain) at T = 35 K. Figures 1(a) and
(b) display related spectral function A(k, ω) and its inte-
gration over Brillouin zone A(ω), respectively. A coherent
quasiparticle band is clearly realized near EF, which has
a quasi-two dimensional Ru xy-orbital character, exhibit-
ing the van Hove singularity (VHS) [see Fig. 1(b)]. This
VHS peak in the unstrained SRO-STO system is much
higher than that of Sr2RuO4 [51]. Hence, enhanced Stoner
weight at EF, and consequently, the stronger tendency to-
wards magnetism is expected for SRO-STO. In addition, the
VHS peak in the SRO-STO system is located just below
EF, which is the opposite to the case of Sr2RuO4. Such
features could lead to the different electronic and magnetic
responses upon external perturbations in the SRO-STO sys-
tem compared to previously investigated Sr2RuO4 [52,53].
The DMFT valence histogram of the unstrained SRO-STO
system exhibits Hund’s rule-induced high spin multiplets (see
SM [37]), thereby presenting the Hund metal characteristics.
Especially, we note two archetypical features: (i) coherence-
incoherence crossover as a function of frequency ω in the

FIG. 1. (a) The spectral function A(k, ω) and (b) orbitally re-
solved density of state A(ω) of the unstrained SRO-STO (0% strain).
Strain dependent (c) quasiparticle residues, Z , and (d) occupancies,
n, for xz/yz and xy orbitals. The nonmagnetic constraint is forced to
simulate the paramagnetism (PM) with the temperature of 35 K for
all data.

self-energy �(ω) (see SM [37]), and (ii) significant elec-
tronic correlations in the absence of the Hubbard satellite.
The significant electronic correlations are clearly identified in
the quasiparticle residue, Z = (1 − ∂�(iω)/∂ω|ω→0+ )−1, and
Ru xz/yz and xy have Z = 0.30 and 0.35, respectively [see
Fig. 1(c)], which are comparable to the values of Sr2RuO4,
0.30 (xz/yz) and 0.20 (xy) [51]. We see the overall elec-
tronic features resemble those for Sr2RuO4 despite the small
differences.

Remarkably, the SRO-STO exhibits diverse electronic
phases within an accessible strain range. The epitaxial strain
imposes a tetragonal distortion, and the energy difference
between the Ru xz/yz and xy levels varies under the strain.
Figure 1(c) displays the strain-dependent quasiparticle residue
Z for Ru xz/yz and xy orbitals. We note the different responses
of Z upon tensile strain: decreases for xz/yz orbitals and
increases for xy orbital. This orbital differentiation is clearly
reflected in the orbital occupancy as shown in Fig. 1(d). For
the compressive strain, the xy level moves higher in energy
and approaches the xz/yz levels (see SM [37]). As a result,
the xy-orbital occupation is reduced, and the VHS moves even
closer to EF, indicating stronger FM instability. These features
give rise to the reduction of the low-energy hybridization
function for the xy orbital and, hence, increase the electronic
correlations in the xy orbital as shown in Fig. 1(c). This
can be compared to Ca1.8Sr0.2RuO4 [23], where the xy or-
bital has an occupancy close to the half-filling and possess
a stronger electronic correlation than xz/yz orbitals [23]. For
Ca1.8Sr0.2RuO4, the orbital selective Mott-phase is established
with gapped xy orbital and metallic xz/yz orbitals [15,21–
23]. Hence, we argue that the electronic structure of the
compressed SRO-STO system corresponds to the sof t case
of Ca1.8Sr0.2RuO4.
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FIG. 2. Momentum (q) dependent dynamical structure factors
S(q, ω) of SRO-STO for (a) −4%, (b) 0%, and (c) +4% strain cases.
Here, for S(q, ω), the t2g+eg projector calculation is performed, and
the data is for ω = 5 meV at the temperature of 115 K. In the lower
panels, we present the spin-resolved density of states for (d) FM
−4% strain and (e) AFM +4% strain cases at 35 K. The inset in
(d) is the blowup figure near the Fermi level.

In the case of tensile strains (+4%), the Ru xy level
moves down in energy, and the crystal field splitting be-
tween the xz/yz and xy levels becomes larger (see SM [37]).
Accordingly, the occupation of the xz/yz orbitals decreases,
while that of the xy orbital increases. Contrary to the
compressive case, this time the Z for xz/yz orbitals is
0.11 with the orbital occupation close to the half-filling,
1.20 [see Figs. 1(c) and 1(d)]. This means the tensile
strain drives the system towards the multi-orbital Mott
regime [37,54]. The multi-orbital Mott insulating regime
is found in Ca2RuO4, where the fully-filled xy and half-
filled xz/yz orbitals are realized with a prominent Mott gap
of U + J (∼ 2.7 eV) [18].

Magnetism.–Now we turn to the magnetic properties of the
SRO-STO system. To identify the involved magnetic insta-
bilities, we calculated the DMFT dynamical spin structure
factors S(q, ω) with the local particle-hole vertex correc-
tion [50]. The results are presented in Figs. 2(a)–2(c). For the
unstrained one, three leading competing magnetic instabilities
are identified: FM at � (H , K) = (0.0, 0.0), SDW at (H ,
K) = (∼ 0.6, ∼ 0.6), and checkerboard AFM at (H , K) =
(1.0, 1.0). Note that the last instability, AFM, is not captured
in the DFT level [29], which asserts the importance of the
dynamical correlations in describing the magnetism of the
system. Each of the magnetic instabilities is from the dif-
ferent origins: FM from Stoner instability, SDW from Fermi
surface nesting of quasi-1D yz/zx character, and AFM from
superexchange mechanism [8]. These magnetic instabilities
compete without specific dominance and the system remains
paramagnetic without static order. Note that for Sr2RuO4,
two main magnetic instabilities are featured, FM and SDW
types, and for Ca2RuO4, only AFM is stabilized [7,12,17].
Hence, we can note that the magnetism involved in the SRO-
STO system is even more complex, and also offers more

possibilities for the novel phases including unconventional
superconductivity.

For compressive strain (−4%), the FM instability becomes
strongly dominant. As mentioned before, this is expected as
the VHS peak, mostly from the xy orbital, moves closer to
EF upon the compressive strain (see SM [37]) and the Stoner
instability increases accordingly. As shown in Fig. 2(a), the
AFM instability is strongly suppressed, and the SDW insta-
bility has a similar amplitude. Compared to the unstrained
one, the FM tendency in the compressive strain is substantially
enhanced and much more predominant concerning the AFM
and the SDW. Hence, the static FM order is set in for the
compressive SRO-STO. We have confirmed that the actual
DFT+DMFT calculations converge to the FM ground state
under the compressive strain. The orbital-resolved A(ω) for
the FM ground state is shown in Fig. 2(d) at T = 35 K. The
exchange splitting [Re�↓(0)-Re�↑(0)] in the Ru xy orbital
(199 meV) is larger than that in the Ru xz/yz orbitals (79 meV)
[see the inset of Fig. 2(d)]. This confirms that the Ru xy orbital
drives the magnetic transition via the Stoner mechanism. The
nonvanishing magnetic moment started to emerge around T =
100 K and the value progressively increases as T decreases,
thereby suggesting the second-order magnetic transition [37].
Our obtained magnetic moment is ∼0.35 μB, which is close
to the experimental report from the ferromagnetic (SrRuO3)1-
(SrTiO3)5 [27]. The saturated moment is much smaller than
the ionic value of 2 μB, implying the highly itinerant character
of the FM.

For the tensile strain of +4%, the AFM instability strongly
prevails and both the FM and the nesting-induced SDW
ones are almost buried under the AFM instability as shown
in Fig. 2(c). The DMFT density of states A(ω) at ω = 0
(EF) is reduced from −4% (compressive) to the 4% (ten-
sile) strains (see SM [37]), which manifests the dwindling
of the Stoner instability. This is expected considering the
increased interatomic distances between Ru, which reduced
the itinerancy of the system. Besides, we note the SDW Fermi
surface nesting is significantly weaker under +4% strain (see
SM [37]). Interestingly, in Ref. [28], a small carrier doping
can turn the system into a FM metal, which can be an ef-
ficient way to again achieve the FM metallic phase. Such a
stark variation of the magnetism upon the external pertur-
bation is very unique, especially in the sense that the other
competing magnetic instabilities, except for the AFM, are
almost annulled. To confirm, we additionally performed the
DMFT electronic structure calculations and found that the
AFM phase is the ground state under the tensile strain as
found from the S(q, ω) (see SM [37]). This strong emer-
gence of the checkerboard AFM instability asserts that the
mechanism of the magnetic order now is superexchange inter-
actions between the local Ru spins. Figure 2(e) shows related
orbital-resolved A(ω) at T = 35 K. The AFM ground state
is an insulating phase with fully occupied Ru xy and half-
filled Ru xz/yz orbitals. The local magnetic moment is about
1.87 μB/Ru and remained almost constant below the Néel
temperature of ∼100 K, suggesting the first-order type tran-
sition. This is totally different from the FM for compressive
strain, where the local moment size develops upon decreasing
the temperatures. We can compare the electronic structure and
magnetism of the AFM insulating state of SRO-STO under
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FIG. 3. Temperature-strain dependent phase diagram of SRO-
STO. The DFT+DMFT results are denoted by blue triangle, orange
rhombus, and green square for FM metallic phase (FMM), PM metal-
lic phase (PMM), and AFM insulating (AFI) phase, respectively.
The gradient from gray to white color shows the variation of Zxy

and Zxz/yz values, Zxy > Zxz/yz (dark region) and Zxy < Zxz/yz (light
region). The phase boundaries are drawn schematically. The hatched
region between AFI and PMM phases indicates asserted first order
phase transition. Limiting cases are multi-orbital Mott insulating
phase with half-filled (fully filled) xz/yz (xy) orbital (Zxy > Zxz/yz),
and orbital selective Mott phase having the half-filled (3/2 filled) xy
(xz/yz) orbital (Zxy < Zxz/yz).

the tensile strain to those of the multi-orbital Mott insulat-
ing phase of Ca2RuO4 at low temperatures, having a similar
electronic configuration, half-filled xz/yz and fully filled xy
orbitals.

Phase diagram.–By collecting all the data on the electronic
and magnetic properties, we finally construct a comprehensive
strain-temperature phase diagram of the SRO-STO system
(see Fig. 3). It is illustrated that the strain-induced vari-
ation of the crystal field splitting is an essential physical
parameter for emergent quantum phases. In the tensile (com-
pressive) strain, the xz/yz (xy) orbital energy level is lifted
up with respect to the xy (xz/yz) orbital, driving the sys-
tem toward the multi-orbital Mott insulator (orbital selective
Mott phase). This strain induced manipulation of physical
regimes in SRO-STO is related to the emergence of various
magnetism.

Our phase diagram in Fig. 3 introduces two accessible
routes for the magnetic phase transition employing the epi-
taxial strain engineering starting from the paramagnetic Hund
metal phase of the unstrained system. First, by applying the
compressive strain, one reaches the FM metal phase from
the competition with the SDW and the AFM phases. This
is very interesting because, while there are a few reports
on the static magnetism upon doping or external perturba-
tion [14,55–57], due to the fragile nature of FM, most of them
are AFM or SDW and no FM has been stabilized for layered
ruthenates. Together with orbital-selective characteristic of
the compressive case, this phase can offer unreported areas

for further studies. Note that SrRuO3 is also a FM metal,
but the system is a three-dimensional one and has a much
milder electronic correlation [16,58,59]. When the tensile
strain is applied, the other magnetic instabilities are quickly
muted and a checkerboard AFM phase with a strong insulating
electronic structure can be obtained. This phase is similar to
the one from Ca2RuO4. As the temperature is increased, the
system goes through the first-order type transition into the
PM metal phase. We expect that there exists a coexistence
phase of PM metal and AFM insulator based on the first-
order type transition and unattainable convergence, which is
denoted as the shaded area in Fig. 3. This is very different
to the compressive strain case, where the FM transition is
expected to be a second-order one. The different mechanisms
of magnetism can be a reason for the contrasting transition, (i)
the it inerant Stoner mechanism induced FM emerges in the
metallic phase and (ii) the local superexchange mechanism
induced AFM emerges in the insulating phase. We note that
the AFM insulating phase for the tensile strain emerges with
the enhancement of the orbital polarization, having nearly
integer filling of nxz/yz = 1.01 and nxy = 2.00, in comparison
with the noninteger filling in the PM metallic phase of the
tensile strain in Fig. 1(d). On the other hand, the FM metallic
phase for the compressive strain emerges without changes
of the orbital occupation in comparison with the noninteger
filling for the PM metallic phase of the compressive strain in
Fig. 1(d).

Conclusion.–We have investigated the strain-temperature
dependent electronic and magnetic properties of the SRO-
STO heterostructure system within the DFT+DMFT method.
When unstrained, the system has a slightly enhanced mag-
netic tendency with a similar degree of electronic correlation
over bulk layered counterparts. However, such a small differ-
ence enables a plethora of interesting phases when combined
with the workable epitaxial strain. We presented the strain-
temperature phase diagram of the SRO-STO system, which
can access various electronic and magnetic phases observed
from the diverse bulk layered system as well as the unre-
ported magnetic and electronic phases such as FM metal with
orbital-selectiveness. We expect our work can guide the future
experimental and theoretical directions towards the engineer-
ing of the layered ruthenates, and other correlated systems
with competing physical energy scales.
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