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Broken Galilean invariance in a spin-orbit coupled system can amplify many-body effects on its different
responses. We study the anomalous Hall and spin Hall conductivities of a magnetic two-dimensional electron
gas with Rashba spin-orbit coupling. We show that both of these conductivities in the intrinsic limit are
fully specified in terms of the longitudinal and transverse spin-spin response functions. We include the effect
of electron-electron interaction in the spin-spin linear-response functions, going beyond the random-phase
approximation. We do this by incorporating the local-field correction in the response functions, which takes
into account the many-body exchange-correlation effects. We observe a significant enhancement of the static
anomalous Hall conductivity due to the electron-electron interaction. The many-body correction on the spin Hall
effect is more nontrivial, and strong electron-electron interaction can even reverse the sign of the static spin Hall
conductivity.
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Introduction. The anomalous Hall and spin Hall effects
are two prominent examples in the realm of the Hall effects,
which have attracted immense theoretical and experimental
attention. In the anomalous Hall effect (AHE), an in-plane
electric field produces a transverse charge current in the ab-
sence of an external magnetic field [1]. The spin Hall effect
(SHE) refers to the generation of a transverse spin-current in
response to an in-plane electric field [2]. The experimental
detection of anomalous Hall conductivity is straightforward,
as it simply requires measurement of the transverse electric
potential difference. The spin Hall conductivity, on the other
hand, could be detected using different experiments [2], in
particular, Kerr rotation microscopy [3], electrical measure-
ment [4] and quantum interferences [5].

For both anomalous Hall and spin Hall effects, spin-
orbit coupling (SOC) plays an essential role [6], and several
competing contributions make the complete theoretical un-
derstanding of these phenomena quite complicated and
sometimes with a lot of controversy [7]. Different micro-
scopic contributions to AHE and SHE are usually divided
into intrinsic and extrinsic mechanisms [1,8]. As the name
suggests, the intrinsic contribution originates from the ma-
terial’s electronic structure. The extrinsic mechanism refers
to the scattering of the charge carriers from impurities and
includes side-jump and skew scatterings [2]. In some simple
analytically treatable models, an exact cancellation between
intrinsic and extrinsic parts is predicted [9]. However, note
that many-body corrections are generally not considered in
such studies. In a noninteracting two-dimensional electron gas

*moslem.mir@uoz.ac.ir
†abedinpour@iasbs.ac.ir

with Rashba SOC, extrinsic and intrinsic contributions to the
spin Hall conductivity are expected to entirely cancel each
other [2]. In a magnetic Rashba system, Ado et al. [10] showed
that incorporating the contribution of noncrossing diagrams
in the skew scattering breaks the exact cancellation between
the intrinsic and extrinsic contributions to the anomalous Hall
conductivity.

In most conventional systems, such as the regular elec-
tron liquids [11], the Galilean invariance protects many
response functions from the many-body corrections at long
wavelengths. Since spin-orbit coupling breaks the Galilean
invariance [12–16], we naturally expect to find traces of
electron-electron interaction in both anomalous and spin Hall
conductivities. While a vast body of theoretical studies has
explored different aspects of AHE and SHE, the influence
of electron-electron interaction on these conductivities is less
explored [12,17]. The main challenge in treating the many-
body effects in the Hall conductivities is that one needs
to include the effects of many-body exchange-correlations
going beyond the well-established and widely used random-
phase approximation (RPA), whereas doing so is not always
straightforward.

In this Letter, we aim to include the effects of electron-
electron interaction in the intrinsic dynamical anomalous
and spin Hall conductivities. We consider a magnetic
two-dimensional (2D) electron gas with a linear Rashba
spin-orbit coupling. This is a simple, analytically treatable
platform where both inversion and time-reversal symmetries
are broken; therefore, we can anticipate finite anomalous
Hall and spin Hall responses. Furthermore, we are inter-
ested in the high-frequency or clean limit; hence we can
safely discard extrinsic contributions to these conductivi-
ties [8]. Such ballistic processes are expected to be the

2469-9950/2022/106(20)/L201102(5) L201102-1 ©2022 American Physical Society

https://orcid.org/0000-0003-0541-7238
https://orcid.org/0000-0001-8141-7833
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.L201102&domain=pdf&date_stamp=2022-11-02
https://doi.org/10.1103/PhysRevB.106.L201102


MOSLEM MIR AND SAEED H. ABEDINPOUR PHYSICAL REVIEW B 106, L201102 (2022)

dominant transport mechanisms in the nanoscale spintronic
devices [5].

In the following, we begin by introducing our model and
defining the main quantities. Then, using the equation of mo-
tion method for the current-current linear-response functions,
we show that the intrinsic conductivities are fully specified
in terms of the longitudinal and transverse spin-spin linear-
response functions. This result is generic and reproduces all
the known results in the noninteracting regime, as well as
in the interacting nonmagnetic two-dimensional electron gas
with Rashba SOC. We include many-body effects in the spin-
spin response functions utilizing a Hubbard-like many-body
local-field correction [16], as a first step to go beyond the RPA.
In this way, the effect of electron-electron interaction on the
anomalous and spin Hall conductivities is also revealed.

Model and general definitions. We consider an interacting
two-dimensional electron gas with Rashba spin-orbit coupling
and a perpendicular exchange field. The Hamiltonian of this
system reads

H = H0 + Hint, (1)

where

H0 =
∑

k,σ,σ ′
εσσ ′ (k)ĉ†

k,σ ĉk,σ ′ (2)

is the single-particle part of the Hamiltonian. Here, ĉ†
k,σ and

ĉk,σ create and annihilate an electron with wave vector k and
spin σ , respectively. The single-particle energy matrix in the
spin-space reads (h̄ = 1)

ε(k) = k2

2m
τ 0 + αR(ẑ × τ) · k + �τ z, (3)

where m, αR, and � are the electron mass, Rashba spin-orbit
coupling strength, and Zeeman energy splitting due to the
exchange field, respectively, ẑ is a unit vector in the direction
perpendicular to the 2D plane, τα refers to the identity (α = 0)
and three Pauli matrices (α = x, y, z), and the Pauli-matrix
vector is τ ≡ (τ x, τ y, τ z ). The Zeeman term can either come
from an external exchange field by means of a Ferromagnetic
sublattice or originate from the spontaneous symmetry break-
ing of the Rashba electron gas due to the electron-electron
interaction [18,19]. The second term on the right-hand-side of
Eq. (1), Hint, is the electron-electron interaction term

Hint = 1

2S

∑
q �=0

v(q)
∑
k,k′

∑
σ,σ ′

ĉ†
k−q,σ ĉ†

k′+q,σ ′ ĉk′,σ ′ ĉk,σ . (4)

Here, S is the sample area, and v(q) = 2πe2/q is the Fourier
transform of the bare Coulomb interaction in two dimensions.
H0 is easily diagonalized to give the single-particle energy
bands

εk,μ = k2

2m
+ μ

√
�2 + α2

Rk2, (5)

and the eigenvectors

ψk,μ =
(

sin (φk,μ/2)
−iμ cos (φk,μ/2)eiθk

)
, (6)

where μ = ±1 is the band index, θk is the an-
gle between k and the x axis, and defining ϕk ≡

2 arctan[αRk/((�2 + α2
Rk2)1/2 − �)], we have φk,+ = φk

and φk,− = π − φk .
We will use current and spin-current operators to define

the anomalous and spin Hall conductivities; so, they are in-
troduced below. The electron velocity is given by v = k/m +
αR(ẑ × τ) [20]. Therefore the total (i.e., q = 0) paramagnetic
current density operator reads

ĵ = P̂CM

m
+ αR(ẑ × σ̂ tot ). (7)

Here, the center-of-mass (CM) momentum is defined as

P̂CM ≡
∑
k,σ

kĉ†
k,σ ĉk,σ , (8)

and the total spin vector is

σ̂ tot ≡
∑

k,σ,σ ′
ĉ†

k,σ τσσ ′ ĉk,σ ′ . (9)

Note that, as we are not considering vector potentials here,
we will not make any distinction between the paramagnetic
and physical current operators [11,12]. Similarly, the z com-
ponent of the total spin-current operator [20] jz = {v, τ z}/4 =
k/(2m)τ z, is written as

ĵz =
∑

k,σ,σ ′

k
2m

ĉ†
k,σ τ z

σσ ′ ĉk,σ ′ . (10)

Furthermore, with the help of the Heisenberg equation of
motion for the total spin operator i∂t Â = [Â, H], where H is
the full Hamiltonian of the system given by Eq. (1), we can
write

ĵz = − 1

4mαR
∂t σ̂ tot + �

2mαR
(ẑ × σ̂ tot ). (11)

Dynamical anomalous and spin Hall conductivities. The
anomalous Hall and spin Hall conductivities, respectively,
describe transverse charge and spin-polarized currents in
response to a homogeneous (i.e., q = 0) electric field. Consid-
ering a two-dimensional system in the xy plane, if the electric
field E is taken in the x direction, then the y components of the
particle current jy and z-polarized spin-current jz

y respectively
read

jy(ω) = σ AH
yx (ω)Ex(ω),

jz
y (ω) = σ SH

yx (ω)Ex(ω). (12)

Here, σ AH
yx (ω) is the dynamical anomalous Hall conductivity

σ AH
yx (ω) = ie2

ω
χ jy jx (ω), (13)

and σ SH
yx (ω) is the dynamical spin Hall conductivity

σ SH
yx (ω) = ie

ω
χ jz

y jx (ω), (14)

where

χAB(ω) = 1

S
〈〈Â; B̂〉〉ω

≡ − i

S

∫ ∞

0
dt〈[Â(t ), B̂(0)]〉ei(ω+iη)t , (15)
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is the retarded linear-response function [11], with η being an
infinitesimal positive value. For the anomalous Hall conduc-
tivity, we make use of Eq. (7) for the current operator to find

〈〈 ĵy; ĵx〉〉ω =
〈〈

P̂CM,y

m
+ αRσ x

tot;
P̂CM,x

m
− αRσ

y
tot

〉〉
ω

= −α2
R

〈〈
σ x

tot; σ
y
tot

〉〉
ω
, (16)

where we have used the fact that total momentum is conserved
in the clean or high-frequency limit ωτ → ∞ (here, τ is the
electron-impurity scattering lifetime) [3,12,21].

Now, inserting Eq. (16) into Eq. (13) we find

σ AH
yx (ω) = ie2α2

R

ω
χyx(ω), (17)

where χαβ (ω) ≡ 〈〈σα
tot; σ

β
tot〉〉ω/S is the spin-spin linear-

response function, and we have made use of the reciprocity
relation χyx(ω) = −χxy(ω).

Similarly, for the spin Hall conductivity, from Eqs. (7) and
(11), we can write

〈〈
ĵz
y; ĵx

〉〉
ω

=
〈〈−∂tσ

y
tot + 2�σ x

tot

4mαR
;

P̂CM,x

m
− αRσ

y
tot

〉〉
ω

= 1

4m

〈〈
∂tσ

y
tot; σ

y
tot

〉〉
ω

− �

2m

〈〈
σ x

tot; σ
y
tot

〉〉
ω
, (18)

where again the conservation of the total momentum is em-
ployed. The second term on the right-hand-side of the above
equation is the spin-spin response function, while for the first
term, we can make use of the identity ω〈〈Â; B̂〉〉ω = 〈[Â, B̂]〉 +
i〈〈∂t Â; B̂〉〉ω [11,12] to write〈〈

∂tσ
y
tot; σ

y
tot

〉〉
ω

= −iω
〈〈
σ

y
tot; σ

y
tot

〉〉
ω
. (19)

Now, upon the substitution of Eq. (19) into Eq. (18), and then
the obtained result in Eq. (14), the spin Hall conductivity reads

σ SH
yx (ω) = e

4m
χyy(ω) + ie�

2mω
χyx(ω). (20)

We would like to note that equations (17) and (20) for the
intrinsic dynamical anomalous Hall and spin Hall conductiv-
ities, in terms of the spin-spin linear-response functions, are
our main formal results. Both expressions are valid as long
as the clean system limit behavior is of interest. Also notice
that the term proportional to iχyx(ω)/ω in Eqs. (17) and (20),
in the ω → 0 limit, is related to the transverse spin-diffusion
constant. In the absence of an exchange field (i.e., � = 0),
only the first term on the right-hand-side of Eq. (20),

σ SH
yx (ω)

∣∣
�=0

= e

4m
χyy(ω), (21)

survives, which is the noted expression for the dynamical
spin Hall conductivity of a nonmagnetic 2D Rashba system
in terms of the in-plane susceptibility [9,12,16,22].

Before discussing the effects of electron-electron interac-
tion on the spin responses and Hall conductivities, we briefly
review the anomalous and spin Hall effects in a noninteracting
system.

Noninteracting anomalous and spin Hall conductivities. In
the noninteracting limit, we simply need to use the noninter-
acting spin-spin response functions on the right-hand sides

of Eqs. (17) and (20). For the noninteracting anomalous Hall
conductivity, we find [23]

σ AH,0
yx (ω) = ie2α2

R

ω
χ0

yx(ω) = e2�

4πω
L(ω), (22)

where

L(ω) = ln

[
(ω − ω− + i0+)(ω + ω+ + i0+)

(ω − ω+ + i0+)(ω + ω− + i0+)

]
, (23)

with ω± = 2(�2 + 2εFmα2
R + m2α4

R)1/2 ∓ 2mα2
R. Here, εF is

the Fermi energy of the system, which we take to be greater
than � throughout this paper, so the system is always in the
two-band regime. In the static limit, using the low-frequency
expansion of L(ω) [23], we find

σ AH,0
yx = e2�

2π

(
1

ω+
− 1

ω−

)
= e2

4π

(
δα

1 + δ2

)
. (24)

Here, δ ≡ �/(2mα2
RεF)1/2, and α ≡ (2mα2

R/εF)1/2, are the
dimensionless gap and spin-orbit coupling parameters, re-
spectively. Note that the order of limits is crucial here [11].
The static (i.e., ω → 0) limit, through this paper, is performed
after the clean system (i.e., ωτ → ∞) limit is taken; therefore,
we only have the intrinsic contribution to the conductivity.
The two-band regime criteria, i.e., � < εF corresponds to
δ < 1/α. The above expression for the anomalous Hall con-
ductivity is identical to the results of Ref. [24] in the two-band
regime and vanishes for � → 0, as expected.

As for the noninteracting spin Hall conductivity, from
the analytical forms of the noninteracting spin-spin response
functions, we find [23]

σ SH,0
yx (ω) = e

4m
χ0

yy(ω) + ie�

2mω
χ0

yx(ω)

= − e

8π

[
1 +

(
ω2 − 4�2

8mα2
Rω

)
L(ω)

]
. (25)

In zero gap limit, this reproduces the results of Ref. [25].
Furthermore, using the low-frequency expansion of L(ω) on
the right-hand-side of Eq. (25), the results of Refs. [8,20] for
the static spin Hall conductivity are recovered [23]

σ SH,0
yx = − e

8π

[
1 − �2

mα2
R

(
ω− − ω+
ω+ω−

)]

= − e

8π

(
1

1 + δ2

)
. (26)

This expression reduces to the well-known universal value:
−e/(8π ) in the � → 0 limit.

Interacting spin-spin response functions. Generally, we can
express the interacting density and spin response functions in
terms of the noninteracting ones in a RPA-like expression [11]

χ (q, ω) = [1 − χ0(q, ω)W (q, ω)]−1χ0(q, ω). (27)

Here, χ (q, ω) and χ0(q, ω) are the 4 × 4 matrices of the
interacting and noninteracting spin-density linear-response
functions, whose elements are χαβ (q, ω) and χ0

αβ (q, ω),
where α, β = 0, x, y, z with the 0 index referring to the par-
ticle density. The exact effective 4 × 4 interaction matrix
W (q, ω) is in principle unknown. The celebrated RPA re-
places it with the bare interaction Wαβ (q, ω) = δα,0δβ,0v(q).
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Therefore within the RPA, spin responses are not modified by
particle-particle interactions, and one recovers the noninter-
acting results for the anomalous and spin Hall conductivities
[12,16].

Several attempts have been made to go beyond the RPA
[12–16]. In this paper, we follow the procedure outlined
in Ref. [16], which extends the Hubbard local field factor
concept [11,26] for spin-orbit-coupled systems. In this ap-
proximation, the effective interaction reads

Wαβ (q) = v(q)δα,0δβ,0 − 1
2vH(q)δα,β, (28)

where vH(q) = v[(k2
F + q2)1/2] [11] is the screened Coulomb

potential. In the long-wavelength limit, this approximation
becomes equivalent to the summation of ladder diagrams
to infinite order with an ultrashort screened interaction, i.e.,
vH(q = 0) ≈ U [13–15]. Notice that our system in the two-
band regime has two Fermi wave vectors. However, in the high
Fermi energy or small Zeeman energy and weak-SOC limit,
we can take kF = √

2πn as the average Fermi wave vector of
the system, where n is the electron density.

Interacting anomalous and spin Hall conductivities. Using
the noninteracting spin-spin response functions in the long-
wavelength limit [23] and the effective interaction with the
Hubbard local field correction, we can find the interacting
anomalous Hall and spin Hall conductivities.

We begin with the anomalous Hall conductivity, which
is proportional to the transverse in-plane spin susceptibility.
Upon the substitution of the analytical form of χyx(ω) [23] in
Eq. (17), we find

σ AH
yx (ω) = σ AH,0

yx (ω)

�(ω,U )
. (29)

Here, the noninteracting anomalous Hall conductivity
σ AH,0

yx (ω) is as given in Eq. (22), and

�(ω,U ) =
[

1 + U

2
χ0

yy(ω)

]2

+
[

U

2
χ0

xy(ω)

]2

, (30)

where the interaction strength is U = vH(q = 0) = 2πe2/kF,
and χ0

yy(ω) and χ0
xy(ω) are the noninteracting spin-spin linear-

response functions. The static anomalous Hall conductivity is
obtained from the ω → 0 limit of Eq. (29)

σ AH
yx = e2

4π

αδ(1 + δ2)

[(1 + δ2) − u/2(1 + 2δ2)]2 , (31)

where u = mU/(2π ) = me2/kF is the dimensionless interac-
tion strength.

For the interacting dynamical spin Hall conductivity, sub-
stituting χyy(ω) and χxy(ω) in Eq. (20), we obtain

σ SH
yx (ω) = σ SH,0

yx (ω)

�(ω,U )
+

(
eU

8m

)[
χ0

yy(ω)
]2 + [

χ0
xy(ω)

]2

�(ω,U )
. (32)

Here, the noninteracting dynamical spin Hall conductivity
σ SH,0

yx (ω) is given in Eq. (25). The static spin Hall conductivity
is obtained from the ω → 0 limit of the dynamical one. Upon
inserting χ0

xy(ω = 0) and χ0
yy(ω = 0) [23] in Eq. (32), we have

σ SH
yx = − e

8π

(1 + δ2) − u/2(1 + 2δ2)2

[(1 + δ2) − u/2(1 + 2δ2)]2 . (33)

FIG. 1. Interacting static anomalous Hall conductivity [in units
of αe2/(4π )] versus the dimensionless gap parameter δ for different
values of the interaction strength u (left), and versus u for different
values of δ (right).

In the gapless limit, this simplifies to [16]

σ SH
yx

∣∣
�=0

= − e

8π

1

1 − u/2
, (34)

which coincides with the result obtained within the time-
dependent Hartree-Fock approximation [12]. A fascinating
prediction of Eq. (33) is the sign reversal of the spin Hall
conductivity for u > 2(1 + δ2)/(1 + 2δ2)2. The interaction
strength for this sign reversal can be accessibly small for large
exchange fields.

Results and discussion. Now we discuss the results
obtained from the many-body correction on the intrinsic
anomalous Hall and spin Hall conductivities in the static limit
and within the Hubbard approximation for the local field fac-
tor. We should emphasize once more that the static limits are
taken after the clean system limits.

The dependence of the static anomalous Hall conductivity
on the exchange field δ = �/(2mα2

RεF)1/2 and the electron-
electron interaction strength u = mU/(2π ) is illustrated in
Fig. 1. We observe that the electron-electron interaction en-
hances the intrinsic anomalous Hall conductivity, and its effect
is more pronounced in systems with large exchange fields
or weak spin-orbit couplings. Moreover, the static anomalous
Hall conductivity nonmonotonically depends on the exchange
parameter.

Similarly, Fig. 2 shows the effects of exchange field
and electron-electron interaction on the static spin Hall
conductivity. The interaction strength dependence is gener-
ally nonmonotonic. In particular, at large exchange fields
(or weak spin-orbit couplings), strong electron-electron
interaction strength leads to the sign reversal of the static spin
Hall conductivity.

In the laboratory, it is most convenient to tune the chemical
potential of the two-dimensional electron gas. Our dimen-
sionless parameters u, δ, and α, all depend on the Fermi

FIG. 2. Interacting static spin Hall conductivity [in units of
−e/(8π )] versus gap parameter δ for different values of the inter-
action strength u (left), and versus u for several values of δ (right).
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FIG. 3. Interacting static anomalous Hall (left) and spin Hall
(right) conductivities versus Fermi energy εF for different values
of �. Here we have used (2mα2

R/Ry)1/2 = 0.1, for the spin-orbit
coupling strength.

energy. To reveal the Fermi energy dependence of the anoma-
lous and spin Hall conductivities, we should notice that
εF = nπ/m − mα2

R in the two-band regime. Then, we find
u = [Ry/(εF + mα2

R)]1/2, where Ry = e2/(2aB) is the effec-
tive Rydberg energy, with aB = 1/(me2) being the effective
Bohr radius [11]. In Fig. 3, we illustrate the Fermi energy
dependence of the static anomalous Hall conductivity and spin
Hall conductivity. A trend similar to that in Figs. 1 and 2 is
evident here too. At low densities, which corresponds to the
strong-interaction regime, the anomalous Hall conductivity
is enhanced, and the sign of the spin Hall conductivity is
reversed.

Experimental feasibility. To check whether what we pre-
dict here could also be experimentally verified, we take the
InAs quantum well, which hosts two-dimensional electron

gas with Rashba spin-orbit coupling, as a realistic material
example. The effective mass of electrons in InAs quantum
well is m ≈ 0.023 me, where me is the bare electron mass.
Its high-frequency dielectric constant is ε ≈ 15. These val-
ues correspond to aB ≈ 345 Å and Ry ≈ 1.4 meV, for the
effective Bohr radius and Rydberg energy, respectively. The
Rashba spin-orbit coupling constant in InAs varies in the
range αR ≈ (10–60) meV Å [12]. An electronic density of
n ≈ (2–8) × 1010 cm−2, and moderate exchange energy of
� ≈ (0.1–0.4) meV, would be suitable to observe the sign
reversal of the spin Hall conductivity and significant enhance-
ment of the anomalous Hall conductivity.

Notice that our results are obtained in the zero-temperature
and clean limit. As the typical energy scales in realistic two-
dimensional quantum wells with SOC are of the order of
milli-electron volts, very low temperatures of a few kelvins
are required in the experiments. The inclusion of disorder
complicates the problem as the extrinsic mechanisms for the
anomalous and spin Hall conductivities compete with the
intrinsic ones. However, high-frequency measurements are
powerful techniques to probe intrinsic responses.
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