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Supercurrent transport is experimentally studied in a Josephson junction hosting a double quantum dot (DQD)
with tunable symmetries. The QDs are parallel coupled to two superconducting contacts and can be tuned
between strong interdot hybridization and a ring geometry where hybridization is suppressed. In both cases, we
observe supercurrents when the two interacting orbitals are either empty or filled with spins, or a combination.
However, when each QD hosts an unpaired spin, the supercurrent depends on the spin ground state. It is strongly
suppressed for the ring geometry with a spin-triplet ground state at zero external magnetic field. By increasing
the QD hybridization, we find that a supercurrent appears when the ground state changes to spin singlet. In
general, supercurrents are suppressed in cases of spin-doublet ground state, but an exception occurs at orbital
degeneracy when the system hosts one additional spin, as opposed to three, pointing to a broken particle-hole
symmetry.

DOI: 10.1103/PhysRevB.106.L180507

Introduction. Semiconductor quantum dots (QDs) offer
unique possibilities to study the interactions of various lo-
calized spin and orbital electron states with the macroscopic
properties of a superconductor. Confining a single-electron
spin to a QD provides a controlled magnetic impurity, which
can couple to quasiparticles in the superconductor to give
rise to various states within the superconducting gap [1–4].
It was recently shown that such subgap states can provide a
basis for qubit implementation [5]. In systems with double
QDs (DQDs), electron spins can be delocalized or confined to
each of the QDs, and the interactions between the QDs and
their surroundings can be tuned over a wide range. Andreev
molecular levels have been experimentally studied in serial
DQDs formed by local gating of semiconductor nanowires
[6,7], and screening of DQD spin-doublet and -singlet states
has been demonstrated by tuning the tunnel couplings to a
superconductor [8–10].

In Josephson junctions involving QDs, dissipationless su-
percurrents can flow not only at QD resonances but also in a
Coulomb blockade as a result of higher-order transport pro-
cesses [11]. When the ground state of the QD is a doublet, the
Josephson relation can acquire a π phase shift [11,12] which
can be detected by embedding the QD in a superconducting
quantum interference device (SQUID). Recently, the critical
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current of a serial DQD Josephson junction was explored,
where its dependence on occupancy and level detuning was
mapped [13]. In a similar system, a supercurrent suppression
was reported when the two-electron spin ground state was
changed from singlet to triplet by an external magnetic field
[14]. Further, in tunneling spectroscopy of a serial DQD, the
triplet ground state was suggested to inhibit Andreev reflec-
tion to the superconducting contact [15].

Systems in which superconductors instead interface paral-
lel DQDs have been of particular interest for understanding
nonlocal tunneling processes of Cooper pairs [16]. This con-
figuration has more degrees of freedom and does not require
a finite interdot coupling for transport. Given the range of
tunable parameters and possible interference effects, the ge-
ometry has been a subject of numerous theoretical studies
[16–18]. Experimental works have focused on transport in
parallel DQDs with no, or very small, interdot tunnel cou-
pling, such as in Cooper pair splitting [19], and on transport
via Andreev bound states in QDs located in closely spaced
nanowires [20,21].

In this work, we explore supercurrent transport through a
parallel-coupled DQD, where the two-electron spin ground
state can be controlled electrostatically. We thereby avoid
magnetic field induced reduction of the Josephson effect as
well as Zeeman splitting of spin-triplet states. By coupling the
QDs in two separate points, we can tune the effective inter-
dot hybridization and the exchange interaction that determine
the spin-singlet and -triplet energies. A strong suppression
of the critical current is found when the DQD ground state
changes from singlet to triplet. In general, Cooper pair trans-
port primarily seems to take place through empty and filled
orbitals. However, in agreement with theoretical predictions
[18], we find an exception at orbital degeneracy where the
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FIG. 1. Scanning electron micrograph of a typical device used in
the study. An InAs(Sb) quantum dot embedded inside a nanowire
is connected to source (S) and drain (D) contacts of Ti/Al which
become superconducting at temperatures below 1 K. The QD con-
finement is provided by tunnel barriers of wurtzite (WZ) InAs. Two
additional electrodes (L, R) act as side gates, which together with a
back gate (BG) control the potential such that the QD can be split into
coupled QDs.

electron-hole symmetry is broken in the supercurrent transport
involving odd electron states. Finally, we observe clear subgap
levels that can be correlated to spin states of the DQD, which
indicate a connection between the energies of subgap states
and the suppression of critical currents in the two-electron
regime.

Sample fabrication and quantum dot formation. Electron
transport was studied in an InAs(Sb) nanowire with an ap-
proximately 80 nm InAs core and 4 nm In AsxSb1–x shell
as illustrated in Fig. 1 [22]. A QD was formed during the
epitaxial nanowire growth by introducing a pair of closely
spaced wurtzite (WZ) segments, acting as tunnel barriers,
along the length of otherwise zinc blende (ZB) nanowire
segments [23]. In the electrical measurements, such a thin,
disk-shaped QD can be further split into coupled QDs, situ-
ated near the nanowire surface [24]. The role of the InAsSb
surface layer is to enhance the electron concentration and
reduce series resistances. A Josephson junction was fabricated
by depositing a Ti/Al (5/90 nm) film after defining electrode
patterns via electron beam lithography. DC transport mea-
surements (see Fig. S3 in the Supplemental Material [25] for
circuit diagram) were performed at 40 mK base temperature
in a dilution refrigerator equipped with a vector magnet.

In this study, we induced two QDs in a nanowire by
tuning voltages applied to a back-gate and two side-gate elec-
trodes. We note that the QDs, here connected in parallel with
source and drain, can couple to each other at two separate
points along the nanowire circumference (Fig. 1). We have
previously shown that ringlike DQDs can form in situations
where the two tunnel couplings are of similar magnitude and
where the overlap integrals have different signs [24]. We note
that the latter condition is fulfilled when pairs of even and
odd orbitals hybridize. In such a situation, the hybridization
energies of the interacting orbitals cancel, and despite large
individual tunnel couplings, the orbitals become nearly degen-
erate, split mainly by spin-orbit interaction. Such a ringlike
symmetry provides a very large orbital contribution to the
energy of a state in a magnetic field, and also results in a spin-
triplet ground state (GS) when each QD hosts an unpaired spin
in the highest unfilled orbital, in agreement with Hund’s rule

[26]. However, by upsetting the tunnel coupling balance, a
conventional DQD can be formed, where the orbital contri-
bution to the g factor is quenched, and where the conventional
spin-singlet GS of a tunnel-coupled DQD is regained.

Weak orbital hybridization. We start by investigating how
the critical current of a ringlike DQD Josephson junction
depends on charge state, and later we modify the same orbitals
into a conventional tunnel-coupled DQD configuration.

Conductance G, plotted as a function of voltages applied
to the two side gates (VL and VR), is shown in Fig. 2(a) for a
fixed back gate (VBG). The figure shows two orbitals that come
close in energy and weakly interact as seen by the shape of the
corners of the honeycomb [27]. From overview measurements
[25], we estimate that the DQD here has approximately 30
electrons in filled orbitals. Differential conductance, plotted
as function of the applied source-drain voltage (Vbias) passing
through the four triple points [red line in Fig. 2(a)] of the
orbital crossing, is shown in Figs. 2(b) and 2(c). In Fig. 2(b),
a B field out of the substrate plane (B⊥) has been applied to
quench the superconductivity in the leads.

The measurements show Coulomb diamonds inside of
which the charge state is constant, going from a (0, 0)e to
a (2, 2)e DQD charge configuration, where we have omitted
electrons in filled orbitals at lower energy. Transport inside
Coulomb diamonds is possible through cotunneling processes
where the charge state does not change. Here, a transition to a
darker color signifies that transport through an excited state is
possible.

In the (1)e and (3)e diamonds [Fig. 2(b)], the low-energy
excited states are explained by the two nearly degenerate
orbitals that spin-split in the weak B field. Transport in the
(1, 1)e charge state looks very similar, although here the
excited state spectrum is explained by a triplet GS, which
spin-splits, and a singlet excited state at higher energy. Ev-
idence for this atypical ordering of the two-electron states
is presented later. From the Zeeman-induced spin splitting,
we extract a spin g-factor component, gs ≈ 9. At B = 0
[Fig. 2(c)] we note the presence of a superconducting gap
(� ≈ 190 μV), which results in peaks in the dI/dVbias at
both � and 2�, as well as a strong suppression (white) for
|Vbias| < � in the Coulomb blockade.

Supercurrent transport under weak orbital hybridization.
By adding a series resistance (RS = 1.7 M�) and reducing
the voltage Vbias applied over the setup, we next explore
supercurrent transport through the DQD. RS acts to limit
the current for a given Vbias and at the same time reduces
the voltage drop over the device, which we take into ac-
count when extracting energies. Figure 2(e) shows differential
conductance along the black line in Fig. 2(a), outside of
the DQD honeycomb, where one QD orbital at a time
is filled with electrons. For some charge configurations,
we observe a strong signal around zero bias, surrounded
by low or negative differential conductance features [see
Fig. 2(d)]. This feature, which is now resolvable due to RS,
indicates supercurrent [13,28] with a magnitude that can be
extracted by fitting the measurement to an RCSJ model [25].
However, in this work we focus primarily on the absence or
presence of such a feature in relation to the spin and orbital
configuration of the DQD. Figure 2(e) shows the presence of
a supercurrent in the even-electron regimes where each QD
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FIG. 2. (a) Conductance vs VL and VR for a fixed VBG = −3.3 V in a regime of symmetric potentials where the DQD has ringlike
properties (Vbias = 0.33 mV). The DQD here has approximately 30 electrons in filled orbitals. (b) Differential conductance as function of
Vbias (stability diagram) along the red gate vector (VL,R) crossing the four triple points in the DQD honeycomb. Cotunneling transport processes
involving excited DQD states give rise to horizontal features within the Coulomb diamonds. A magnetic field (B⊥) is applied to quench the
superconductivity in the leads and with a direction perpendicular (⊥) to the nanowire axis where no flux threads the ring. (c) Corresponding
plot at B = 0 where the superconducting gap is visible. (d) Supercurrent measurement (RS = 1.7 M�) across the meeting point of the orbitals
(red vector), where we note a suppression of the supercurrent when each orbital has an unpaired spin. The two line cuts at positions α and
β show the relative effect of this suppression in (1,1) compared to (0,0). At α the critical current is ∼ 90 pA, which increases towards the
DQD charge degeneracy. (e) Corresponding measurement along the black gate vector outside the honeycomb where each QD (orbital) is filled
sequentially.

orbital is either empty of, or filled with, electrons. This would
be comparable to a 0 junction for a single QD embedded in
a Josephson junction. However, the supercurrent is strongly
suppressed in the odd-charge configurations. Such a suppres-
sion is commonly observed experimentally in a π junction
[11–13,28]. Theoretical calculations have shown that odd
electron states form π junctions and the presence of both
spin order preserving and flipping transport processes leads
to Josephson current suppression [29–31].

By instead crossing through the four triple points [red
line, Fig. 2(d)], the situation looks different. A supercurrent
is still present in the (0, 0)e and (2, 2)e regimes where both
QD orbitals are either empty or filled, but we note a strong
suppression in the (1, 1)e configuration with a spin-triplet GS,
and oppositely the emergence of a weak supercurrent in (1)e,
but not in (3)e.

Assuming that local transport of Cooper pairs dominates,
such that two electrons pass via the same QD, the triplet-
related suppression may be explained by physics similar to
the spin 1/2 suppression in a single QD [29–31]. However,
if we also consider nonlocal transport, i.e., a splitting of the
Cooper pairs, a large number of higher-order tunneling pro-
cesses become possible. Probst et al. [16] studied nonlocal
transport in a parallel DQD system with indirect tunneling
between the QDs, and predicted that the spin-triplet state
supports a supercurrent, although weaker in magnitude than

the singlet. The suppression was explained by a Pauli spin
blockade that reduces the number of allowed transport paths
for the spin-triplet GS.

Concerning the appearance of a supercurrent in (1)e but
not (3)e, we find that the same asymmetry appears in other
orbital crossings, with examples given in Figs. S1(e) and
S2(e) in the Supplemental Material [25]. In the case of a
DQD with identical QD-superconductor couplings, Droste
et al. [18] predicted a broken particle-hole symmetry of
the supercurrent at vanishing level detuning. Due to interfer-
ence effects, the antibonding orbital becomes decoupled from
the superconductor, such that only the bonding orbital carries
a supercurrent. Scherübl et al. [32] recently predicted a broken
electron-hole symmetry in the level structure of subgap states
of a similar system. They found that an asymmetry appeared
in the special case where the QDs couple both directly and
indirectly through the superconductor, and where nonlocal
tunneling is also possible.

Strong orbital hybridization. Next, by changing VBG by
+1 V, and compensating with VL,R, we modify the shapes
of the orbitals for the same DQD charge configuration. Now,
the system behaves as a typical DQD in the limit of strong
interdot coupling, as evidenced by the avoided orbital crossing
in Fig. 3(a). A stability diagram [B = 0, Fig. 3(b)] along the
line in Fig. 3(a) shows a doublet excited state (antibonding) in
the (1)e regime, and a triplet excited state in (1, 1)e. A cor-
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FIG. 3. Conductance vs VL,R for a fixed VBG = –2.3 V in a
regime where the QDs strongly couple in one point (Vbias =
0.17 mV). (b) Stability diagram along the vector in panel (a) where
we find a one-electron excited state (antibonding) at high energy
that confirms a strong orbital hybridization. (c) Corresponding su-
percurrent measurement where we note supercurrent transport near
zero bias involving the S(1, 1) ground state of the hybridized DQD.
(d) Differential conductance vs Vbias inside the (1, 1) honeycomb
during electrostatic tuning (VBG, L, R ) of the two-electron GS. Left
side corresponds to the ringlike case in Fig. 2 with a T (1, 1) GS,
and right to a conventional DQD with S(1, 1) GS. (e) Corresponding
supercurrent measurement where a supercurrent appears as the GS
changes from T to S.

responding supercurrent measurement is shown in Fig. 3(c),
where we find a supercurrent in (1, 1)e where the GS now is
spin singlet. In a simplistic noninteracting picture, this corre-
sponds to having the bonding orbital filled with two electrons,
where therefore a 0 junction behavior may be expected.

Figures 3(d) and 3(e) represent demonstrations of the elec-
trostatic tuning of the (1,1) GS from the ringlike triplet to
a conventional DQD singlet, i.e., going from the center of
the honeycomb in Fig. 2(a) and crossing through the corre-
sponding center of Fig. 3(a). The gate trajectory was chosen
as to remain within the (1,1) configuration, and determined
by first obtaining conductance plots similar to Figs. 2(a) and
3(a) for various VBG. In Fig. 3(d), a B⊥ = 100 mT is applied
to quench the superconductivity during this operation. For
the T+ GS (left side) we note transport through two excited
states, T0 and S, (T– is not accessible with exchange of only

FIG. 4. (a) Conductance vs DQD electrochemical energy and B||
obtained along the red gate vector in Fig. 2(a) crossing through the
honeycomb triple points. Vbias = 85 mV and VBG = –3.3 V. (b) Dif-
ferential conductance vs Vbias and B|| inside the (1,1) honeycomb. A
constant B⊥ is applied to quench superconductivity. A triplet-singlet
GS transition occurs at B|| = 25 mT due to the large orbital angular
momentum of S(1, 1) from the ringlike DQD symmetry. (c) Corre-
sponding measurement with B = 0. (d) Corresponding supercurrent
measurement where we note the absence of supercurrents. (e,f) Sim-
ilar measurements in the (1,1) and (0,2) regimes of another orbital
degeneracy. In panel (e) we note a finite supercurrent which does not
decay with B|| in the same way as in panel (f) obtained where the
GS is S(0, 2). Also in panel (e), the S and T labeling indicate excited
(white) and ground (black) states in the corresponding normal regime
as determined from cotunneling spectra (see Fig. S2 [25]).

one spin). However, for the singlet GS (right side), transport
involving all three triplet excited states is possible, resulting in
an additional resonance (see Fig. S5 [25]). This also explains
the excited state spectrum inside the (1,1) Coulomb diamond
in Fig. 2(b). Changing to a supercurrent measurement config-
uration [Fig. 3(e), B = 0], we find that a supercurrent appears
when the ground state changes from T to S.

B-field tuning of the (1,1) spin ground state. Next we go
back to the DQD ring configuration, where we take advantage
of the strong B-field dependence of the S(1, 1) state for fields
applied parallel to the nanowire long axis (B||). Here, a spin
triplet-singlet GS change can be induced before quenching the
superconductivity in the leads. We point out that the orbital
properties of this singlet are very different from the corre-
sponding singlet in the conventional DQD.

Figure 4(a) shows the ground state evolution as a function
of B|| recorded along the red line in Fig. 2(a) that passes
through the four triple points. The rapid evolution of the states
confirms the ringlike nature of these orbitals [22], where the
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FIG. 5. (a) Transport measurements in this figure involve detuning of the ringlike DQD from (0,2) to (2,0) along the black arrow.
(b) Transport in the normal state at B⊥ = 100 mT, with a T+(1, 1) GS. The two red lines indicate avoided crossings of S(0, 2)-S(1, 1) and
S(1, 1)-S(2, 0) from which we can extract the interdot tunnel coupling t . (c) Corresponding supercurrent measurement with a suppressed
supercurrent where T (1, 1) is the GS. SOI results in an S/T avoided level crossing, where at least one state crosses the SOI-induced gap. (d) A
B|| = 25 mT spin splits T (1, 1) states, and shifts the lowest S(1, 1) down in energy. (e) Calculated energies of 2e states in a DQD with a single
orbital in each QD and at B⊥ = 100 mT, corresponding to the dashed box in panel (b). For simplicity, the energies are plotted as function of
detuning of the (1,1)/(2,0) states, where the detuning energy ε is set to 0 at the T/S crossing. (f) Calculation of the GS change from T (1, 1)
(left) to S(2, 0) (right) at B = 0. (g) Corresponding GS change in the measurements obtained at the box indicated in panel (c). (h) Measurement
at B|| = 40 mT with a spin-singlet GS where we note a supercurrent suppression in (1, 1)e.

orbital contribution to the Zeeman splitting corresponds to a
component gorb ≈ 170. Such large and anisotropic g factors
have been observed previously when forming rings of various
symmetry within similar nanowire QDs [22].The strong de-
pendence on B|| of the lowest-energy singlet S(1, 1) is shown
in Figs. 4(b) and 4(c), where in Fig. 4(b) also a B⊥ = 100 mT
was applied to quench the superconductivity. A ground state
transition occurs at B|| = 25 mT where the singlet becomes
GS. The corresponding supercurrent measurement is shown in
Fig. 4(d), although it contains no indications of a supercurrent
despite the GS change. At this B field, the supercurrent is not
fully quenched for even-electron configurations elsewhere in
the honeycomb [as shown later in Fig. 5(h)], which may point
to a suppression of supercurrent through this singlet.

A supercurrent measurement as a function of B|| in the
(1, 1)e for another orbital crossing of the same device with
a ringlike behavior is shown in Fig. 4(e). In this case the
DQD has a less stable triplet GS (ES–ET = 80 μeV instead
of 160 μeV) in the normal state. Here we note a weak su-
percurrent regardless of spin GS in the normal state (see
Supplemental Material [25]). Instead of decaying with the
B field, the supercurrent signal stays nearly constant, or po-
tentially increases, as S(1, 1) becomes lower in energy than
T (1, 1). As reference, we compare with a measurement in
the S(0, 2) regime of the same orbital crossing [Fig. 4(f)],
where the supercurrent signal is correspondingly stronger, and
where we note the expected decay of the signal with applied
B field.

Similar to recent findings on screening of spin singlets
in serial DQDs [8–10], the spin triplet should also be-
come screened by quasiparticles in the superconductor for

sufficiently strong coupling to the leads. We find that an
excited state close to zero bias [Fig. 4(e)], possibly associ-
ated with such screening, is a reoccurring feature in the (1,1)
regime of other ringlike orbital crossings where the supercur-
rent is not fully suppressed (See Supplemental Material [25]).

Transport via two-electron spin states in the supercon-
ducting gap. Finally we investigate detuning of the DQD
ring across the two-electron configurations (2, 0) − (1, 1) −
(2, 0)e as shown in Figs. 5(a) and 5(b). Here we find clearly
resolved states inside the superconducting gap, where the
latter extends beyond the measurement range [Figs. 5(c) and
5(d)]. These states show a direct correlation with the expected
evolution of spin states in a DQD, although with a spin-triplet
GS in (1, 1)e due to the ringlike symmetry.

Results from a calculation of DQD orbital- and spin-state
energies as a function of detuning near (2,0)-(1, 1)e are shown
in Figs. 5(e) and 5(f) (see the Supplemental Material [25]
for details). The singlets S(1, 1) and S(2, 0) can interact via
tunneling to form two hybridized singlets near the charge
degeneracy point. At this point, the GS changes from singlet
to triplet, where the states couple through spin-orbit inter-
action (SOI). The change in GS primarily involves T (1, 1)
and S(2, 0) due to the exchange interaction. We note that at
least one of the triplets cuts through a small avoided crossing,
�ST ≈ 20 μeV, of T (1, 1)/S(2, 0), which has been corrected
for RS [25]. A reason for the very weak S−T interaction,
despite a considerable spin-orbit interaction, SOI ≈ 300 μeV
[22], is that for T (1, 1)-S(2, 0) the interaction scales with the
interdot tunnel coupling, t [33–35]. Since the overlap integrals
have different signs at the two connections in a DQD ring [24]
the effective t becomes strongly suppressed. From Fig. 5(b),
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we extract a hybridization gap, ω = 250 and 120 μeV from
the interactions of S(1, 1) with S(2, 0) and S(0, 2), respec-
tively, suggesting an average t ≈ 60 μeV (t = ω/23/2). This
value is indeed considerably smaller than the corresponding
t ≈ 0.9 meV obtained close to the point where the (1, 1)e GS
change into a singlet (VBG = –2.3 V) and where the ringlike
symmetry is suppressed [Fig. 3(d)].

Figure 5(g) reveals regions with strong negative dI/dVbias

at energies that seem to correlate with transport involving
excited spin states. Similar features are typically observed
for subgap bound states in QD systems attached to two su-
perconducting contacts [13], where the effect grows with
the asymmetry of the source-drain coupling strengths [36].
Despite the small energies involved and the strong QD-lead
couplings, we note that the states are very well resolved. The
spectroscopic resolution is improved by studying cotunneling
transport inside the superconducting gap, which leads to a
significantly reduced lifetime broadening.

Once the spin triplet is GS, the supercurrent becomes no-
tably weaker. A nonzero B|| rapidly shifts the lowest S(1, 1)
down in energy, which becomes GS in the measurement at
B|| = 40 mT in Fig. 5(h). However, as pointed out earlier, no
supercurrent is discernible for S(1, 1), despite a correspond-
ingly weak supercurrent involving S(2, 0) and S(0, 2). This
finding indicates a suppression of nonlocal tunneling transport
trough the DQD ring states, or possibly a mechanism related
to orbital pair breaking resulting from the large orbital mag-
netic moment [37,38].

Summary and conclusion. Transport of Cooper pairs was
studied in a coupled QD system with tunable symmetries.
A suppression of supercurrent transport was found when the
QDs couple in a way that minimizes hybridization and where
the ground state is spin triplet. The suppression was lifted
when inducing a spin-singlet ground state by electrostatically
changing the DQD interaction to strong hybridization. At or-
bital degeneracy, a broken particle-hole symmetry was found
for odd electron occupations, where a supercurrent appeared
in 1e but not in 3e. Transport studies near the S(2, 0)-T (1, 1)
transition revealed clearly resolved subgap states that correlate
with calculated two-electron spin states.

We envision that the electrostatically controlled spin
ground state of this system could be used to study transport in
unconventional superconductors, such as triplet or ferromag-
netic superconductivity. Here, the DQD could directly probe
the Cooper pair spin ordering. By inserting the DQD into
one arm of a SQUID, it would also be possible to investi-
gate predictions on the supercurrent-phase relationship in the
case of interference in multiple channels, as well as the emer-
gence of arbitrary phase (ϕ0) junctions [39].
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