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Superconductivity enhanced by pair fluctuations between wide and narrow bands
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Full or empty narrow bands near the Fermi level are known to enhance superconductivity by promoting
scattering processes and spin fluctuations. Here, we demonstrate that doublon-holon fluctuations in systems with
half-filled narrow bands can similarly boost the superconducting Tc. We study the half-filled attractive bilayer
Hubbard model on the square lattice using dynamical mean-field theory. The band structure of the noninteracting
system contains a wide band formed by bonding orbitals and a narrow band formed by antibonding orbitals,
with bandwidths tunable by the interlayer hopping. The shrinking of the narrow band can lead to a substantial
increase in the superconducting order parameter and phase stiffness in the wide band. At the same time, the
coupling to the wide band allows the narrow band to remain superconducting—and to reach the largest order
parameter—in the flat band limit. We develop an anomalous worm sampling method to study superconductivity
in the limit of vanishing effective hopping. By analyzing the histogram of the local eigenstates, we clarify how
the interplay between different interaction terms in the bonding/antibonding basis promotes pair fluctuations
and superconductivity.
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Introduction. Superconductivity in strongly correlated
multiband systems has attracted much interest since the dis-
covery of iron based superconductors [1–14] and also in
connection with twisted bilayer graphene [15]. Much effort
has been devoted to reveal connections between the pairing
in systems with spin, orbital, or nematic degrees of freedom
[16–23]. Even the single-orbital square-lattice Hubbard model
can be mapped to an effective multiorbital system [24,25], or
we can explore non-Bravais lattices [26,27], which provides
novel perspectives and insights into the pairing mechanism.
Often, the original or effective models exhibit wide and nar-
row bands, which raises the interesting question how the
different bandwidths cooperate in the superconductivity.

Recently, it was shown that so-called incipient bands
[26–32], which are full (empty) bands slightly below (above)
the Fermi energy, can significantly enhance Tc. The concept
of incipient bands was introduced by Kuroki et al. [26] in a
fluctuation exchange (FLEX) [33] study of a Hubbard ladder.
They found that the large number of interband pair-scattering
channels promotes superconductivity. Linscheid et al. [34]
argued that the incipient band contributes significantly to the
spin-fluctuation pairing and leads to a high Tc in a two-band
system with electronlike and holelike bands. Very recently,
Ochi et al. [32] studied a two-band continuum model with
incipient narrow empty band with attractive interactions, and
found that interband pair-hopping induces an effective intra-
band attraction in each band, enhancing superconductivity.
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In the limit where the narrow band becomes flat, the
normal-state kinetic energy of the electrons populating this
band is quenched. Such (almost) flat bands appear in many
van der Waals systems, including magic-angle twisted bilayer
graphene [15] and its trilayer or double bilayer derivatives
[35–38], and also in twisted bilayer WSe2 [39] and MoS2 [40].
This situation has been theoretically suggested to promote
superconductivity for repulsive interactions [41]. While most
previous works focused on models where either the narrow
band or wide band is empty, we consider here a situation
where all bands are half-filled. Based on the intuition from
correlated systems in the normal state, one might expect that
a flat band must be a Mott insulator (a paired Mott insulator
in the case of attractive interactions that we consider here).
However, we shall show that, when accompanied by a wide
band, the flat band can be superconducting (SC) and that the
exchange of pairs between the wide and flat bands results in a
large SC order parameter in both bands.

Model and method. We consider the Hubbard model on
a bilayer square lattice with an attractive onsite interaction
(U < 0),

H =
∑

i j,abσ

t ab
i j c†

i,aσ c j,bσ + U
∑

ia

ni,a↑ni,a↓. (1)

Here a, b label the layers, and i, j the lattice sites, while
σ =↑,↓ denotes the spin. The unit cell of the model contains
two sites stacked along the z axis. The hopping parameters,
depicted in Fig. 1, are the hopping t1 for intralayer nearest
neighbors, t2 for second neighbors, while the interlayer hop-
pings are nearest-neighbor t4 and second-neighbor t3. The
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FIG. 1. (a) Bilayer square-lattice Hubbard model with sites de-
picted as green spheres and the two-site unit cell enclosed by a
black box. t1 (red) is the intralayer hopping between nearest neighbor
sites, while t2 (orange) is for second-neighbor sites. t4 (black) and
t3 (blue) are the interlayer hoppings between nearest-neighbor and
next-nearest-neighbor sites. (b) Schematic illustration showing the
pair fluctuations (scatterings) within the wide band and between the
two bands, as well as the relevant interactions. Black boxes in (b) rep-
resent unit cells. (c) Noninteracting band structures for Wβ/Wα = 1,
0.4, 0.0, respectively.

noninteracting Hamiltonian H↑
0 (k) = H↓

0 (k) is diagonal in
the bonding-antibonding basis for cell i, |i, α

β
σ 〉 = (|i, aσ 〉 ±

|i, bσ 〉)/
√

2, with the bands ε α

β
,k = ±t4 + 4t2 cos kx cos ky +

2(t1 ± t3)(cos kx + cos ky). If t1 > 0 and t3 > 0, εα (k) has a
larger bandwidth than εβ (k), see Fig. 1(c). When t2 = 0 and
t3 = t1, εβ (k) = −t4 is a flat band. The hopping t4 determines
the energy splitting between the bonding and antibonding
bands. Here we set t2 = t4 = 0 to ensure particle-hole sym-
metry. The band width of each band is Wα

β
= 8(t1 ± t3). We

fix the width of the wide band as Wα = 8, and tune the narrow
band width Wβ = 8(1 − 2t3) by adjusting t1 and t3, and use
Wα/8 = 1 as energy unit.

The onsite Hubbard interaction can be transformed, within
a unit cell i with two sites, into a two-orbital Hamiltonian,

H̃ i
int =Uc

∑
α

ni,α↑ni,α↓ + U ′ ∑
α �=β

ni,α↑ni,β↓

− JP

∑
α �=β

c†
i,α↑c†

i,α↓ci,β↑ci,β↓−JS

∑
α �=β

c†
i,α↑ci,α↓c†

i,β↓ci,β↑,

(2)

with α (β) the bonding (antibonding) orbitals and Uc = U ′ =
JP = JS = U/2 [24,41,42]. There is no interorbital same-spin
interaction, since U ′ − JS = 0. The JP (JS) term describes pair
hopping (spin flipping) between the bonding and antibonding
orbitals.

We solve the interacting lattice model using dynamical
mean field theory (DMFT) [43], which maps the lattice
problem to a self-consistently determined Anderson impu-
rity model. To solve the two-orbital impurity model in the
bonding/antibonding basis, we employ the hybridization-
expansion continuous-time quantum Monte Carlo algorithm
[44–46]. We use four-operator updates to ensure an ergodic

FIG. 2. (a) Tc vs the bandwidth ratio. The black region indi-
cates the Mott phase in the flat band in the normal state. The Mott
region extends to Wβ/Wα ≈ 0.05 at T = 0.01. [(b)–(d)] Momentum-
resolved spectral function log10A(k, ω) for the indicated values of
Wβ/Wα at T = 0.025 [horizontal dashed line in (a)]. Here, the dashed
lines show the noninteracting band structures. The black arrows in
(c) and (d) highlight the back-bending of the Bogoliubov bands.

sampling in the SC phase [47]. Furthermore, we developed
a normal (anomalous) worm-sampling to measure the normal
(anomalous) Green’s function for the flat band, since these
functions cannot be measured with the conventional tech-
nique based on removing (anomalous) hybridization lines.
Details on the anomalous worm algorithms are given in Sec. 5
of Ref. [48], which includes Refs. [49–52]. In the Nambu-
formalism, the noninteracting lattice Hamiltonian reads

H0 =
∑

k

[�†
k,↑ �−k,↓]

[
H↑

0 (k) 0
0 −H↓

0 (−k)T

][
�k,↑
�

†
−k,↓

]
,

where we define the Nambu spinors [�†
k,↑ �−k,↓] =

[c†
k,α↑, c†

k,β↑, c−k,α↓, c−k,β↓]. The interacting lattice
Green’s function can be expressed as

G(k, iωn) = [iωnI4+σ3 ⊗ μI2−H0(k)−�Nambu(iωn)I4]−1,

where �Nambu is the local self-energy from DMFT, and ωn the
Fermionic Matsubara frequency. Unless otherwise mentioned,
we set U = −1 and μ = U/2 to make the system particle-hole
symmetric.

Phase diagram and quasi-particle spectra. Figure 2(a)
presents the DMFT phase diagram in the space of temperature
T and bandwidth ratio Wβ/Wα . Both bands become supercon-
ducting simultaneously and we determine Tc by extrapolating
the square-root like critical behavior of the SC order param-
eter (see Ref. [48], Sec. 3). The red line shows Tc against
Wβ/Wα . For Wβ/Wα = 1, we have Tc 
 0.0128. In this limit
with t3 = 0 the two layers are decoupled, so that the system
decomposes into two independent single-band Hubbard mod-
els on the square lattice. As one decreases Wβ/Wα from 1, Tc

is seen to increase. This can be understood by the decreasing
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width of the narrow band, where |U |/Wβ increases, i.e., Tc

increases with increasing electron correlations. For Wβ/Wα �
0.4, Tc markedly increases with decreasing bandwidth ratio
and reaches its maximum value of 0.058 (nearly 5 times
the Tc at Wβ/Wα = 1) around Wβ/Wα 
 0.1. Then Tc drops
slightly as one further decreases Wβ/Wα from 0.1 to 0, but it
remains high even when the noninteracting antibonding band
becomes flat. In particular, Tc for the coupled bilayer system
with Wα = 8, Wβ = 0 is much higher than for the decoupled
layers with Wα = Wβ = 8.

We now look at the momentum-resolved spectral function,
obtained from the Nambu Green’s functions as A(k, ω) =
− 2

π
Im[G1↑,1↑ + G2↑,2↑](k, ω). For the analytic continuation

from the Matsubara to the real-frequency axis, we use the
auxiliary [53] maximum entropy [49] method, where the real-
frequency self-energy �(ω) is constructed from two auxiliary
self-energy functions �± = �nor ± �ano which have positive
definite spectral weight in the presence of particle-hole sym-
metry [54]. Figures 2(b)–2(d) show the spectra for Wβ/Wα =
1, 0.4 and 0 at T = 0.025, respectively. For comparison, we
overlay the corresponding noninteracting bands. The system
becomes SC for Wβ/Wα � 0.57 at T = 0.025, as shown in
Fig. 2(a), and therefore a SC gap opens in both bands in
panels (c,d). There the black arrows mark the back-bending of
the Bogoliubov bands, which demonstrates particle-hole mix-
ing, a fundamental consequence of pair condensation [55,56].
At Wβ = 0, the narrow band becomes flat but remains su-
perconducting. The spectral functions in the normal and SC
state are compared in detail in Ref. [48], Sec. 2. There it is
shown that in the SC state, the gap in the wide band is a
SC gap, while the gap in the flat band has two contributions
and can be interpreted as a Mott gap enhanced by the SC
gap.

Order parameter and phase stiffness. The phase
stiffness DS measures the rigidity of the SC state against
phase twisting. We calculate DS in the framework
of linear response and in the long-wave-length limit,
following Refs. [23,57,58] as DS,xx = Dpar

S,xx + Ddia
S,xx with

Dpar
S,xx = e2T

h̄2V N

∑
k,iωn

TrG(k, iωn)(σ0 ⊗ λx
k )G(k, iωn)(σ0 ⊗ λx

k )
and Ddia

S,xx = e2T
h̄2V N

∑
k,iωn

TrG(k, iωn)eiωn0+
(σ3 ⊗ λxx

k ),
where λx

k ≡ ∂kx H0(k), and λxx
k ≡ ∂2

kx
H0(k). A mesh of

395 × 395 k-points is used to calculate the stiffness.
The orbital-resolved order parameters �α = 〈cα↑cα↓〉 and
�β = 〈cβ↑cβ↓〉, and corresponding stiffnesses Dα

S,xx and Dβ
S,xx

(Dα
S,xx + Dβ

S,xx = DS,xx) are plotted against Wβ/Wα in Fig. 3
by the blue lines. Panels (a) and (c) show the results for the
wide band and panels (b,d) those for the narrow band. We set
T = 0.025, so that the model becomes SC for Wβ/Wα � 0.57.
The order parameter and stiffness in the wide band increase
with decreasing Wβ and reach respective maxima in or near
the flat-band limit Wβ = 0. This shows that the stronger
correlations in the narrow band and the enhanced interband
pairing interactions boost superconductivity in the wide band.
Note that a single-band model with bandwidth 8 and U = −1
would not be superconducting at this temperature [orange
curves in panels (a) and (c)].

In the narrow band, while the order parameter shows a
stronger increase and reaches its maximum near Wβ = 0, the
stiffness exhibits a much less pronounced increase than in the

FIG. 3. [(a) and (b)] SC order parameter � and [(c) and (d)]
superfluid stiffness DS (in units of e2/h̄2) in the two bands against
Wβ/Wα at T = 0.025. (a) and (c) are for the wide band (α) and
(b) and (d) for the narrow band (β). Green symbols: results when
only intraorbital interactions are considered; red: for intraorbital
plus interorbital density-density interactions; black: for intraorbital
interactions plus spin-flip and pair-hopping terms; blue: for the full
model. Orange symbols in (b) and (d) [(a) and (c)] : results for a
single-band model with varying bandwidth W = Wβ [fixed band-
width W = Wα = 8].

wide band, followed by a decrease as the narrow band enters
into the strong-correlation regime. Remarkably, the narrow
band does not become a paired Mott insulator for small Wβ

unlike in the single-band model [orange curves in panels (b)
and (d)], see also the spectra in Ref. [48], Sec. 4. This shows
that the superconductivity in the narrow band is supported by
the interactions with the wide band in the strong-correlation
regime. To analyze the mechanism behind the enhancement of
superconductivity in the narrow band, let us resolve the effects
of the different interaction terms in the effective two-orbital
Hamiltonian (2) by turning them on term by term. The green
lines in Fig. 3 show the results obtained when we only retain
the intraorbital interaction Uc, i.e., for a system without any
coupling between the bonding and antibonding orbitals. In
this case, the only relevant quantities are the ratios Uc/Wα and
Uc/Wβ . Since we decrease Wβ at fixed Wα , we see the behavior
expected for the single-band attractive Hubbard model: the
order parameter in the wide band remains constant, while it
increases in the narrow band, up to the Mott transition point
at Wβ/Wα 
 0.1 (see spectra of the Uc model in Ref. [48],
Sec. 4). When we add the interorbital interactions U ′ to the
intraorbital interactions Uc we obtain similar results as shown
by the red lines in Fig. 3, which overlap with the green lines
(the almost negligible effect of U ′ is because of the small
value of U = −1).

If instead we consider Uc and the pair-hopping and spin-
flip terms (black lines in Fig. 3), the results are remarkably
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FIG. 4. [(a) and (d)] DMFT histograms of atomic eigenstates for models with different interaction terms. Results are shown for the model
with (a) all the interaction terms, (b) the Uc, JS , JP terms, (c) the Uc, U ′ terms, and (d) the Uc term only. The top (bottom) row is for Wβ/Wα = 1
(0) in (a)–(d). (e) Difference in probabilities P6 − P8 ≡ P6 − P8 as a function of Wβ/Wα in the full model. (f) Dynamic contribution to the
local orbital susceptibility for the full model in the SC and normal metal (NM) phase. The temperature is T = 0.025.

different. The order parameters in both bands are now larger
than for the full model, especially for Wβ/Wα near 1, and
they increase monotonically with decreasing Wβ . Also the
stiffness is strongly enhanced for Wβ/Wα � 0.4. Since we are
considering here intraorbital pairing, it is natural to assume
that the pair-hopping (rather than spin-flip) term is the relevant
player in the observed enhancement of superconductivity.

To further analyze the interplay between the interaction
terms, we look at the probability weights of the 16 eigenstates
of H̃ i

int [Eq. (2)] [48], measured with DMFT. Panels (a)–(d)
in Fig. 4 show them for Wβ/Wα = 1 (top) and Wβ/Wα = 0
(bottom), for the four types of interactions with the same color
code as in Fig. 3. We label the eigenstates  using a binary
code of the occupation status per spin-orbital |nα↑nα↓nβ↑nβ↓〉
as indicated in the figure. In panel (a), we see that for
Wβ/Wα = 1, the eigenstate 6 ≡ 1√

2
(|1100〉 + |0011〉) of

the pair-hopping term HP = −JP
∑

α �=β c†
i,α↑c†

i,α↓ci,β↑ci,β↓ is

as important as the eigenstate 8 = 1√
2
(|1001〉 − |0110〉)

of the spin-flip term HS = −JS
∑

α �=β c†
i,α↑ci,α↓c†

i,β↓ci,β↑,
while for Wβ/Wα = 0, 6, with a combination of inter-
band pair-hopped states, clearly dominates. In the model
without the U ′ term [panel (b)], 6 is already more rel-
evant than 8 at Wβ/Wα = 1 and it completely dominates
for Wβ/Wα = 0.

The pair hopping term boosts superconductivity, as seen
from � in Fig. 3, as long as the pairs have a large phase
stiffness (are sufficiently delocalized). A too dominant 6

state, as in the case of Wβ/Wα ≈ 0 in the model without U ′,
weakens the superfluid stiffness [Fig. 3(c)]. The suppression
of � and DS in the full model with Wβ/Wα = 1, compared to
the model without U ′, can be explained from the setting Uc =
U ′ = JS = JP. The density-density interaction is the same for
intraorbital and interorbital opposite-spin pairs, so that both
the pair-hopping and spin-flipping terms are active and sta-
bilize the states 6 and 8, respectively. 8 however favors

interorbital pairing and suppresses intraorbital pairing, which
explains the smaller order parameter and lower Tc of the full
model with Wβ/Wα = 1. For Wβ/Wα < 1 the symmetry be-
tween the bonding and antibonding orbitals is broken and the
intraorbital correlations in the narrow band start to dominate
the interorbital correlations. This leads to a strongly corre-
lated metal with a high probability of doublons and holons
in the narrow band of this attractive-U system, and suppresses
the 8 states. The result is the strong increase in � seen in
Figs. 3(a) and 3(b) (blue line). Meanwhile, the presence of the
U ′ interaction prevents a too strong dominance of the 6 state
by favoring the full (16) and empty (1) states. Hence the full
model with pair-hopping and U ′ favors, for small enough Wβ ,
a state which supports pair fluctuations and exhibits a large
stiffness [blue line in Fig. 3(c)]. We can think of the flat band
as a reservoir of pairs, which are injected into the wide band
via pair-hopping processes, thus boosting superconductivity
in the wide band. At the same time, the pair-hopping enables a
kind of proximity effect [59], which allows the narrow band to
remain superconducting even in the flat-band limit. To support
the relevance of this mechanism, we plot in Fig. 4(e) the
difference P6 − P8 between the probabilities of 6 and 8. The
strong upturn around Wβ/Wα ≈ 0.4 is qualitatively similar to
the increase seen in �α,β .

A second factor that plays a role in the pairing is the
enhancement of the attractive interactions through local
moment fluctuations. For a weak enough bare interaction, this
effect can be captured by calculating an effective screened
interaction which takes into account bubble diagrams, as
demonstrated in several works [19,60–63]. Within the random
phase approximation, the effective static interactions are
given as J̃P,S = (U/2)/[1− U

2 (χ↑↑
1212+χ

↑↑
2121)U

2 (χ↓↓
1212+χ

↓↓
2121)]

and Ũc, Ũ ′ = (U/2)/[1− U
2 (χ↑↑

1111+χ
↑↑
2222)U

2 (χ↓↓
1111+χ

↓↓
2222)],

where χσσ
pqst (� = 0) = −T

∑
m Gσ

ps(iωm)Gσ
tq(iωm). In the

weak-coupling limit, all the effective interactions are
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enhanced by the third-order term in U , and this effect is
augmented in the narrow-band regime if χ itself increases
with decreasing Wβ . In the density charge sector, χ is related
to the orbital susceptibility χorb [63]. Since the orbital
moments in our effective two-orbital model can freeze in
the strong-correlation regime [62], we replace χorb

loc (� = 0)
with the fluctuation contribution to the DMFT orbital
correlation function, Δχorb

loc = ∫ β

0 dτχorb
loc (τ ) − βχorb

loc (β/2).
As shown in Fig. 4(f), Δχorb

loc in the normal phase (circles)
grows with decreasing Wβ/Wα , and reaches its maximum
around Wβ/Wα = 0.16 before the narrow band becomes
Mott insulating and the local orbital moments freeze. The
orbital-frozen metal state has a large entropy [63,64], which
is released if the system goes into a SC phase. In the SC phase
[empty squares in panel (f)], Δχorb

loc continues to increase
sharply with decreasing Wβ/Wα reaching a maximum closer
to the flat-band limit. The feedback of the enhanced orbital
fluctuations on the effective attraction contributes to the
boosting of Tc in the narrow- and flat-band regimes. The dip
in Δχ loc

orb near Wβ = 0 may explain the similar dip seen in Tc

[red curve in Fig. 2(a)].
So far we have employed the bonding/antibonding basis,

but we can readily translate the SC order parameters back
to the original site basis. Since c α

β
↑c α

β
↓ = 1

2 (ca↑ ± cb↑)(ca↓ ±
cb↓) = 1

2 (ca↑ca↓ + cb↑cb↓ ± ca↑cb↓ ± cb↑ca↓), with a, b la-
beling the layers, and �β > �α for Wβ/Wα < 1, one
generically finds that �aa = �bb = 1

2 (�α + �β ) and �ab =
�ba = 1

2 (�α − �β ) �= 0. The system with Wβ = 0 exhibits
both local pairing with amplitude 1

2 (�α + �β ) and inter-
layer spin-singlet pairing 〈ca↑cb↓ − ca↓cb↑〉 = 1

2 (�α − �β ).
At Wβ/Wα = 1, we have instead �aa = �bb = �α = �β with
�ab = �ba = 0, and thus only intrasite pairing, as expected
for decoupled layers.

Conclusions. We have demonstrated significant enhance-
ments of superconductivity associated with the interplay
between wide and narrow bands. In a half-filled and particle-
hole symmetric system with attractive interactions, the strong
correlations in the narrow or flat band favor doublons and
holons, whose injection into and interaction with the wide
band boosts the superfluid stiffness and Tc. By a kind of prox-
imity effect (pair-hopping term in the bonding/antibonding
basis), the superconductivity in the wide band supports the
superconductivity in the narrow band even in the flat-band
limit. The pairing is additionally boosted by local orbital fluc-
tuations which effectively enhance the attractive interactions.

Our results are not related to topological effects [65,66],
since the bandstructure of the bilayer system is nontopological
and the wide band features no gap. The findings are also qual-
itatively different from the previous results related to incipient
bands [26–32], since these works considered the effects of
full or empty narrow bands in repulsive models and found
that the half-filled situation does not favor superconductivity
[29]. Our bandstructure and the bonding/antibonding trans-
formation used to study the interaction effects is related to
previous analyses of the square lattice Hubbard model [24]
and diamond chain [27]. It will be interesting to extend the
results of this study to repulsive systems by investigating the
role of narrow bands as a reservoir or seed of local moments,
and to clarify the effects on superconductivity induced by
local moment fluctuations.
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