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We study the interplay of superconductivity and a wide spectrum of critical (multifractal) wave functions
(“spectrum-wide quantum criticality,” SWQC) in the one-dimensional Aubry-André and power-law random-
banded matrix models with attractive interactions, using self-consistent BCS theory. We find that SWQC survives
the incorporation of attractive interactions at the Anderson localization transition, whereas the pairing amplitude
is maximized near this transition in both models. Our results suggest that SWQC, recently discovered in two-
dimensional topological surface-state and nodal superconductor models, can robustly enhance superconductivity.
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Bulk low-temperature superconductors typically reside in
the so-called “dirty limit” � � 1/τel, where � is the spatially
averaged order parameter amplitude and 1/τel is the elastic
scattering rate. As long as the normal state is a good conductor
(εF τel � 1, where εF is the Fermi energy), nonmagnetic dis-
order has a negligible effect on Tc (Anderson’s theorem [1,2]).
Unconventional superconductors, such as the cuprates and
twisted-bilayer graphene [3,4] are effectively two dimensional
(2D), however, where arbitrarily weak disorder typically in-
duces Anderson localization of all electronic states [5].

The competition between disorder and superconductiv-
ity is responsible for the superconductor-insulator transi-
tion [6], which has been a subject of extensive study (see,
e.g., Refs. [7–10]). Self-consistent numerical solutions to
the Bogoliubov–de Gennes (BdG) equations revealed that
strong disorder, which localizes single-particle states, can in-
duce emergent granularity in �(r) [11–13]. This augments
phase fluctuations that ultimately destroy superconductiv-
ity [11,12,14–16].

A surprising recent development was the realization that
superconductivity can sometimes be enhanced by random
or structured inhomogeneity [14,17–34]. In particular, near
the bulk Anderson metal-insulator transition or generally
for weak disorder in 2D, the critical rarification (multifrac-
tality [35]) of single-particle wave functions induced by
quantum interference can enhance interaction matrix ele-
ments [22,26,27,36,37]. The multifractal wave functions have
larger spatial overlap and stronger state-to-state correlations
for states with similar energies (“Chalker scaling” [38–40]),
and, therefore, interaction effects are stronger compared to
that for extended or localized ones. It was argued that this can
boost both the superconducting order parameter amplitude �

and Tc [13,14,22,26,27,41–43]. Multifractal order parameter
modulations have recently been observed in experiments on
2D superconductors [44–48].

In this Letter, we consider a new twist on this theme. In
particular, we show that the superconducting amplitude can
be strongly enhanced for a system with a wide spectrum of

multifractal single-particle wave functions, a phenomenon
dubbed “spectrum-wide quantum criticality” (SWQC).
SWQC was very recently discovered to arise robustly in
2D surface-state theories with disorder [49–52]. These
theories describe surface states of model bulk topological
superconductors [37] as well as nodal quasiparticles in dirty
2D d-wave superconductors [51,53]. In these theories, SWQC
may be protected by a robust topological mechanism [52].

In this Letter we perform numerical self-consistent BdG
calculations on special one-dimensional (1D) systems also
known to exhibit SWQC when fine-tuned to the Anderson
metal-insulator transition (MIT). (Working in 1D permits us
to access much larger system sizes than would be possible in
2D). In particular, we consider the effect of attractive Hub-
bard interactions for spin-1/2 fermions in the quasiperiodic
Aubre-André (AA) and power-law random-banded matrix
models. Quasiperiodic systems have recently garnered a surge
of interest due to realizations with ultracold atoms [54–64],
applications in many-body localization physics [58–60,63,65–
67], Hofstadter superconductivity [68,69], and progress in
moiré materials [3,4,70–72] with large twist angles [73–80].
The AA model [81,82] is a canonical example of a 1D
quasiperiodic system. Although its energy spectrum is well
known to possess fractal structure (the Hofstadter butter-
fly [83,84]), a less-appreciated aspect is the fractality of the
corresponding wave functions, which exhibit SWQC at the
MIT tuned by the incommensurate potential strength [85,86].
SWQC also occurs in the ensemble of power-law random
banded matrices (PRBM) [35,40,87–94].

We find that SWQC survives at a (renormalized) single-
particle MIT in the AA and PRBM models with attractive
interactions. Our key result is that the superconducting am-
plitude � is enhanced by inhomogeneity relative to the clean
case in a wide region around the MIT. The maximum ampli-
tude closely tracks the MIT for weak-to-moderate interaction
strengths as shown in Figs. 1–3. We also compute the super-
fluid stiffness Ds for the interacting AA model. We find that Ds

is always larger than �, except deep in the Anderson insulator
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FIG. 1. The enhancement of superconductivity in the AA model with attractive Hubbard interactions, Eq. (1) with t = 1. (a) Contour plot
of � versus attractive interaction strength U and incommensurate potential strength V . The orange (L1 = 1597, L2 = 2584), green (L1 = 2584,
L2 = 4181), and red (L1 = 4181, L2 = 6765) curves represent the MIT obtained from scaling of second multifractal dimensions with different
system sizes. The strongest enhanced superconductivity with fixed interaction is indicated by the white curve. (b) τ2-V for different interaction
strengths. τ2 is obtained from the spectrum-averaged inverse participation ratio 〈Pq〉 ∼ L−τq with two system sizes L1 = 4181 and L2 = 6765.
The Anderson transition occurs near the sharp drop of τ2. (c) � and τ2 versus V with U = 0.5 [cut indicated by the dotted vertical line in (a)].
� peaks around the MIT, where τ2 drops sharply.

(Fig. 4). Previous studies employing smaller system sizes also
demonstrated multifractal enhancement of superconductivity
in the interacting AA model [34,42]. In Ref. [42], � and Ds

were computed, but the location of the MIT and concomitant
maximization of � were not determined. Our calculations
incorporate random Hartree shifts [11,12], an important ad-
ditional source of quantum interference (Altshuler-Aronov
corrections [5]). Our results show that when Anderson local-
ization is prevented in low dimensions (here via fine-tuned
potential strengths in special models but as may also occur
generically in topologically protected 2D systems [49–52]),
the rarefied nature of a wide swath of critical single-particle
wave functions can strongly boost superconductivity.

Models. The spin-1/2 Aubry-André model with attractive
Hubbard interaction is defined via

H = −t
∑

iσ

(c†
iσ ci+1σ + c†

i+1σ ciσ )

+
∑

i

(Vi − μ)ni − U
∑

i

ni↑ni↓, (1)

where ciσ annihilates a spin-σ ∈ {↑,↓} fermion at site i, t
is the nearest-neighbor hopping (set to be the energy unit),
Vi = V cos(2πβpi) is the incommensurate potential, μ is the
chemical potential, U is the strength of attractive on-site
interaction, and ni = ni↑ + ni↓. We choose βp ≡ Fp−1/Fp to

approximate the inverse golden ratio, where Fp is the pth
Fibonacci number, which is also the system size [86]. The
system goes through a spectrum-wide MIT at V = 2t without
the interaction term [81,82]. All single-particle wave func-
tions are Anderson localized for V > 2t , and all of them are
extended for V < 2t . All single-particle wave functions are
multifractal at the critical point V = 2t [85,86]. The multifrac-
tal property of the wave functions can be characterized by the
scaling behavior of the inverse participation ratio (IPR) [35],
Pq = ∑

i |ψi|2q ∝ L−τq with L being the system size.
The dimension τq ≡ Dq(q − 1), where in 1D Dq = 1

(Dq = 0) for extended (localized) states, and 0 < Dq < 1 for
critical multifractal wave functions [35]. Wave functions in
the extended (localized) phase near the critical point can also
show multifractal properties up to the scale of the correlation
(localization) length. The multifractality enhancement of su-
perconductivity can occur in a wide region close to the MIT,
driven by critical correlations if the coherence length is shorter
than the correlation or localization length [22,26].

The Hamiltonian of the spin-1/2 PRBM model with attrac-
tive Hubbard interactions is

H =
∑

i jσ

Hi jc
†
iσ c jσ − U

∑

i

ni↑ni↓ − μ
∑

i

ni, (2)

where Hi j = Gi j |i − j|−α with Ĝ is a random matrix in the
orthogonal class (class AI). Without interactions, the system
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FIG. 2. The enhancement of superconductivity in the PRBM model with attractive Hubbard interactions Eq. (2). (a) Contour plot of �

versus U and the decay power α, where 〈· · · 〉 stands for disorder averaging of 20 samples of size L = 2000 systems. The MIT occurs at
α = 1 without interactions, and we use the value of τ2 = −〈log(P2)/ log(L)〉 at U = 0 and α = 1 as the criteria for the MIT at for nonzero
U . The red and green curves represent the MIT obtained by fitting τ2 using the lowest-lying quasiparticle state and the average of 1% of
the low-lying states, respectively. The most enhanced superconductivity is indicated by the white curve. The error bars are obtained from the
standard deviation of � and τ2 due to disorder averaging, converted to uncertainty in α. The large error bars reflect the broad enhancement
region of superconductivity. (b) and (c) � and τ2 as functions of α for U = 0.5 and U = 1, respectively [cuts indicated by the dotted vertical
lines in (a)]. � peaks around the MIT, indicating multifractal enhancement of the order parameter. The wide region of wave-function criticality
(indicated by the rather slower decrease in τ2 compared to the case of the AA model) explains why the maximal enhancement curve [white in
(a)] does not follow the MIT curve as well as the case of the AA model.

exhibits SWQC at the MIT with α = 1. The system is
spectrum-wide extended (localized) when α < 1 (α > 1) [87].

Phase diagrams. In the mean-field approximation [11–13],
the local superconducting order parameter �i and fermion
density 〈ni〉 satisfy

�i = −U 〈ci↓ci↑〉, 〈ni〉 =
∑

σ

〈c†
iσ ciσ 〉. (3)

We solve the systems BdG self-consistently [12] with effec-
tive chemical potential μ̃i = μ + U 〈ni〉/2. The convergence
condition is set so that the average difference of �i and ni

are smaller than 10−6 (10−7 for small U ) [95]. We focus on
half-filling with μ = −U/2, but the physics discussed applies
to other filling factors since the whole spectrum of single-
particle states are multifractal near the MIT.

Figure 1 shows the enhancement of the average order
parameter � in the BCS-AA model [Eq. (1)]. The spectrum-
wide MIT persists with attractive interactions, and the MIT
can be characterized by the second multifractal dimension τ2,
averaged over the entire spectrum of quasiparticle states. This
shows a sharp drop from 1 to 0 as V increases, indicating
the MIT [Fig. 1(b)]. With increasing U , the critical incom-
mensurate potential strength Vc decreases, and the Anderson

insulator phase is enlarged (in the mean-field approximation),
Fig. 1(a). � is enhanced by the multifractal wave functions
near the transition, and the maximal � for fixed U follows
the MIT curve Vc(U ) for weak and moderate interactions.
When the incommensurate potential strength V is weak, the
order parameter is determined by BCS theory with � ∼
exp (−1/Uν) with ν as the density of states at the Fermi point.
As V increases, � increases significantly and peaks around the
MIT, e.g., �(Vc) is more than ten times larger than �(V = 0)
for U = 0.5. The order parameter amplitude decreases in the
Anderson insulator phase due to the combination of local-
ization and Altshuler-Aronov effects [5,6]. The enhancement
ratio �(Vmax)/�(V = 0) decreases as U increases, and the
strongest enhancement curve deviates from the MIT curve at
strong interaction.

Apart from inducing SWQC of the wave functions at Vc,
the potential in the BCS-AA model additionally generates the
interaction-dressed Hofstadter energy spectrum. Band flatten-
ing near half-filling plays a role in the enhancement of the
order parameter seen here, and the maximum � also occurs
close to the band flattening point, Figs. 3(a) and 3(b). The
density of states is much larger at the band flattening regions,
but the average order parameter deviates significantly from
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FIG. 3. Superconducting order parameter �, and energy bandwidth Ebw of the low-lying subband for the BCS-AA model (a) and (b), and
single-particle energy gap Eg for the BCS-AA (c) and (d) and BCS-PRBM (e) and (f) models with U = 0.5 (the first column) and U = 1 (the
second column). The order parameter � is indicated by the scales on the left axis and red color, whereas Ebw and Eg scales appear on the right
axis in blue color. (a) � and the bandwidth Ebw of the lowest-lying subband in the BCS-AA model with U = 0.5 (b) Same as (a) except that
U = 1. The lowest-lying subband becomes almost flat at the MIT, indicating the that the (almost) diverging density of states also plays a role
in the enhancement of � for the BCS-AA model. (c) � and Eg for the BCS-AA model with U = 0.5. (d) Same as (c) except that U = 1. The
order parameter � peaks around the MIT, whereas the energy gaps increase monotonically with V , resulting in the deviation of Eg from �. (e)
� and Eg in the BCS-PRBM model with U = 0.5. (f) The same as (e) except that U = 1. The error bars are from the uncertainty in the disorder
averaging. � peaks around the MIT and Eg increases with α (except for small α, where Eg has large uncertainty from disorder averaging).

the homogeneous BCS prediction � ∼ exp (−1/Uν) except
for small V (V < 0.5 for U = 0.5). Multifractal enhancement
without band flattening is observed in the BCS-PRBM model
(described below).

The single-particle wave functions become more and more
rarefied with increasing V , resulting in a stronger binding
energy between paired electrons occupying the same spatial
orbital, and, thus, increasing the spectral gap Eg. In the strong-
localization limit, the pairing energy is given by UP2(E ), with
P2(E ) as the IPR of the localized state. The energy gap of

the BCS-AA model is then given by half the pairing energy
Eg = P2(E0)U/2 [12,95], with E0 as the energy of the lowest
quasiparticle state. Unlike �, the gap Eg in our numerics
always increases with V , and is much larger than � for finite
V [Figs. 3(c) and 3(d)]. Thus, whereas the pairing energy
of more localized states is larger than extended ones, the
average amplitude � is suppressed in the insulator by the
strong fluctuations of �i in space and the loss of multifrac-
tal enhancement. The increasing of Eg into the localization
regime is consistent with previous studies indicating that the
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FIG. 4. Superfluid stiffness Ds/π [Eq. (4)], order parameter �, and distribution of the local pairing amplitude �i in the BCS-AA model
with different interaction strengths U = 0.5 (a), (c), and (e) and U = 1 (b), (d), and (f). (a) Superfluid stiffness Ds/π (left axis, red color)
and order parameter � (right axis, blue color) versus incommensurate potential strength V in the BCS-AA model with U = 0.5. (b) Same as
(a) except U = 1. (c) min(Ds/π,�) along with � varying with V for U = 0.5. (d) Same as (c) except for U = 1. In the delocalized phase
(V < Vc � 1.4 for U = 0.5 and V < Vc � 1.1 for U = 1), � < Ds/π , and the enhancement of superconductivity is shown by the increasing
� with V . The phase fluctuations dominate in the localized phase (V > Vc), and Ds/π < � determines the strength of the superconductivity.
The multifractal enhancement of superconductivity persists even incorporating the phase fluctuations. (e) Probability density of local pairing
amplitude �i for U = 0.5 and different incommensurate potentials. (f) The same as (e) except for U = 1. In the delocalized phase and near
the MIT, �i peaks around nonzero values, whereas it peaks around 0 in the localized phase. The system size is L = 2584 in this figure.

energy gap increases with the inverse of localization length
[12,97].

Figure 2 demonstrates the enhancement of � in the BCS-
PRBM model [Eq. (2)]. Figure 2(a) is a contour plot of �

as a function of U and the hopping exponent α, near the
interaction-dressed MIT. The order parameter � takes its
largest value close to the MIT curve obtained by fitting τ2 of
the lowest-energy quasiparticle state. The change in τ2 from

the extended phase (τ2 ∼ 1) to the localized phase (τ2 ∼ 0)
with α is much slower in the BCS-PRBM model, compared
to that in the BCS-AA model, resulting in a much broader
critical region. The SWQC wave functions survive in the
presence of attractive interactions and pairing, but the τ2 of the
quasiparticle states are affected differently for different states.
The lowest-lying quasiparticle states are the best indicator
for the MIT and � enhancement as these are most involved

L180503-5



XINGHAI ZHANG AND MATTHEW S. FOSTER PHYSICAL REVIEW B 106, L180503 (2022)

in pairing. The enhancement always occurs in the critical
region, indicated by the drop in τ2 in Figs. 2(b) and 2(c).
The spectral gap Eg in the BCS-PRBM model shows similar
behavior as that in the BCS-AA, increasing with α to the
localized phase [Figs. 3(e) and 3(f)]. In the localized phase,
Eg is also approximately proportional to P2(E0) [95]. Different
the from the BCS-AA model, there is no significant change in
the density of states across the MIT in the BCS-PRBM model,
and the critical wave functions are the only factor responsible
for enhancing �.

Superfluid stiffness. Strong phase fluctuations in low di-
mensions can demolish superconductivity even if the pairing
amplitude remains finite. In a spatially inhomogeneous sys-
tem, regions with small �i enhance phase fluctuations. The
phase rigidity of a superconductor can be described by the
superfluid stiffness [98,99]. In a gapped one-dimensional sys-
tem, the superfluid stiffness is determined by

Ds

π
= �R

xx(qx = 0, ω → 0) − 〈Kx〉. (4)

Here �R
xx is the retarded current-current correlation function,

and Kx is the kinetic-energy density. The above qx = 0 and
ω → 0 limits give the Drude weight D; it can be shown that
Ds = D at zero temperature for gapped systems [98,100]. We
employ Eq. (4) to evaluate Ds in the BCS-AA model with s-
wave pairing.

Figure 4 shows the superfluid stiffness Ds/π and order
parameter � in the BCS-AA model. The superfluid stiffness
Ds decreases monotonically with increasing incommensurate

potential, whereas � peaks around MIT, Figs. 4(a) and 4(b).
The minimum of Ds/π and � determines the strength of
the superconductivity. We plot min (Ds/π,�) in Figs. 4(c)
and 4(d). In the delocalized phase, � is much smaller than
Ds/π and becomes comparable with Ds/π near the MIT. Only
in the localized phase, Ds/π becomes smaller than �. The
distribution of the local pairing amplitude �i is illustrated in
Figs. 4(e) and 4(f). The probability density of �i peaks at
nonzero values in the delocalized phase and near the MIT;
by contrast, it peaks around 0 in the localized phase. This
indicates that the finite average � in the localized phase is
due to rare regions with large values of �i.

Conclusion. We have shown that the pairing amplitude for
superconductivity is enhanced by SWQC in the BCS-AA and
-PRBM models. The maximal enhancement tracks the MIT in
both models. The enhancement survives phase fluctuations at
zero temperature, supported by the superfluid stiffness data for
the BCS-AA model. Although true superconductivity does not
occur in 1D [101], SWQC also emerges in 2D systems [52].
Strong spatial fluctuations observed in �(r) in the high-Tc

cuprate superconductors [102] may realize SWQC for nodal
quasiparticles [51].

Generalized AA models have been proposed [103–109]
and studied in recent experiments [110–112]. The pairing am-
plitude enhancement could also be examined in these systems
when the Fermi level is tuned close to the mobility edge.
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