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S = 1 dimer system K2Ni(MoO4)2: A candidate for magnon Bose-Einstein condensation
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Dimerized quantum magnets provide a unique possibility to investigate the Bose-Einstein condensation of
magnetic excitations in crystalline systems at low temperature. Here, we model the low-temperature magnetic
properties of the recently synthesized spin S = 1 dimer system K2Ni(MoO4)2 and propose it as a candidate
material for triplon and quintuplon condensation. Based on a first-principles analysis of its electronic structure,
we derive an effective spin dimer model that we first solve within a mean-field approximation to refine its
parameters in comparison to experiment. Finally, the model is solved by employing a numerically exact quantum
Monte Carlo technique which leads to magnetic properties in good agreement with experimental magnetization
and thermodynamic results. We discuss the emergent spin model of K2Ni(MoO4)2 in view of the condensation
of magnetic excitations in a broad parameter regime. Finally, we comment on a geometrical peculiarity of the
proposed model and discuss how it could host a supersolid phase upon structural distortions.
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Introduction. Low-dimensional quantum magnets provide
a rich platform to study interesting magnetic phenomena
in condensed matter physics due to their inherent strong
quantum fluctuations. A variety of unusual ground states
can be realized that sensitively depend on various parame-
ters including dimensionality (D), magnitude of the spin (S),
type of magnetic coupling, or range of correlations, just to
name a few. Quantum materials thereby offer an ideal al-
ternative route to investigate exotic phases of matter. A few
prominent examples are superfluid and supersolid phases in
Bose-Einstein condensates (BECs) [1,2], which are usually
investigated under extreme conditions in ultracold atoms [3]
or solid helium-4 [4,5].

In this regard, dimerized quantum magnets have sparked
particular interest in recent years due to their inherent BEC
of magnetic excitations [6,7]. These magnets offer the oppor-
tunity to study an effective gas of interacting bosons, whose
particle number can be tuned by applying an external mag-
netic field: S = 1

2 spin dimers with antiferromagnetic (AFM)
exchange coupling have a singlet ground state with a finite
spin gap to its first excited state of spin S = 1. This state, how-
ever, becomes the ground state when applying a sufficiently
strong external magnetic field—the magnetic moments order
and an XY-antiferromagnetic phase is realized. By mapping
the S = 1/2 spins to hard-core bosons [8,9], it turns out that
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the bosons can condense at this phase transition if the spin
environment shows uniaxial symmetry [6,10]. For quantum
magnets which fulfill this symmetry condition to a good ap-
proximation, the transition from a quantum paramagnetic to
an XY-ordered state under an external magnetic field belongs
to the BEC universality class.

The ground state properties and their excitations are exten-
sively discussed for a plethora of S = 1

2 spin dimer materials,
which include among others TlCuCl3 [11], SrCu2(BO3)2 [12],
BaCu2Si2O6 [13], Sr3Cr2O8 [14], and Ba3Cr2O8 [15]. Many
of the cited spin gap systems exhibit BEC-like excitations
under applied magnetic fields or pressure [7,13,16–18]. On
the other hand, very few materials with S = 1 dimers exist
in the literature [19,20], a famous example being Ba3Mn2O8

[19,21–26]. Interestingly, these systems show both triplet and
quintuplet excitations: Whereas S = 1

2 spin dimer systems
exhibit only triplet excitations, a second condensation into
the |S = 2, Sz = 2〉 state is possible for S = 1 dimer systems
in strong magnetic fields. Since the BEC properties heavily
depend on dimensionality, lattice geometry, amount of disor-
der, and the nature of spin interactions [7], new S = 1 dimer
quantum magnets are sought after to investigate quintuplon
condensation.

In this regard the recently rediscovered S = 1 spin dimer
system K2Ni(MoO4)2 [27,28] is promising: It has well-
separated two-dimensional (2D) layers (ac planes) that consist
of weakly coupled dimers formed by the magnetic ions of
Ni2+ (see Fig. 1). The magnetic susceptibility and heat ca-
pacity results [27] indicate the presence of a spin gap in the
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FIG. 1. (a) Crystal structure of K2Ni(MoO4)2. The structure is
composed of well-separated 2D layers (ac planes) of Ni2+ (S = 1)
atoms. (b) The ac plane is comprised of edge-sharing NiO6 oc-
tahedra, which are connected via MoO4 tetrahedra. (c) shows the
arrangements of S = 1 dimers in the 2D ac plane; the labels indicate
different Ni-Ni spin exchange terms referred to in the text.

ground state and the magnetization shows a m = 1
2 plateau

characteristic of spin-1 dimer systems.
In this Letter, we derive an effective magnetic model for

K2Ni(MoO4)2 from first-principles calculations and refine it
by comparing the computed magnetic properties with the
experimental magnetization results. By estimating the inter-
dimer spin exchange and mapping onto bosonic excitations,
our theoretical modeling predicts superfluid phases of triplons
and quintuplons in K2Ni(MoO4)2. Moreover, we discuss the
possibility of a supersolid phase upon structural distortions
assuming a specific parametrization of the interdimer spin
exchange. Our study motivates a more precise determination
of the g tensor and spin exchange constants via electron spin
resonance (ESR) and neutron scattering experiments in the
future and suggests an investigation of K2Ni(MoO4)2 in the
context of both triplon and quintuplon condensation.

Model derivation from first principles. In order to interpret
the experimental results and to provide a microscopic under-
standing, we begin our theoretical analysis by carrying out
ab initio simulations that allow us to derive an effective spin
model.

First, we employ (non-spin-polarized) density functional
theory (DFT) calculations [29,30] in the local density ap-
proximation (LDA) for the experimentally determined crystal
structure. As can be seen from the band structure and den-
sities of states (DOS) in Figs. 2(a) and 2(b) we find that
the t2g states are completely filled whereas eg states are
half filled, as expected for Ni ions in a 2+ charge state
(a nominal d8 configuration). Our analysis shows that these
bands around the Fermi level have predominant dx2−y2 and
dyz characters in the global reference frame [see Figs. 2(c)
and 2(d)]. By constructing maximally localized Wannier func-
tions [31] for these bands [see the inset of Fig. 2(b)] we
obtain a low-energy tight-binding model. Effective hopping
strengths between eg orbitals [see Table I of the Supplemental
Material (SM) [32]] indicate a strong dimer formation with
much weaker interdimer coupling. In particular, the dimer-
ization [e.g., between Ni atoms 1 and 2 in Fig. 1(c)] takes
place between the x2 − y2 orbitals, in agreement with the

FIG. 2. (a) The band dispersion along various high-symmetry
directions within LDA. (b) Partial density of states of Ni d , Mo
d , and O p states for non-spin-polarized K2Ni(MoO4)2. Fat-band
representation of (c) Ni x2 − y2 and (d) yz orbital character. The
inset of (b) shows the Wannier-interpolated bands superimposed on
the LDA bands. All orbitals are represented in the global reference
frame.

pronounced bonding/antibonding splitting of the band struc-
ture in Fig. 2(c). This is consistent with fits of the magnetic
susceptibility data of Ref. [27] (see SM [33]). These findings
also suggest that the band structure of Fig. 2 should only
be taken as an indication of the relevant electronic orbitals,
since in reality K2Ni(MoO4)2 lies deep in the Mott phase. The
half-filled x2 − y2 and yz orbitals should thus be considered
as localized states rather than band forming. Their low-energy
physics is well described by an effective Heisenberg S = 1
pseudospin model describing the coaligned spins of the half-
filled Ni eg orbitals. Its Hamiltonian is given by

Ĥ =
∑
i �= j

Ji j �Si · �S j,

where the indices i and j span the positions of the intrinsi-
cally magnetic ions in K2Ni(MoO4)2, i.e., Ni, and negative
(positive) Ji j denote (anti)ferromagnetic spin exchange con-
stants. Since Ji j scales with the hopping terms ti j as Ji j ∼
(t2

i j,x2−y2 + t2
i j,yz ) [32], the Wannierization of the electronic

model suggests to limit the intersite spin exchange to nearest-
and next-nearest neighbors in the ac plane [see Fig. 1(c)]. The
Mott insulating limit of the electronic model also provides a
clear hierarchy of the exchange constants, namely J0 � J1 ≈
J2 [32]. Further constraints on the interdimer exchange con-
stants J1, J2, and J3 are obtained from a mean-field treatment
of an effective pseudospin model, which amounts to fitting
the linear regions of the measured magnetization curve under
applied external magnetic field as discussed below.
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FIG. 3. (a) Energy level scheme of an isolated S = 1 dimer: The
ground state changes from singlet to triplet and finally to quintuplet
as the applied magnetic field strength H is increased. (b) Schematic
magnetization curve of the S = 1 dimer lattice in mean-field theory.
Linear slope regions are centered around Hm1,2. (c) The configura-
tions of the transverse spin components in the magnetization slope
regions I1 and I2 which are considered here. α denotes the angle
between the y axis and the transverse pseudospin of the dimer;
the configuration α = 120◦ is close to the parametrization used here,
which is indicated with a circle in (d). (d) The value of α which
minimizes the total energy as a function of J2/J1 and J3/J1 for
J0 = 33 K.

To illustrate this approach, Fig. 3(a) sketches the char-
acteristic energy level diagram of an isolated Ni dimer of
K2NiMo2O8 as a function of applied magnetic field strength
H . In zero field, the ground state has total spin S = 0, but
at H1 = J0

gμB
the ground state changes to a S = 1 triplet and

for H > H2 = 2J0
gμB

the dimer is in its S = 2 quintuplet con-
figuration. When treating the (weak) interdimer interactions
in mean-field theory, the three configurations correspond to
plateaus in the magnetization curve as sketched in Fig. 3(b): A
magnetization plateau with half the saturated magnetization is
reached for dimers in the triplet state. For large magnetic field
strength, the dimer is finally in the quintuplet (|2, 2〉) state
and the magnetization reaches saturation. Due to the finite
interdimer exchange terms, the linear magnetization regions
around the transition points develop a finite slope. These re-
gions are characterized by the critical field strengths Hc1 to
Hc4 and the centers of each linear slope region, Hm1, Hm2,
can be compared to the critical field strengths extracted ex-
perimentally from dM/dH . In the following, we will briefly

revisit key aspects of the mean-field analysis, more technical
details can be found in the SM [32].

Mean-field calculations. Following the technique outlined
in the seminal paper by Uchida et al. [21], we start by iden-
tifying two regions, I1 = [Hc1, Hc2] and I2 = [Hc3, Hc4], in
which the ground state at zero temperature is only composed
of the dimer spin states |0, 0〉, |1, 1〉 and |1, 1〉, |2, 2〉 respec-
tively [see Fig. 3(a)]. In these regions we make the ansatz
|�〉 = ⊗i|ψi〉 for the wave function, where

|ψi〉 =
{

cos(θi)|0, 0〉 + sin(θi )|1, 1〉eiφi , H ∈ I1,

cos(θi)|1, 1〉 + sin(θi)|2, 2〉eiφi , H ∈ I2.
(1)

In order to investigate this region further, we rewrite the
Hamiltonian in terms of dimer-spin operators and map onto
the two lowest-lying states around the critical magnetic field
strengths H1 (H2), which allows for a reformulation of the
problem in terms of pseudospin-1/2 operators ŝi. In this new
basis, the magnetization of the pseudospins amounts to a
change from singlet to triplet (triplet to quintuplet) dimer
states around H1 (H2). Thereby, we obtain a dimer-pseudospin
model on a triangular lattice, where the pseudospin magneti-
zation corresponds to the triplet (quintuplet) density.

In this description, the phases φi have to be chosen such
that they minimize the total energy of the system, which
amounts to finding the optimal ordering of the transversal
(XY) spin component of the antiferromagnet on a triangular
lattice. To this end, we use the relative phases parametrized
by an angle α as sketched in Fig. 3(c), which leads to different
possible relative spin orientations depending on the choice of
J1, J2, and J3 [see Fig. 3(d)].

Finally, the onsets of the linear slope regions of the magne-
tization can be expressed as

gμBHc1 = J0 − 8

3
b, gμBHc3 = 2J0 − 2b + a,

gμBHc2 = J0 + 8

3
b + a, gμBHc4 = 2J0 + 2b + 2a, (2)

where a = J1 + 2J2 + 4J3 and b = J1 + (2J3 − J2) cos α −
J1 cos2 α. Based on the measured values of the middle of
the linear slope regions, Hm1 and Hm2, as well as the crit-
ical field strengths Hc1, Hc2 determined from a linear fit of
the magnetization curve, we estimate the spin exchange con-
stants. Since precise information on the gi j tensor is still
missing, we assumed a constant g value of g = 2–2.1. Fu-
ture ESR measurements of K2Ni(MoO4)2 would allow for a
more precise refinement of the model. In particular the spin
exchange J3 depends sensitively on the precise value of g,
which has consequences for the possibility to host a super-
solid phase as discussed below. In the following, we will use
the parametrization obtained for g = 2, i.e., J0 = 33 K, J1 =
0.7 K, J2 = 0.5 K, and J3 = −0.2 K. Treating the interdimer
spin exchange in mean-field theory, we find the calculated
magnetization curves in good qualitative agreement with the
measurements of Ref. [27] [see Fig. 4(a)].

To cross-check this parametrization, we finally perform
spin-polarized calculations within the local spin density ap-
proximation (LSDA) and LSDA+U (Hubbard U ) [34], which
assume a static ordering of the spins. In both cases a magnetic
state corresponding to an antiparallel spin ordering within and
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FIG. 4. (a) Magnetization as a function of applied magnetic field
H as measured at T = 1.5 K in Ref. [27] and as calculated from
QMC simulations according to our model on a 20 × 20 dimer lattice
as well as mean-field curve. (b) Triplon density n and triplon super-
fluid stiffness ρSF of the corresponding hard-core boson model as a
function of the chemical potential μ. Inset: Finite-size extrapolated
condensation temperature Tc. The lines are a guide to the eye.

between nearest-neighbor dimers is the lowest-energy state,
consistent with the analysis in Ref. [27]. Effective exchange
values Ji j extracted in a linear-response manner using the
magnetic force theorem [35,36] confirm the parametrization
qualitatively [32].

Monte Carlo results. The effective spin model with spin
exchange terms J0–J3 on a triangular dimer lattice can be
solved in a numerically exact way in two dimensions using
quantum Monte Carlo (QMC) techniques. To this end, we
use the worm QMC algorithm [37,38] as implemented in the
ALPS package [39]. For the parameter regime used here [J1, J2

antiferromagnetic, J3 ferromagnetic—see also Fig. 3(d)] there
is no sign problem for the spin lattice, which is why the cal-
culations are rather modest and can be converged with respect
to the lattice size: The results are obtained for L × L dimer
lattices with up to L = 20 and typically Monte Carlo sampling
of ∼106 sweeps with 10% used for thermalization turn out
to be sufficient. The calculations for J3 antiferromagnetic (see
SM [32]), which introduces frustration via off-diagonal terms,
need higher sampling.

Figure 4(a) shows the evolution of the calculated field-
dependent magnetization curve for different temperatures.
The mean-field result is recovered at low temperature and
the curve at T = 1.5 K is in good agreement with the exper-
imental data of Ref. [27]. To illustrate the BEC of triplons,
we plot in Fig. 4(b) the superfluid stiffness ρSF of the corre-
sponding bosonic model around Hc1 < H < Hc2. This model
is obtained by mapping the triplon excitations onto hard-core
bosons, which leads to a spatially anisotropic t-V model on a

triangular lattice (see SM [32]). The triplon density smoothly
increases from zero to one triplon per site when tuning the
chemical potential across the parameter regime correspond-
ing to the magnetic field strength H ∈ I1. The superfluid
stiffness corresponds to the staggered in-plane magnetization
mXY of the spin model and indicates condensation of the
triplon excitations below the critical temperature Tc. Since the
superfluid density shows—in contrast to the triplon density—
considerable finite-size effects, a proper scaling according to
the Kosterlitz-Thouless recursion relations is applied [32,40].
The inset of Fig. 4(b) shows the condensation temperature Tc

in the finite-size extrapolated limit, indicating the condensa-
tion of triplons around Hm1 for T � 0.2 K.

Discussion and outlook. We note first the qualitative agree-
ment between the calculated magnetization curve and the
measurements in Ref. [27]: The characteristic magnetization
plateau at m = 1

2 between Hc2 and Hc3 is connected to the zero
and saturation magnetization regions at small and high mag-
netic fields by linear slope regions. By adjusting the model
parameters according to our mean-field analysis, we are able
to reproduce the characteristic features of the curve such as
the positions of the transitions and the size of the plateau even
quantitatively.

Differences consist in an early onset of the linear slope
region between 13 and 22 T, as well as in a very broad
transition from the plateau to saturation magnetization. Al-
though deviations in the high magnetic field might be related
to the measurement in high fields, the finite magnetization
in smaller magnetic fields μ0H ∼ 20 T is a robust feature
unrelated to uncertainties related to the experimental tech-
nique used. Our QMC simulations at finite temperature do
also suggest that these deviations are not finite-temperature
effects, since the linear part of the slope dM/dH close to
Hc is correctly reproduced at T = 1.5 K. Instead, we spec-
ulate that these small contributions to the magnetization curve
could be linked to contaminations with the related compound
K2Ni2(MoO4)3 [41], which is a spin S = 1 tetramer system
that undergoes a Bose-Einstein condensation at smaller field
strength.

The parametrization of our spin model can also be
compared to estimates obtained from fitting the measured
susceptibility data. Since the interdimer exchange constants
are much smaller than the intradimer exchange, one can de-
scribe the spin susceptibility to a good approximation with a
statistical ensemble of mean-field decoupled spin-1 dimers.
This allows us to extract the intradimer exchange constant
J0 as well as a mean-field correction due to the interdimer
exchange (see SM [32]). Fitting the experimental data after
subtracting impurity contributions yields an exchange con-
stant of J0 = 38.8 K, which is a bit larger than our estimation
of J0 = 33 K. This is not surprising since the determination
of J0 from the susceptibility was shown to deviate from the
one via inelastic neutron scattering in similar S = 1

2 dimer
systems by roughly 13% [23,24]. In contrast to the analysis
carried out in Ref. [27], we find the mean-field correction λ to
be finite, λ = J1+2J2−4J3

Ng2μ2
B

≈ 3, which is consistent with a small,
but finite, interdimer spin exchange. However, one should note
that the fit is rather insensitive to this quantity, which is why
this technique does not allow for a precise determination of the
effective interdimer exchange [24]. Finally, our estimate of J0
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is also in agreement with the spin gap obtained from fitting the
magnetic contribution to the specific heat [27] (	 ∼ 38 K).

The discussed Heisenberg model is the simplest model
that qualitatively captures the essential features of the
magnetization curve. A more realistic modeling should also
include further terms such as single-ion anisotropy, the
Dzyaloshinskii-Moriya interaction, and biquadratic terms.
However, such a modelization requires precise knowledge of
the different interaction parameters that enter the model and is
beyond the scope of this Letter. It could become feasible once
ESR and neutron scattering measurements on single crystals
allow for determining the interdimer interactions with high
precision. It should also be noted that adding a single-ion
anisotropy term might change the size of the plateau region,
but it would not qualitatively change the shape of the magneti-
zation curve. In particular, calculations with reasonably sized
single-ion anisotropies did not result in any additional linear
slope regions in the magnetization curve that could explain the
early onset of a nonzero magnetization found in experiment.

Finally, we note that the spin-1 Heisenberg model which
captures the most prominent features of the system’s magnetic
properties includes a rather weak interdimer exchange term
J3, which sensitively depends on the precise value of the
Landé g factor. Depending on g ∈ [2, 2.1] either ferro- or an-
tiferromagnetic J3 leads to best agreement with the measured
magnetization curves. In the latter case, the system would be a
dimerized spin structure with frustrated interdimer couplings,
which was identified in Ref. [2] as a crucial criterion for
hosting an extended supersolid phase.

Here, however, due to the specific in-plane geometry of
the spin dimers, we did not find supersolid behavior in the
effective triplon and quintuplon models [32]. The reason lies

in the lack of interdimer spin frustration along the axis of the
dimers. This is a conceptual difference to the S = 1 dimer
system Ba3Mn2O8, where the dimers are oriented perpen-
dicular to the plane and which in principle allows for such
phases. K2Ni(MoO4)2 thereby not only offers the possibil-
ity to investigate Bose-Einstein condensation of triplons and
quintuplons as a function of magnetic field, which has so far
only been possible in few quantum magnets, but also renders
K2Ni(MoO4)2 a candidate to tune BEC without supersolid
instability.

However, distortions of the crystal structure that lead to ei-
ther in-plane rotations or out-of-plane buckling of the dimers
would naturally induce additional frustrating interdimer spin
terms that could then allow for a supersolid phase. The
absence of anomalies in the specific heat and magnetic sus-
ceptibilities suggests a critical temperature for condensation
below T = 1.5 K, which is confirmed by the derived spin
exchange strengths of our modelization. Overall, our results
motivate the investigation of K2Ni(MoO4)2 single crystals at
low temperature in the future in the context of the realization
of emergent states in quantum magnets with exotic magnetic
excitations.
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