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Bell-state generation for spin qubits via dissipative coupling
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We theoretically investigate the dynamics of two spin qubits interacting with a magnetic medium. A systematic
formal framework for this qubit-magnet hybrid system is developed in terms of the steady-state properties of
the magnetic medium. Focusing on the induced dissipative coupling between the spin qubits, we show how a
sizable long-lived entanglement can be established via the magnetic environment, in the absence of any coherent
coupling. Moreover, we demonstrate that maximally entangled two-qubit states (Bell states) can be achieved in
this scheme when complemented by proper postselection. In this situation, the time evolution of the entanglement
is governed by a non-Hermitian Hamiltonian, where dynamical phases are separated by an exceptional point.
The resultant Bell state is robust against weak random perturbations and does not require the preparation of a
particular initial state. Our study may find applications in quantum information science, quantum spintronics,
and for sensing of nonlocal quantum correlations.
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Introduction. Entanglement between individually address-
able qubits is the key to many quantum information processes
[1,2]. The realization of qubits has been achieved in several
systems, such as trapped atoms [3–6], quantum dots [7–9],
superconducting circuits [10], and nitrogen-vacancy (NV)
centers [11]. For example, the NV qubit has a long coherence
time and a good performance in the initialization and readout
of spin states [12–14]. However, because the direct dipolar
interactions between NVs extend only up to tens of nanome-
ters, the generation of entanglement between distant qubits
has been one of the main adversities in building a scalable
platform for practical applications. A potential solution to this
problem is to exploit hybrid quantum devices [15], where
qubits are interfaced with a solid-state system [16–21]. The
latter, being long-range correlated, can act as a medium to
induce an effective coherent coupling between the qubits,
based on which certain two-qubit gates can be implemented
[22,23]. Meanwhile, the presence of a medium also enhances
dissipation effects. To achieve a finite entanglement between
qubits, the timescale set by the coherent coupling needs to be
shorter than that of the local qubit relaxation. The competition
between the two has thus been the focus of recent investiga-
tions [22–30].

Dissipation, however, is not always detrimental to quan-
tum effects. Entanglement generation in an open quantum
system by environment engineering was first discussed in the
context of quantum optics [31,32]. It was shown formally
that two qubits can be entangled by undergoing Markovian
dissipative dynamics [33]. Various proposals have been made
to realize this, mainly in quantum optical and electronic sys-
tems [34–45]. In addition, dissipation is also investigated as
a resource for quantum error correction [46–51] and other
quantum information tasks [52–55]. Non-Hermitian Hamilto-
nians, frequently invoked to handle dissipative effects in the
Hamiltonian form, can exhibit exceptional points [56] that

have been shown to be sweet spots to enhance entanglement
[57,58].

In this work, we discuss the dissipative coupling and en-
tanglement generation induced by a generic noisy magnetic
medium, in a hybrid quantum system sketched in Fig. 1.
In particular, we demonstrate that, when complemented by
proper postselections, a Bell state can be generated through
an exceptional point in the time evolution governed by a
non-Hermitian Hamiltonian. The qubits can be NVs or other
isolated quantum defects and the medium is a generic solid-
state system emitting magnetic field noise, which can arise
from fluctuations of spin or pseudospin degrees of freedom
[59]. Since many magnetic materials with different correla-
tion properties are generally available, artificial design of the
environment is not required as a first step, while spintronic
engineering and tunability are promising for future studies.

To treat the induced coherent and dissipative couplings in
a unified manner, we derive the full master equation [60,61]
that determines the time evolution of the qubit entanglement.
Specifically, two distinct types of dissipation are identified,
bearing analogy to the local damping and the spin-pumping-
mediated viscosity in the classical spin dynamics [62]: One is
the local relaxation, which originates in energy and informa-
tion exchanges between a single qubit and the medium. The
other is the dissipative coupling between the qubits induced by
the correlated medium they both couple to. While the former
is detrimental to quantum entanglement, we show the latter
can help to establish a steady entanglement between qubits,
even in a pessimistic scenario where the coherent coupling
is absent. The long-time behavior of the qubits reflects a
phase transition, as a function of system parameters. When
the dissipative coupling is comparable to the local relaxation,
the Lindbladian evolution induced by the medium can result
in sizable robust entanglement between the qubits. This can
be achieved for qubit separation on a length scale dictated
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FIG. 1. A system composed of two spin qubits is coupled with
a magnetic environment, which induces local relaxations a, ã, me-
diates dissipative couplings A, Ã, as well as coherent couplings
between two qubits. The two qubits may achieve a stable entangled
state with large enough A and Ã, and even a Bell state with the help
of measurement and postselection.

by the relevant excitations responsible for dissipation (such
as magnons for a magnetically ordered medium).

Model. Let us consider an illustrative model consisting of
two spin qubits weakly coupled to a magnet, with the follow-
ing Hamiltonian:

H = HS + HE + HSE. (1)

Here, HS = −(�1σ
z
1 + �2σ

z
2 )/2 is the Hamiltonian for the

system with two qubits subjected to magnetic fields �1 and
�2, respectively, along the z direction, HE is an unspeci-
fied Hamiltonian of the medium as an environment for the
system, and HSE = λ(�σ1 · �S1 + �σ2 · �S2) describes the system-
environment interaction with coupling strength λ, where �σi

stands for the Pauli matrices of the ith qubit, and �Si for lo-
cal spin density operators it couples to within the medium.
Without loss of generality, we assume �1 � �2 � 0. We will
consider an axially symmetric environment HE in spin space,
while a generalization would be straightforward. It would also
be straightforward to generalize the treatment to the dipolar
coupling between the qubit and the medium [25,26].

The following Lindblad master equation of the density
matrix of the two-qubit system can be derived microscopically
based on the Born and Markov approximations:

d

dt
ρ = −i[HS + Heff, ρ] − L[ρ]. (2)

Leaving the derivation to the Supplemental Material [63], we
start with a phenomenological understanding of it on sym-
metry grounds. Here, Heff is the medium-induced effective
coherent coupling between qubits, participating in the unitary
system evolution, while L[ρ] is the dissipative Lindbladian
expanded in the usual form:

L[ρ] =
∑
nm

hnm(O†
mOnρ + ρO†

mOn − 2OnρO†
m), (3)

where the coefficient matrix h is Hermitian and positive-
semidefinite [60,61], and O = (σ−

1 , σ−
2 , σ+

1 , σ+
2 , σ z

1 , σ z
2 )

comprises qubit operators.

The most general form of Heff, allowed by the axial sym-
metry, is Heff = Jzσ

z
1σ z

2 + J⊥(σ x
1 σ x

2 + σ
y
1 σ

y
2 ) + Dẑ · �σ1 × �σ2,

a summation of an XXZ model and a Dzyaloshinskii-Moriya
(DM) interaction term [63]. The DM interaction must vanish
if, for example, the structure is invariant under π z-rotation
(see Fig. 1 for the coordinate frame). These coherent cou-
plings induced by the magnetic medium can build up a finite
entanglement within the timescale inversely proportional to
the coupling strength [63], if it is shorter than the timescale set
by dissipation. In the limiting case of a full isotropicity in spin
space and �i = 0, Heff is further reduced to a Heisenberg form
Heff = J �σ1 · �σ2 resembling the RKKY coupling [64]. These
effective coupling parameters are all real constants determined
by the Green’s functions of the medium [63], as is consistent
with previous results from the Schrieffer-Wolff transformation
[22,23,25–30]. Direct dipolar interaction between qubits is
typically negligible, except for very small spacings.

In the dissipative Lindblad part, h is block diagonal due to
the axial symmetry. In general terms, we have

h =
(

ã Ã
Ã∗ ã

)
⊕

(
a A∗
A a

)
⊕

(
d D

D∗ d

)
, (4)

where ã, a, d and Ã, A,D are real and complex phenomeno-
logical parameters, respectively. These parameters represent
three types of dissipative effects: a and ã are associated with
local decay and the reverse process. They govern local relax-
ation of individual qubits, giving rise to the relaxation time T1

and contribute to the decoherence time T2 of a single qubit
[63]. In contrast, A and Ã are related to cooperative decay
and the reverse process involving both qubits, and are referred
to as dissipative couplings, which depend on the distance be-
tween the two qubits. They are the focus of this work. d and D

are pure-dephasing parameters, originating from those terms
in HSE that commute with HS, namely λ

∑
i=1,2 σ z

i Sz
i . They

only cause information but not energy exchange between the
system and the medium, and in practice may be mitigated
by dynamic decoupling [65–68]. We neglect pure-dephasing
effects in the following discussion, though they may also lead
to entanglement between multiple qubits as shown recently
[69]. The Lindbladian (3) can then be brought into a diagonal
form with four quantum-jump operators [70,71]

J1 =
√

ã + |Ã|
2

(σ−
1 + σ−

2 ), J2 =
√

ã − |Ã|
2

(σ−
1 − σ−

2 ),

J3 =
√

a + |A|
2

(σ+
1 + σ+

2 ), J4 =
√

a − |A|
2

(σ+
1 − σ+

2 ),

(5)

yielding

L[ρ] =
4∑

i=1

DJi [ρ], (6)

where the dissipator is defined as DJ [ρ] ≡ J†Jρ + ρJ†J −
2JρJ†.

Microscopically, all parameters are given by the Green’s
functions of the medium in equilibrium [63], such that the
fluctuation-dissipation theorem dictates that they are not in-
dependent: ã = e−β�a and Ã = e−β�A, where β = 1/kBT
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and � ≡ (�1 + �2)/2. The zero temperature therefore corre-
sponds to ã = Ã = 0, where only the decay processes survive.
Also, the thermodynamic stability of the magnetic medium
imposes a � |A| and ã � |Ã| [63], which ensures the matrix h
is positive-semidefinite.

Dissipative coupling vs local relaxation. Let us now explore
the entanglement evolution of two qubits focusing on the dis-
sipative effects, by setting ourselves in a pessimistic situation
where the induced coherent dynamics is absent:

d

dt
ρ = −i[HS, ρ] − L[ρ]. (7)

Here, we treat the scenario of zero temperature ã = Ã = 0
analytically to demonstrate the effects of local relaxation and
dissipative couplings. Numerical results for finite temperature
are presented in the Supplemental Material [63], which do not
qualitatively change our conclusion below.

The qubits are initialized into a trivial product state, taking
the example of |↑↓〉 for the sake of concreteness. We show
the master equation (7) can be reduced to an equation for x ≡
Re〈↑↓|ρ|↓↑〉 [63]:

ẍ + 4aẋ + 4(δ2 + a2 − |A|2)x = 0, (8)

where δ ≡ (�1 − �2)/2 is the local field asymmetry. This
equation resembles a damped oscillator with complex char-
acteristic frequencies

ω± = ±2ω0 − i2a, (9)

where ω0 ≡
√

δ2 − |A|2. The real part gives the coherent beat-
ing of the density matrix elements, while the imaginary part
reflects decoherence. The contribution from local relaxation
−i2a leads to a decaying envelope factor e−2at in the entan-
glement between two qubits (as detailed below), indicating its
detrimental effect on quantum coherence as expected.

We identify three distinct parameter regimes for the
quantum dynamics. In the underdamped regime, δ > |A|,
ω0 is real valued. To quantify the time evolution of
the entanglement between the two qubits, we calculate
the concurrence [63,72] as a function of time: C(t ) =
2e−2at |A sin ω0t |

√
δ2 − |A cos ω0t |2/ω2

0. See Fig. 2. The en-
tanglement oscillates with frequency 2ω0 as the system decays
rapidly to the ground state |↑↑〉 on the timescale τ = 1/2a.
At the critical point δ = |A|, ω0 = 0, there is no oscillation.
The concurrence evolves as C(t ) ∝ te−2at , where the final
steady state is also |↑↑〉. As shown in Fig. 2, we have a larger
transient entanglement and the decay process is slowed down
moderately compared with the underdamped regime.

In the overdamped regime, δ < |A|, ω0 becomes
purely imaginary and ω± = −2i(a ± κ0), with κ0 =√

|A|2 − δ2. The time-dependent concurrence is C(t ) =
2e−2at |A| sinh κ0t

√
|A cosh κ0t |2 − δ2/κ2

0 . In addition to
a larger transient entanglement, the decay process has
been slowed down dramatically. On a long timescale
t � 1/κ0, C(t ) ∝ e−2(a−κ0 )t . The entanglement can last
for τ = 1/2(a − κ0), which becomes τ = 1/2(a − |A|) when
the two local fields are the same, δ = 0. See Fig. 2. It is clear
from this expression of the lifetime τ that the dissipative
coupling A and the local relaxation a, though both originating
from the qubits-magnet coupling, have opposite effects on

FIG. 2. Concurrence of two qubits as a function of time, with
initial state |↑↓〉, where we set both local dissipation a and dis-
sipative coupling |A| to be 1. The black curve corresponds to the
underdamped quantum regime. The orange curve is at the critical
point δ = 1, where entanglement decays as C(t ) ∝ te−2at . The cyan,
δ = 0.3, and the red, δ = 0, curves are in overdamped quantum
regime, where the lifetime of entanglement is extended dramatically.

the quantum entanglement in the nonunitary evolution. The
local dissipation tends to destroy any quantum coherence
whereas the dissipative coupling can be exploited to extend
the lifetime of entanglement and even realize steady entangled
states. With equal local fields δ = 0, a finite entanglement
can persist for a long time before eventually decaying to zero
in the large dissipative coupling regime |A| � a. Based on
their (greater) Green’s function expressions [63,73] 2a =
iλ2G>

S+
1 S−

1
(�) = iλ2G>

S+
2 S−

2
(�), 2A = iλ2G>

S+
1 S−

2
(�), |A| � a

physically corresponds to the scenario with two qubits placed
within a length scale dictated by the relevant excitations
responsible for dissipation. For example, for qubits coupled
to a magnetically ordered medium via processes of magnon
absorption and emission, this length scale is set by the
wavelength of the magnon at frequency �. Furthermore, the
concurrence lifetime extends to infinity τ → ∞ when |A|
reaches its maximal allowed value |A| = a, and thus a steady
entanglement is achieved, C(∞) = 1/2 for the final state

ρ∞ = (|↑↑〉〈↑↑| + |00〉〈00|)/2. (10)

Noting that the singlet |00〉 cannot be evolved to a different
state by the operative jump operators or the system Hamilto-
nian, it is a dark state—the system would stay in this pure state
indefinitely. For this reason, a steady-state entanglement can
also be reached at finite temperatures when a = |A|, ã = |Ã|
[63], though with a smaller concurrence. We also remark
that finite steady-state entanglement can be achieved in this
optimal situation irrespective of the initial two-qubit state as
long as it is not a symmetric state [63].

We stress that the above critical point and the associated
transition from underdamped to overdamped regime result
from the dissipative couplings, which are the main focus of
this Letter. We next show how to generate Bell states by
exploiting this dissipative coupling, when combined with
proper measurements and postselections.

Non-Hermitian Hamiltonian scheme. Let us turn to the
evolution of qubits under measurements (see Fig. 1), which
is often invoked to perform feedback and conditional control
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as a valuable resource in controlling open quantum systems
[74–78]. To this end, we rewrite the master equation (7) in the
following form:

d

dt
ρ = −i[H eff, ρ ] + 2

4∑
i=1

JiρJ†
i , (11)

where

H eff = HS − i
∑

i

J†
i Ji (12)

is a non-Hermitian Hamiltonian. Correspondingly, the com-
mutator should now be understood as [H eff, ρ] ≡ H effρ −
ρH†

eff = [HS, ρ] − i{∑i J†
i Ji, ρ}. By subjecting the two qubits

to continuous measurements of the absolute value of their total
spin z component σ z = σ z

1 + σ z
2 and subsequently condition-

ing the postselection on zero outcomes, we can effectively
forbid all quantum jump processes (5), as [Ji, σ

z] �= 0. This
monitored dynamics of the two-qubit system formally elimi-
nates the last term in Eq. (11) and reduces quantum dynamics
to a non-Hermitian Hamiltonian form in the σ z = 0 subspace
[56], dρ/dt = −i[H eff, ρ], whose integration is appropriately
normalized to give [79]

ρ(t ) = e−iH efftρ0eiH†
efft

tr(e−iH efftρ0eiH†
efft )

, (13)

in terms of the initial qubits state ρ0. Since the ef-
fective Hamiltonian (12) conserves the quantum number
σ z, [H eff, σ

z] = 0, the subspace H spanned by {|↑↓〉, |↓↑〉}
is closed under time evolution. The eigenkets of H eff in H are

|s〉 = eiϕ sin θ |↑↓〉 + cos θ |↓↑〉,
|a〉 = − cos θ |↑↓〉 + eiϕ sin θ |↓↑〉, (14)

with associated eigenenergies Es(a) = ∓ω − i(a + ã). Here,
θ and ϕ are determined by the sum of dissipative couplings
� = |A| + |Ã| and the local field asymmetry δ: For δ � �,
ω = √

δ2 − �2, cos θ ≡ �/
√

|ω + δ|2 + �2, and eiϕ sin θ ≡
−i(ω + δ)/

√
|ω + δ|2 + �2; for δ < �, the principal value is

taken for ω = iκ = i
√

�2 − δ2.
Bell-state generation. We now show that steady Bell states

can be generated based on the monitored dynamics gov-
erned by H eff (12), focusing on the two-qubit dynamics in
the subspace H, which applies to zero and finite tempera-
tures. Similarly to the unmonitored scenario, we can identify
three distinct parameter regimes: parity-time (PT ) symmetry
broken regime, δ < �, the exceptional point, δ = �, and PT -
exact regime, δ > � [80–82].

In the PT -broken regime, eigenvalues Ea and Es are purely
imaginary with ImEa > ImEs. Thus the probability in the
eigenmode |a〉 (|s〉) grows (decays) in time, and all probability
eventually flows into the eigenmode |a〉. For an arbitrary ini-
tial state ρ0 = ∑

i, j={a,s} pi j |i〉〈 j|, one can analytically solve

FIG. 3. Concurrence of qubits as a function of time with initial
state |↑↓〉 under continuous measurements and postselections. We
set � = 2. The black curve δ = 5 is in the PT -exact regime, where
entanglement oscillates and its maximal value is less than 1. At the
exceptional point (cyan curve), there is no oscillation and its maximal
value is 1. In PT -broken regime (red curve), entanglement is C(t ) =
tanh 2�t . The inset shows the maximal concurrence as a function
of δ/�.

for ρ(t ) according to Eq. (13):

ρ(t )= paae2κt |a〉〈a| + pas|a〉〈s| + psa|s〉〈a| + psse−2κt |s〉〈s|
paae2κt + pas〈s|a〉 + psa〈a|s〉 + psse−2κt

,

(15)

which ultimately evolves into the maximally entangled state
|a〉 = (|↑↓〉 + eiϕ̃ |↓↑〉)/

√
2 with eiϕ̃ = (−κ + iδ)/�, when

t � 1/2κ . Thus, the two qubits eventually reach the maximal
concurrence in the PT -broken regime, irrespective of the
initial state as long as paa �= 0. As an illustrative example,
we evaluate the time-dependent concurrence, with initial state
|↑↓〉 and equal local fields δ = 0, C(t ) = tanh 2�t, as shown
in Fig. 3. In practice, the entanglement-growth rate 2κ needs
to be larger than the postselection rate (∼ the rate of leaking
out of the subspace H of our interest) 2(a + ã − κ ) for the
system to settle into the Bell state. The optimal scenario is
when δ = 0, |A| = a, and |Ã| = ã, the same as that in the
overdamped quantum regime without postselection.

At the exceptional point, H eff is nondiagonalizable,
since the eigenstates |a〉 and |s〉 coalesce into (|↑↓〉 +
i|↓↑〉)/

√
2. The two qubits will gradually evolve into this

sole state where they are maximally entangled. For ex-
ample, starting with a trivial state |↑↓〉, the concurrence
C(t ) = 2�t

√
1 + �2t2/(1 + 2�2t2), algebraically approach-

ing 1. See Fig. 3.
In the PT -exact regime, the eigenenergies Es and Ea have

nonzero real parts. The amplitudes of eigenmodes |s〉 and
|a〉 keep oscillating without reaching a steady state, hence no
steady entanglement. The frequency of entanglement oscilla-
tion is 2ω, as shown in Fig. 3. The maximal entanglement
one can achieve is Cmax(η) =

√
2 − 1/η2/η, with η = δ/�,

which is less than 1. Notably, the second derivative of Cmax is
discontinuous across the exceptional point (η = 1), reflecting
a phase transition (see Fig. 3).

It is clear that we can achieve a Bell state by decreasing
the local field asymmetry δ for a fixed dissipative coupling

L180406-4



BELL-STATE GENERATION FOR SPIN QUBITS VIA … PHYSICAL REVIEW B 106, L180406 (2022)

� to reach the PT -broken regime. We remark that � is
also potentially tunable by engineering the magnetic medium
spintronically. This discussion, again, highlights the role of
the nonlocal dissipative couplings in realizing an exceptional
point in the dynamics, further triggering an entanglement
transition in the long-time steady state. In the large nonlocal
dissipative coupling regime, we achieve steady Bell states.

Discussion. We remark that the non-Hermitian Hamilto-
nian scheme is precise when the rate of measurements is
infinite. As this rate approaches zero, we recover the full Lind-
blad dynamics. It could be intriguing to explore, within our
framework, possible phase transitions or crossovers induced
by finite-rate measurements.

In our case, the possible forms of induced coherent in-
teractions and quantum jump operators are determined by
the axial symmetry of the media. This may render a general
guidance in studying the dynamics of hybrid quantum systems
with other classes of symmetries, especially their long-time
entanglement behavior.

The theoretical framework developed here provides a good
starting point for further studies on the relationship between
the entanglement dynamics and thermodynamic properties
of the medium. One may be able to manipulate entangle-
ment by engineering the medium [31,41,83–85], enabled by
recent progress in the field of spintronics [86–88]. It is es-
pecially interesting to look into media with anisotropies,
which have been shown to be good entanglement reservoirs
[89–91]. By extending our equilibrium Green’s function treat-
ment to allow for a quasiequilibrium spin chemical potential,

we may study the scenario with a spintronically pumped
medium, where local relaxations and dissipative couplings are
tunable.

For practical consideration in a NV-magnet hybrid setup,
one challenge is to bring down the detuning δ of the magnetic
fields at the NV sites to be much smaller than the dissipa-
tive parameters, which are typically on the scale of MHz or
less. It would also be necessary to put the induced effective
Hamiltonian back into the picture, as the interplay between
the coherent and dissipative evolution can be nontrivial in
steady-state entanglement generation. Though the Markovian
nature of the intrinsic dynamics can be justified when the NV
frequency � is sufficiently above the magnon band gap �,
such that the decay time of relevant correlations within the
medium, ∼(� − �)−1, is smaller than the timescale associ-
ated with the medium-induced qubit dynamics, disorder and
defects may lead to low-energy excitations that contribute to
non-Markovian evolution (which can also be interesting to
look into). As a possible low-temperature implementation of
the proposed postselection scheme, we may postselect on the
absence of any emitted magnons.

Lastly, NV centers have been demonstrated as good quan-
tum probes of local fields and noise [92]. Here, we propose to
extend this to nonlocal characteristics. For example, one may
use it to detect quantum phase transitions and steady exotic
phases that are characterized by nonlocal quantum correla-
tions.
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