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The on-site Coulomb repulsion U is the key ingredient for describing the magnetic properties of Mott
insulators, leading to a popular belief that many limitations of the density-functional theory based methods
can be cured by artificially incorporating such on-site interactions for localized electrons in the model form.
The layered antiferromagnet NaMnCl3 reveals quite a different story: while the Coulomb U on the Mn sites
controls the strength of antiferromagnetic superexchange interactions, an equally important parameter is the
Stoner coupling ICl on the ligand sites. The latter is responsible for large ferromagnetic contributions to the
interatomic exchange interactions, which in NaMnCl3 nearly cancel the effect of the superexchange interactions.
Although such behavior is anticipated from the phenomenological Goodenough-Kamanori-Anderson rules, the
quantitative description of the ligand-related contributions remains disputable. Considering NaMnCl3 as an
example, we discuss how they can be generally taken into account in the linear response theory to regain the
dependence of the exchange interactions on ICl. The problem is complicated by the fact that, for the nearly filled
Cl 3p shell, the parameters ICl are sensitive to the model assumptions.
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Introduction. In most cases, the exchange interactions be-
tween half-filled 3d ions are expected to be antiferromagnetic
due to the superexchange mechanism [1]. Such situation is
indeed realized in the canonical MnO [2], the multiferroic
BiFeO3 [3] and MnI2 [4], the lithium-ion batteries cathode
LiMnPO4 [5], the flocculant compound FeCl3 [6], and other
prominent magnetic materials composed from the Mn2+ or
Fe3+ ions. However, when the T-L-T exchange path be-
tween two transition-metal (T) sites connected by a ligand
(L), becomes close to 90◦, the situation may be less cer-
tain as there are several mechanisms operating in opposite
directions and partially canceling each other. Besides an-
tiferromagnetic superexchange, such mechanisms typically
involve ferromagnetic Hund’s coupling on the ligand states.
In fact, by summarizing the famous Goodenough-Kamanori-
Anderson (GKA) rules for transition-metal compounds,
Junjiro Kanamori has concluded that the sign of exchange
interaction in this 90◦ case is “uncertain” [7].

NaMnCl3, which was recently reinvestigated by Devlin
and Cava [8], is the good example of such uncertainty. It
crystallizes in the trigonal structure with the space group R3
[Fig. 1(a)], which is similar to that of the van der Waals
ferromagnet CrI3 [9], except that the [MnCl3]− layers are
negatively charged and interconnected by the Na+ layers.
The Mn2+ ions form the distorted honeycomb lattice and
the Mn-Cl-Mn angle is 96.7◦ [10]. NaMnCl3 orders anti-
ferromagneticaly below TN ≈ 6.3 K [8,11]. Nevertheless, the
Curie-Weiss constant is positive, θCW ≈ 4.2 K, suggesting
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that some of the exchange interactions are ferromagnetic.
This finding is further elaborated by powder neutron diffrac-
tion measurements indicating at the layered antiferromagnetic
(LA) structure of NaMnCl3 in which the ferromagnetic layers
are coupled antiferromagnetically [12]. In the light of these
delicate magnetic properties, NaMnCl3 appears to be an inter-
esting system for testing abilities of first-principles methods
based on the density-functional theory (DFT).

Construction of the spin models inevitably relies on some
assumptions. One of them is the use of magnetic force theo-
rem (MFT) for interatomic exchange interactions [13], which
becomes a popular tool in the DFT community [14–17]. How-
ever, apart from the fundamental limitations of MFT [18–20],
most of such calculations consider the exchange processes
only between magnetic 3d states, where ligands play a role
of an effective medium, which only helps to transfer electrons
from one T site to another. The contributions caused by the
magnetic polarization of the ligand states, mz

L, are typically
ignored or treated in a phenomenological way, by associating
them with direct exchange integrals [21–23] or considering an
ad hoc energy gain caused by this mz

L [24,25]. In this Letter, by
employing rigorous linear response technique [20], we explic-
itly show how the ligand-related contributions to the exchange
parameters can be naturally evaluated. We further demonstrate
that, if defined properly, such exchange interactions depend
not only on the Coulomb repulsion U on the Mn sites, but also
on the Stoner coupling on the ligand sites, ICl, responsible for
Hund’s first rule.

Theory. In order to evaluate the exchange interactions
in DFT, we use the exact expression for the total energy
change caused by infinitesimal rotations of spins, which
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is formulated in terms of the inverse response function
[18–20]. This energy change can be mapped onto the spin
model

E = −1

2

∑

i j

Ji jei · e j (1)

with ei being the unit vector along the direction of spin at
the ith T site. The infinitesimal character of rotations imply
that the interactions can be treated in the Heisenberg (bilin-
ear) form [13,20]. The corresponding exchange interactions in
the reciprocal space include two contributions [20]: JTT(q) =
J0

TT(q) + �JTT(q), where J0
TT(q) are the bare interactions,

while

�JTT(q) = −J0
TL(q)

[
J0

LL(q)
]−1

J0
LT(q) (2)

takes into account the contributions of the ligand states. In
these notations, the subscripts TT, TL, LL, and LT mean
that all the quantities are the matrices with the indices (μ
and ν) running over the T and L sites in the unit cell. Such
�JTT(q) is obtained in the adiabatic limit, where the L spins
are regarded as fast variable and have sufficient time to reach
the equilibrium for each configuration of the T spins [20]. The
matrix elements of J0

μν (q) (μ, ν ∈ T or L) are expressed in
terms of the response tensor R↑↓(q) as

J0
μν (q) = 1

2 mz
μ

(
[R↑↓(q)]−1

μν + Iμδμν

)
mz

ν, (3)

where mz
μ is the magnetic moment and the Stoner parame-

ter Iμ corresponds to the exchange-correlation energy of the

form − 1
4Iμ(mz

ν )
2
. This is the good approximation for both

the half-filled Mn 3d shell and the fully filled Cl 3p shell,
where the orbital effects are expected to be least important.
Further details can be found in Refs. [20,26]. The real-space
parameters Ji j are obtained by the Fourier transform of Jμν (q).
The popular alternative to this, formally exact, approach is
MFT [13], which relies on additional approximations and can
be justified only in the long-wavelength and strong-coupling
limits [20]. Furthermore, the contribution �JTT(q) is ignored
in most of the MFT-based calculations or replaced by a
semiempirical term simulating the direct exchange [21–23].
However, �JTT(q) can be very important, especially when it
is considered in combination with the exact Eq. (3) for the
exchange interactions [20].

Results and discussions. The electronic structure calcu-
lations were performed in the generalized gradient approxi-
mation (GGA) [27], for the experimental structure reported
in Ref. [10], using the Vienna ab initio simulation package
(VASP) [28]. After that, several tight-binding (TB) models
were constructed in the maximally localized Wannier basis
[29].

The electronic structure of NaMnCl3 is relatively simple,
consisting of several groups of isolated bands [Fig. 1(b)],
which allows us to construct two types of models. The sim-
plest d model includes ten Mn 3d bands located near the
Fermi level. In this case, the Wannier basis consists of five
3d orbitals (labeled by m and m′) at each Mn site. The corre-
sponding hopping parameters t̂i j = [tmm′

i j ] are associated with
the matrix elements of the GGA Hamiltonian in the Wannier
basis [29]. Then, Ji j can be evaluated in the superexchange ap-

proximation for the half-filled Mn 3d shell as Ji j = −TrL (t̂i j )2

U+4JH

FIG. 1. (a) Crystal structure of NaMnCl3: top view (top) and side
view (bottom). The unit cell in the basal plane is shown by blue solid
lines. Two Mn sites in the primitive cell are denoted by different
colors. (b) Partial densities of Mn 3d and Cl 3p states, as obtained
in the generalized gradient approximation for the antiferromagnetic
state. The zero energy is in the middle of the gap between occupied
and empty states. The positions of main bands are indicated by
symbols.

[1], where U and JH are the intra-atomic Coulomb repulsion
and exchange coupling, respectively, and TrL denotes the trace
over the orbital indices. In isolated atoms, where the number
of 3d electrons is fixed, IMn is JH and responsible for the first
Hund’s rule [30]. In solids, however, the atomic occupations
are controlled by U , which additionally contributes to the
splitting between the majority- and minority-spin states and
value of IMn. For instance, in the mean-field approximation,
which is justified for the high-spin state of Mn2+, IMn is
related to U and JH as IMn = U+4JH

5 [31,32]. Then, we treat
IMn as an adjustable parameter and ask which IMn would
reproduce the experimental TN = 6.3 K [8] for the given hop-
ping parameters t̂i j . In order to evaluate TN, we use the random
phase approximation (RPA), as explained in Ref. [33]. This
yields IMn ∼ 5.5 eV, which is unrealistically large and, as-
suming JH = 0.8 eV [34], would correspond to the nearly
bare value of U ∼ 24 eV. Furthermore, all interactions Ji j are
antiferromagnetic, which cannot explain the sign of θCW.

Thus, it is important to include the Cl 3p band explicitly
into the model. For these purposes, we construct the TB
Hamiltonian in the basis of Mn 3d and Cl 3p Wannier orbitals,
which reproduces the behavior of Mn 3d and Cl 3p bands
in GGA [Fig. 1(b)]. In order to evaluate the exchange inter-
actions using Eq. (3), we focus on the antiferromagnetic (A)
solution with two Mn spins in the unit cell being antiparallel
to each other. The ferromagnetic (F) solution was also inves-
tigated and confirmed to provide a similar behavior for the
exchange interactions. First, we considered the contributions
of the Mn 3d states alone, by artificially cutting off all matrix
elements of R↑↓(q) associated with the L sites, as is typically
done in calculations based on MFT. In comparison with the
d model, the additional admixture of the Mn 3d states into
the Cl 3p band in the d p model already plays an important
role by substantially weakening the antiferromagnetic inter-
actions. For instance, the nearest-neighbor (NN) interaction
in the plane, J1, is reduced from −14.4 to −6.9 meV (in
GGA; see Fig. 2 for the notations), J2 between the planes is
reduced from −1.0 to −0.1 meV, etc. The complete removal
of the Cl 3p states (by artificially shifting them downwards by
100 Ry) yields J1 = −4.5 meV. This value can be regarded

L180401-2



ORIGIN OF FERROMAGNETIC INTERACTIONS IN … PHYSICAL REVIEW B 106, L180401 (2022)

FIG. 2. (a) Distance dependence of exchange interactions (in
GGA) for three values of ICl. The inset shows the dependence of
J1 on ICl. (b) Notations of main exchange interactions.

as an estimate for the direct Mn-Mn interaction. Then, the
remaining Mn-Cl-Mn superexchange interactions operating
via the Cl 3p sites can be estimated in the d and d p models as
−9.9 and −2.4 meV, respectively.

Up to this point, we obtain a good agreement between the
exact theory and MFT [13]. For instance, MFT yields J1 =
−14.1 and −6.5 meV in the d and d p models, respectively,
which are indeed very close to the “exact” values. This is not
surprising, because MFT is justified in the strong-coupling
limit [20], which is realized for the Mn 3d states in NaMnCl3

even at the level of GGA. However, as long as we deal only
with the Mn 3d states, all interactions remain antiferromag-
netic, which is again inconsistent with the type of the magnetic
ground state of NaMnCl3 (A instead of LA) as well as with the
sign of θCW.

The effect of the Cl 3p states on the exchange interactions
is very dramatic. Due to the large electronegativity of Cl, the
Cl 3p and Mn 3d states are well separated energetically (see
Fig. 1). Therefore, the p-d hybridization between these two
groups of states is expected to be weak. In such a situation,
all matrix elements [R↑↓(q)]LL associated with the ligand
sites are small (and would completely vanish without p-d
hybridization in the ionic limit). Therefore, the inverse ma-
trix [R↑↓(q)]−1 will nearly diverge and in the calculations of
Ji j = J0

i j + �Ji j we have to deal with large quantities. For in-
stance, for the NN interaction, we obtain (within GGA) J0

1 =
−100.0 meV and �J1 = 122.2 meV, which roughly cancel
each other. Obviously, once the Cl 3p states are explicitly
included into the model, the strong-coupling limit is not
justified and MFT cannot be used: in GGA, MFT yields
J0

1 = −7.6 meV and �J1 = −1.1 meV, which differ drasti-
cally from the parameters obtained in the exact approach.
Furthermore, there is no more cancellation between J0

1 and
�J1 within MFT.

Then, we stick to the exact approach and search for the
condition, when such cancellation would reproduce the exper-
imental behavior of NaMnCl3, namely, the LA ground states
with small TN and small positive θCW. First of all, we have
realized that, although the parameters Iμ on the T sites are
well defined, those on the L sites appear to be not. Generally,
Iμ is related to the exchange field bz

μ and magnetization mz
μ

as Iμ = − bz
μ

mz
μ

. However, there are several possibilities for

evaluating these quantities in the TB model. For instance,
bz

μ can be associated with the site-diagonal elements of the

TABLE I. Effective Stoner parameters (in eV), as obtained in
GGA for the antiferromagnetic (ferromagnetic) state by using site-
diagonal elements of the tight-binding Hamiltonian and the sum rule.

Method IMn ICl

Iμ = − TrL (b̂z
μ )

TrL (m̂z
μ ) 0.88 (0.88) 1.40 (1.51)

Sum rule 0.91 (0.90) 10.95 (8.75)

TB Hamiltonian in the Wannier basis. Such b̂z
μ = Ĥ↑

μμ − Ĥ↓
μμ

is the matrix in the subspace of the orbital indices. Then,
in the spirit of DFT [35], corresponding site-diagonal mag-
netization matrix m̂z

μ should be obtained from the occupied

eigenstates of Ĥ . Hence, Iμ can be defined as Iμ = − TrL (b̂z
μ )

TrL (m̂z
μ ) .

Another possibility (used above) is to employ the sum rule,
bz

μ = ∑
ν[R↑↓(0)]−1

μν mz
ν [20], in order to evaluate bz

μ for the
given set of magnetic moments and then use again the equa-

tion Iμ = − bz
μ

mz
μ

. Nevertheless, we would like to emphasize

that both definitions rely on assumptions. Particularly, the
sum rule implies that the intersite matrix elements of the TB
Hamiltonian Ĥ do not depend on spin, which is an approxima-
tion. On the other hand, the change bz

T in the TB Hamiltonian
will affect not only mz

T but also mz
L, even for fixed bz

L, thus

making the definition IL = − bz
L

mz
L

ambiguous.
The results are summarized in Table I. IMn only weakly

depends on the method and the magnetic state. The obtained
values IMn = 0.88–0.91 eV are reasonable and consistent
with IMn = 0.82 eV reported for metallic fcc Mn [36]. On
the other hand, depending on the definition and the magnetic
state, ICl varies from 1.4 to 11 eV (and even larger if one
uses GGA + U instead of GGA). The upper boundary for
ICl, derived from the sum rule, may look unrealistically large.
However, it should be understood that this ICl is proportional
to [R↑↓(q)]−1, which nearly diverges in the case of NaMnCl3.
Furthermore, the concept of the Stoner splitting does not make
sense for the totally filled Cl 3p shell in the ionic limit (con-
trary to the half-filled Mn 3d shell).

Thus, one can expect that the bare interaction J0
i j , which

does not explicitly depend on the Stoner coupling, is well
defined. On the other hand, �Ji j is sensitive to the defini-
tion of ICl. In the following, we treat ICl as an adjustable
parameter, by varying it between the values obtained using
the sum rule and site-diagonal elements of Ĥ . Furthermore,
we simulate the effect of the on-site U by artificially changing
the splitting between the majority (↑) and minority (↓) Mn
3d spin states in the TB Hamiltonian. For the half-filled shell,
this is equivalent to the change of the parameter IMn and a
constant shift of all Mn 3d states, which is controlled by the
double-counting term in the GGA + U approach. Since the
form of this double counting is largely empirical, we consider
the phenomenological procedure by fixing the positions of the
occupied ↑-spin states and shifting upwards the unoccupied
↓-spin states, which accounts for the experimental situation
in MnO [32].

The basic idea is illustrated Fig. 2, where we start with the
GGA electronic structure and vary the parameter ICl. As ex-
pected, ICl tends to strengthen the ferromagnetic interactions.
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FIG. 3. (a) Phase diagram in the plane IMn-ICl. (b) Ferromag-
netic (F), layered antiferromagnetic (LA), and antiferromagnetic (A)
structures. (c) The Néel temperature (TN) and Curie-Weiss tempera-
ture (θCW) as the function of ICl for three characteristic values of IMn,
which are indicated by the dot-dashed lines in (a). #1 corresponds to
GGA data. The experimental values of TN and θCW are indicated by
dashed red and blue lines, respectively.

For small ICl = 1.4 eV, all interactions are antiferromagnetic.
Then, for the intermediate ICl = 8.1 eV, the NN interac-
tion in the xy plane, J1, becomes ferromagnetic, while the
interactions J2, J4, J5, and J7 between the planes remain
antiferromagnetic. Finally, for large ICl = 14.8 eV, the inter-
actions in and between the planes tends to be ferromagnetic.
Thus, one can obtain the following phase diagram in the plane
IMn-ICl (Fig. 3).

For each IMn (U ), the system undergoes the transition
from the A to the LA state, and then to the F state with
the increase of ICl. The parameters ICl required to stabilize
the F state are probably too large. Nevertheless, the A-LA
transition takes place at more realistic values of ICl (∼3.1 in
GGA, which further increases with the increase of U ). Then,
using the obtained parameters Ji j , we evaluate TN (in RPA
[33]) and θCW = 1+1/S

3kB

∑
i Ji (where S = 5/2). The results are

summarized in Fig. 3(c). We see that, in order to reproduce
the experimental behavior of NaMnCl3 (small TN and small
positive θCW), it is necessary to stay in the LA region, but
close to the A-LA border. For instance, for IMn = 0.8 (the
GGA value), 1.4, and 1.9 eV, such a situation is realized
around ICl ∼ 3.6, 6.0, and 11.0 eV, respectively, yielding
(TN, θCW) = (11.8, 1.5), (5.0,3.0), and (3.1,3.2) K. Assuming
JH = 0.8 eV, IMn = 0.8, 1.4, and 1.9 eV, would correspond
to the Coulomb U = 0.9, 3.6, and 6.3 eV, respectively. In all
three cases, the required values of ICl fall in-between two
estimates based on the site-diagonal elements of Ĥ and the
sum rule. Thus, irrespectively of the value of U , the experi-
mental behavior of NaMnCl3 can be formally reproduced by
tuning ICl.

Then, we turn to the brute force GGA + U calculations
with the parameters U = 7.0 eV and JH = 0.8 eV, which are
typically extracted from constrained DFT calculations [34].
The main difference from the previous analysis is the double-
counting term, which is now taken in the standard form to
reproduce the ionization potential and electron affinity of the

FIG. 4. Results of GGA + U calculations with U = 7.0 eV and
JH = 0.8 eV: (b) Partial densities of Mn 3d and Cl 3p states. The zero
energy is in the middle of the gap between occupied and empty states.
(b) The Néel temperature (TN) and the Curie-Weiss temperature
(θCW) as the function of ICl.

Mn2+ ions in the atomic limit [37]. This leads to the additional
downward shift of the Mn 3d states, so that the occupied
↑-spin Mn 3d states are now located below the Cl 3p band
[see Fig. 4(a)]. Nevertheless, as far as the exchange interac-
tions are concerned, this shift plays only a secondary role as
the magnetic properties are mainly controlled by ICl, which
strongly depends on the definition and varies from 2.5 eV,
if one uses site-diagonal elements of Ĥ , to 45.5 eV, if one
uses the sum rule. The A-LA transition occurs near the lower
boundary and the experimental behavior is captured reason-
ably well by ICl ≈ 3.6 eV, yielding TN = 12.1 K and θCW =
4.6 K.

Finally, taking into account the uncertainty with the choice
of the parameters ICl in the model, it is right to ask: which is
the realistic estimate of ICl and which method is more suitable
for capturing the experimental behavior of NaMnCl3? For
these purposes we evaluate effective exchange interactions by
mapping the total energies obtained for several magnetic con-
figurations onto the Heisenberg model (1). We consider five
such configurations, which allow us to extract three in-plane
interactions J1, J3, and J6, and one out-of-plane interaction J2

[see Fig. 2(b)], assuming that the effect of other small inter-
actions can be effectively included in the definition of J1, J2,
J3, and J6. Then, GGA (GGA + U ) yields the following pa-
rameters (in meV): J1 = −1.1 (0.6), J2 = −1.3 (−0.2), J3 =
−0.3 (0.1), and J6 = −0.6 (0.2). Thus, the ground state of
NaMnCl3 is expected to be of the A (LA) type with TN = 16.6
(10.8) K and θCW = −45.1 (13.3) K in GGA (GGA + U ).
Definitely, GGA + U does a better job, while plain GGA fails
to reproduce the magnetic ground state of NaMnCl3, though
only by a tiny margin as the relatively small values of TN and
θCW indicate that the situation is pretty close to the A-LA
boundary. If we tried to reproduce such TN and θCW in the
linear response theory, using Eq. (3) and the downfolding
procedure for the ligand spins, we would have to use ICl ≈ 2.6
(4.4) eV in GGA (GGA + U ). These values are close to
the lower boundaries of ICl, evaluated via the site-diagonal
elements of Ĥ , which still need to be increased by about
80% in order to reproduce the results of the total energy
calculations.

Summary and conclusions. The response theory for inter-
atomic exchange interactions is a powerful modern tool as
it provides not only quantitative estimates, but also a deep
microscopic understanding of the origin of these interac-
tions. Nevertheless, in order to describe these interactions
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properly in NaMnCl3 and other 90◦-exchange systems, it is
essential to take into account the polarization of the ligand
states—the contribution, which was typically ignored in most
of the approximate techniques based on MFT. We explain
the origin of this contribution, which naturally incorporates
the dependence of Ji j on not only the Coulomb U on the
Mn sites, but also the Stoner coupling ICl on the ligand
sites, as was long advocated by the phenomenological GKA
rules. Yet, the main obstacle for a truly ab initio descrip-
tion along this line is the definition of the parameter ICl

for the nearly filled Cl 3p shell, which does not seem to be
unique.

As the next important development of the linear re-
sponse technique, it would be interesting to include the
relativistic spin-orbit interaction, which is responsible for
anisotropic Dzyaloshinskii-Moriya interactions (DMI) and
exchange anisotropy. Particularly, our study clearly demon-

strates the crucial role of the ligand p states in the exchange
processes. However, there are many examples when the same
ligand states play a key role in developing the large anisotropy
and DMI, as demonstrated in CrI3 [38,39] and Cr2Ge2Te6

[40]. Furthermore, the ligand assistant exchange anisotropy in
honeycomb layered cobaltites may lead to the realization of a
Kitaev spin liquid state, similar to Na2IrO3 and α-RuCl3 [41].
In this respect, NaCoCl3 seems to be a particularly promising
candidate if it could be synthesized.
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