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Dynamical Born effective charges
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We extend the definition of the Born effective charge to the dynamical regime. This is equal to the Fourier
transform of the total electronic current divided by the Fourier transform of the velocity of a particular nucleus.
The usual static Born effective charges are recovered in the zero-frequency limit. We calculate these charges for
a selection of materials using time-dependent density functional theory in an all-electron code where the nuclei
move along a chosen trajectory. A rich response function emerges with prominent resonance peaks. The finite
value for the Born effective charge of metals is also reproduced. The dynamical Born effective charges are thus
a natural choice of observable for probing the fundamental nonadiabatic coupling of electrons and nuclei.
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I. INTRODUCTION

The Born effective charge (BEC) is a useful and pre-
cisely defined quantity for both molecules and solids and
one which can be both readily calculated and experimentally
measured [1,2]. There are two equivalent definitions for the
BEC: The first is the change in the electrostatic force Fα on a
nucleus α with respect to an external electric field E,

Z∗
αi j ≡ −∂Fαi

∂Ej
, (1)

where i and j label Cartesian directions. The second, equiv-
alent definition of the BEC is the change in the electric
polarization of the system with respect to an infinitesimal
displacement of a nucleus,

Z∗
αi j ≡ Zαδi j + ∂Pi

∂uα j
, (2)

where Zα is the nuclear charge, P is the electronic polarization,
and uα is the displacement away from equilibrium. (We will
follow the convention of taking the electronic charge e as +1
and the nuclear charges as negative.) For a finite system, the
electronic polarization can be calculated using

P =
∫

d3r ρ(r)r, (3)

where ρ is the electronic charge density. For charge-neutral
systems, the total polarization (one which includes the con-
tribution from the nuclear charges) is independent of the
choice of origin. On the other hand, the polarization of charge-
neutral systems with periodic boundary conditions cannot be
uniquely determined from Eq. (3). Instead, only the change
in P can be calculated as a function of some parameter such
as the external electric field or an atomic displacement [3–8].
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This parameter may be made time dependent and the change
in polarization determined from the adiabatic limit of the
integrated electronic current. Let λ(t ) be the parameter as a
function of time t and suppose that J(t ) is the induced current.
Then the change in polarization is given by

�P =
∫ T

0
dt J(t ). (4)

The adiabaticity or “slowness” of the process is usually cap-
tured by representing the time dependence of the parameter by
setting λ(t ) = f (t/T ) with a function f which is bounded in
the interval [0,1]. The adiabatic limit is then obtained by tak-
ing T → ∞. It was shown by King-Smith and Vanderbilt [5]
that the change in polarization is closely related to the Berry
phase [9], and we will refer to their algorithm for calculating
the static BEC as the “Berry phase method.”

In its basic definition, the BEC is a static quantity eval-
uated from the adiabatic limit of the current. However, this
definition can be easily and naturally extended to the nonadi-
abatic case in which the nucleus is moving at finite velocity
along a prescribed path. The electronic current will respond
accordingly and its frequency components can be determined.
For what follows, we will restrict our attention to solids and
also assume a noninteracting system of electrons in an ef-
fective Kohn-Sham [10,11] potential within the framework
time-dependent density functional theory (TDDFT) [12].

Now choose λ(t ) to be the time-dependent displacement
of nucleus α away from equilibrium uα (t ), with vα (t ) =
∂uα (t )/∂t as its velocity. The time-dependent total electronic
current across a unit cell is given by

J(t ) = 1

Nk

occ∑
ik

∫
d3r Im[ϕ∗

ik(r, t )∇ϕik(r, t )], (5)

where ϕik is the ith Kohn-Sham state at a particular k point in
a set of Nk points, the sum is over the occupied states, and the
integral is over the unit cell. We define the dynamical Born

2469-9950/2022/106(18)/L180303(7) L180303-1 ©2022 American Physical Society

https://orcid.org/0000-0002-3191-4273
https://orcid.org/0000-0001-6914-1272
https://orcid.org/0000-0002-0113-759X
https://orcid.org/0000-0002-7218-078X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.L180303&domain=pdf&date_stamp=2022-11-16
https://doi.org/10.1103/PhysRevB.106.L180303


WANG, SHARMA, GROSS, AND DEWHURST PHYSICAL REVIEW B 106, L180303 (2022)

effective charge (dynBEC) as a natural extension of Eq. (2),

Z∗
αi j (ω) ≡ Zαδi j + ∂Ji(ω)

∂vα j (ω)
, (6)

where

J(ω) ≡
∫ ∞

0
dt J(t ) exp[i(ω + iη)t] (7)

is the Fourier transform of the current, vα (ω) the Fourier trans-
form of the velocity, and η is a positive infinitesimal. Note that
�P = �J(ω → 0) and that the acoustic sum rule [13],∑

α

Z∗
αi j (ω → 0) = 0, (8)

is satisfied in the static limit owing to charge neutrality, al-
though this is not true in general for all frequencies. This
property is a useful indicator for establishing the quality of
the numerical calculations.

The optical conductivity σi j can be calculated in the same
manner from the current and the electric field,

σi j (ω) = 1

�

∂Ji(ω)

∂Ej (ω)
, (9)

where � is the unit cell volume, which implies that uα (t ) is
the analog of the vector potential A(t ) and vα (t ) is the analog
of the electric field E(t ) = −(1/c)∂A(t )/∂t .

Recently, the frequency-dependent generalization of the
BEC was defined independently by Binci et al. [14] and
Dreyer et al. [15]. However, in these works, Z∗(ω) was eval-
uated either at phonon frequencies or in the zero-frequency
limit. In our work, we explore this quantity over an energy
range from zero up to ∼100 eV.

II. IMPLEMENTATION

We implemented the dynBEC in the solid-state, all-
electron code ELK [16] which uses linearized augmented plane
waves (LAPWs) as a basis [17]. This basis depends paramet-
rically on the nuclear coordinates, which complicates the time
evolution of the combined electronic and nuclear systems.
Let Vext be the external potential consisting of the Coulomb
potential of the bare nuclei. Rather than explicitly moving the
nuclei, we instead modify the external potential with

Vext (r, t ) = Vext (r) − uα (t ) · ∇αVext (r), (10)

where ∇α is the derivative with respect to the displacement
uα . This approach is only valid for small displacements of
the nuclei and, in fact, our investigation into the BEC began
as a means of evaluating the validity of this approximation.
In practice, we also add the derivative of the Coulomb (i.e.,

Hartree) potential of the core electrons, which are not included
in the TDDFT dynamics, under the assumption that the core
electrons move rigidly with the nuclei and serve to screen
the Coulomb potential of the nuclei. Note that, in princi-
ple, the contribution from the exchange-correlation potential
of the core electrons should be included in the gradient of the
potential in Eq. (10). However, owing to the nonlinearity of
the exchange-correlation potential with respect to the density,
it is not possible to uniquely extract that part of the potential
which arises from the core electrons alone. We discovered,
however, that this contribution to the gradient had a negligible
effect on the results and chose instead to omit it.

The real-time dynamics were performed using a scheme in
which the time-dependent Kohn-Sham orbitals are expanded
in the eigenvectors of the instantaneous Hamiltonian and
propagated using phase factors over a small time interval [18].

The dynBEC as defined in Eq. (6) is independent of the
choice of path. This is because of the linearity of response
functions in general: One can apply an atomic displacement
either of a single frequency or multiple frequencies together.
Both will yield the same response function because the
frequency response decouples in the linear regime. The
choice of frequencies and their amplitudes defines a particular
path in time and, because we divide by the velocity in Eq. (6),
the dynBEC is independent of this choice. The only proviso
is that any path should contain a nonzero component from
each frequency.

For convenience, we choose an instantaneous displacement
at t = 0. The corresponding velocity is therefore a δ function
in time whose Fourier transform is a constant. This removes
the need to divide by vα j (ω) in Eq. (6) and thus eliminates
a source of numerical error. It is important to note that the
dynBEC is part of the general response function,

χ (r, r′, t − t ′) ≡ δρ(r, t )

δVext (r′, t ′)
. (11)

In our case, we take δVext to be the change in external potential
caused by the displacement of a nuclei given in Eq. (10). One
may ask whether the Kohn-Sham system which reproduces
the exact density also yields the exact total current, as re-
quired by Eq. (6). In general, the first-order response of the
macroscopic current δJ is exact even though the Kohn-Sham
current density j(r) is not [19]. This is a consequence of the
continuity equation applied to the long-range response of the
density (see, also, Eqs. (1.20), (A2), and (A3) of Ref. [20]).
Thus, TDDFT is sufficient for calculation of the dynBEC for
periodic systems.

The full response function can be evaluated from the
Kohn-Sham response function χs using the Dyson equation
in frequency space [21],

χ (r, r′, ω) = χs(r, r′, ω) +
∫

d3r1 d3r2 χs(r, r1, ω)

[
1

|r1 − r2| + fxc(r1, r2, ω)

]
χ (r2, r′, ω), (12)

where fxc is the exchange-correlation kernel. We can write the change in total electronic current corresponding to the Kohn-Sham
response function explicitly as follows [6,15,22–24]:

∂Js(ω)

∂vα j (ω)
= i

ω

∑
k

occ∑
i

unocc∑
j

[ 〈ϕik|p̂|ϕ jk〉〈ϕ jk|∂V̂ext/∂uα j |ϕik〉
ε jk − εik + ω + iη

+ c.c.(ω → −ω)

]
. (13)
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FIG. 1. Time-dependent electronic current across a single unit
cell of LiF after a small, instantaneous displacement of the Li nu-
cleus in the x direction at t = 0. The total simulation time was 19.4
femtoseconds.

This formula does not, however, include the self-consistent
change in the Kohn-Sham potential arising from the change
in density. To incorporate this effect, the full Kohn-Sham
response function χs should be calculated and then used
in Eq. (12) along with fxc. Our approach of performing a
real-time TDDFT is equivalent to this, but numerically more
convenient. This is because solving the Dyson equation with
sufficient spatial resolution for the derivative of the Coulomb
potential in Eq. (10) would be prohibitively expensive for an
all-electron method.

III. RESULTS

The code was used to find the dynBEC of the ionic polar
insulators LiH, LiF, and LiCl, the covalently bonded BN in
both the cubic and hexagonal phases, the nonpolar insulator
diamond, and the fcc metal Al. The materials were chosen
to demonstrate some distinct characteristics of the dynBEC
and, because their constituent atoms are fairly light, lessen the
computational expense. In Fig. 1, we plot the current gener-
ated by instantaneously displacing the Li nucleus at t = 0 in
LiF. This is typical of the behavior of the current obtained
for all the materials and nuclei, namely, a large initial spike
in current followed by rapid and varied oscillations. In the

FIG. 2. Dynamical Born effective charges of LiH (top), LiF (cen-
ter), and LiCl (bottom).

case of Li, the amplitude of the oscillations decreased until
around 3 femtoseconds and then reached a “steady state.”
Total simulation time for all our calculations was 800 atomic
units of time, or 19.4 femtoseconds. Each time step for the
simulations was 1.2 attoseconds. This current was then nu-
merically Fourier transformed with η in Eq. (7) taken to be
0.136 eV (except in the case of Al, where various values were
tested). The static BEC results for all the materials are collated
in Table I.

The dynBEC of the ionic compounds LiH, LiF, and LiCl
is plotted in Fig. 2. This is a complex quantity and so the

TABLE I. Static Born effective charges of various materials calculated from the ω → 0 of the dynBEC compared to those calculated with
the Berry phase method and experiment. The units of charge are e, i.e., the electronic charge. The value in parentheses is the average of the
two absolute values.

Experiment Berry [5,16] Z∗(ω → 0)

LiH 0.991 [26,27] 1.04 Li: −1.03 H: 1.13 (1.08)
LiF 1.045 [27,28] 1.05 Li: −1.11 F: 1.12 (1.11)
LiCl 1.231 [27,28] 1.18 Li: −1.35 Cl: 2.06 (1.70)
cubic BN 1.98 [29,30] 1.89 B: −1.57 N: 1.97 (1.77)
hexagonal BN x 2.72 B: −2.28 N: 3.05 (2.67)

z 0.75 B: −0.44 N: 1.07 (0.76)
Al −2.09
diamond −0.15
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FIG. 3. Dielectric function of LiF calculated within the RPA.

real and imaginary parts are plotted separately. In the limit
as ω → 0, the real part of the dynBEC tends to the regular
static BEC, although the acoustic sum rule, given by Eq. (8), is
not perfectly satisfied. This may be due to the incompleteness
of the LAPW basis, particulary when expanding the change
in wave function owing to an atomic displacement simulated
with Eq. (10). The error can be reduced by increasing the size
of the basis used for the time evolution of the Kohn-Sham
orbitals, but ultimately becomes numerically unfeasible. The
best case is that of LiF (Li: −1.11, F: 1.12) and the worst is
LiCl (Li: −1.35, Cl: 2.06). However, the sum rule itself can be
used to partially correct this error by taking an average of ab-
solute values for our two atom systems.1 The resulting charges
are then in good agreement with the Berry phase method and
experiment. An exception is that of LiCl for which the BEC of
Li is in relatively good agreement with that of the Berry phase
method, however the value for Cl is too large. This gives an
average value of 1.70, which is over 40% greater than it should
be. Unfortunately, we were unable to converge this calculation
any further.

The dynBEC of the covalently bonded boron nitride in both
the cubic and hexagonal phases is shown in Figs. 4 and 5.
The zero-frequency limit gave good agreement for the static
BEC with that of the Berry phase method and, for the cubic
case, experiment. Notably, the BEC for the x and z directions
of hBN are significantly different and yet the two methods
are in excellent agreement for both. Diamond, which is also
covalently bonded but not a polar semiconductor, should give
a BEC of zero. Our result for the zero-frequency limit of the
dynBEC is −0.15. This slight discrepancy may again be due
to the limitation of the LAPW basis.

The metallic case is the most interesting as far as the static
limit is concerned. Until recently, it was assumed that the
BEC for metals was undefined. However, Dreyer et al. [15]

1The static BEC determined from the Berry phase method could
be used to further correct numerical inaccuracies in the dynBEC
by adding a real constant to Z∗(ω) so that the two methods are in
agreement at ω = 0. The imaginary part of the dynBEC could then
be calculated using a Kramers-Kronig transformation.

FIG. 4. Dynamical Born effective charges of cubic BN.

showed that this is not the case and demonstrated that there is
a nonadiabatic version of the BEC for metals and related it to
the Drude weight. The dynBEC of Al for small frequencies is
plotted in the inset of Fig. 7. One can see that the value taken
for η affects the ω → 0 limit. There are noticeable oscillations
in the plots calculated with small values of η. For comparison,
the dielectric function εxx, calculated within the random phase
approximation (RPA), is plotted in Fig. 8 with and without the
intraband term [25]. Using the same k-point set as that for the
dynBEC (42 × 42 × 42), the oscillations in εxx mirror those in
the dynBEC. A much denser set (72 × 72 × 72) removes the
oscillations in the dielectric function, indicating that they are
merely an artifact of a finite k-point grid. These oscillations
can be suppressed either by increasing the number of k points
or increasing the value of η. We find that taking η = 0.544 eV
smooths the curve sufficiently without distorting the data.
Using this value for η, our prediction for the nonadiabatic

FIG. 5. Dynamical Born effective charges of hexagonal BN for
the x and z directions.
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FIG. 6. Dynamical Born effective charges of diamond.

BEC is −2.09, which is in excellent agreement with the value
of −2.0 determined by Dreyer et al.

At finite frequencies, the dynBEC spectral functions of
each atom are very different. In the case of LiX, the imaginary
part of the dynBEC for Li is zero until about 50 eV, whereas
the onset for H, F, and Cl is much lower, ranging from 3 to
8 eV. There are also several prominent resonant peaks. In LiH
and LiF, a clear resonance in the Li part of the spectrum can be
seen around 60 eV. At this point, the real part crosses the zero
axis and the imaginary part has a sharp peak. This peak corre-
sponds to a transition between the Li 1s and 2p orbitals. It is
almost completely absent in LiCl because the 2p state is con-
siderably more hybridized. Aside from the conspicuous reso-
nances, the Li dynBEC is noticeably dissimilar for the three
compounds throughout the entire range of frequencies, despite
the fact that the materials have the same crystal structure and
same type of bonding. This suggests that the dynBEC is highly
sensitive to the chemical environment of the selected atom.

There are also axis crossings of the real part of the dynBEC
for H, F, and Cl. The corresponding peaks in the imagi-
nary parts are not as well defined as those for Li. The most
pronounced is that of F with a resonance around 20 eV.

FIG. 7. Dynamical Born effective charge of Al. The inset shows
the low-frequency behavior of the dynBEC for three different values
of η used in Eq. (7).

FIG. 8. Dielectric function of Al calculated within the RPA. The
plot contains εxx with and without the intraband “Drude” term. Also
included is the dielectric function calculated on the same k-point grid
as that used for the dynBEC calculation.

Comparing the dynBEC of LiF to its dielectric function in
Fig. 3 reveals similarity in the positions of the most prominent
peaks, particularly for lower energies (<20 eV) and for the
fluorine part. This is not surprising because peak positions
are largely dictated by the denominator in the noninteracting
response function given by Eq. (13). What is different are the
relative weights of the peaks owing to the difference in the
matrix elements in the numerator. Furthermore, the dynBEC
retains its relative amplitude even for high energies where εxx

has tapered off. The reason is that δVext acts more strongly on
orbitals bound closely to the nuclei than does a spatially con-
stant external electric field. Thus, higher-energy excitations
will have higher weights for the dynBEC.

Turning to the finite-frequency dynBEC of the covalently
bonded materials BN and diamond as shown in Figs. 4–6,
we observe similarly intricate spectra. The peaks are gener-
ally broader, indicating increased hybridization between the
atomic orbitals. Also noteworthy is the similarity of the dyn-
BEC spectra of cBN and diamond at finite frequency, even
though the static BECs are very different for these materials.
Of particular significance is the distinction between the dyn-
BEC for the x and z directions of hexagonal BN. Thus, not
only does the dynBEC discriminate between different atoms,
but also different directions.

Lastly, for the case of Al in Fig. 7, the spectrum is fairly
featureless until 64 eV when there is a crossing of the axis
by the real part and an onset of the imaginary part. After this,
there are several prominent peaks in the spectrum, particularly
at about 90 and 118 eV. Compared to the dielectric function in
Fig. 8 in which εxx diverges because of the intraband term,
the dynBEC is finite at ω = 0. Thus, if the dynBEC can
be measured experimentally, it should more suited than the
dielectric function to resolve low-frequency features in the
response function of metals.

IV. SUMMARY

We have extended the definition of the Born effective
charge to a dynamical, frequency-dependent variant. This was
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calculated using an instantaneous displacement of a nucleus
and then performing a Fourier transformation of the resulting
electronic current computed with TDDFT. The dynBEC is
a natural extension to the regular static BEC and we an-
ticipate that it may be measurable with neutron diffraction
techniques [31]. Unlike the dielectric function, the dynBEC
discriminates between atoms in the solid and thus is intimately
connected to nonadiabatic coupling between nuclei and elec-
trons. In effect, it quantifies the amount of electronic charge
“dragged” along with a nucleus, when that nucleus is moving
back and forth at a given frequency.

The primary utility of having an accurate experimental
measurement of the dynBEC would be to determine any error
in the theoretical prediction. Such a deviation would be due
almost entirely to the approximation of the TDDFT kernel
fxc used in Eq. (12). For instance, the closely related di-
electric function suffers from significant error for excitonic
materials [32]. In these cases, the resonant excitonic peaks
are not captured by the usual adiabatic approximations to
fxc and considerable theoretical effort has been expended
in producing functionals which do work [33,34]. Are there
similar limitations to using the adiabatic functionals for the
prediction of the dynBEC? Comparison to experiment should
be able to answer this and ultimately aid in the development
of TDDFT functionals for the case of combined electron and
nuclear dynamics [35]. Another potential use would be to
improve first-principles calculations of ion stopping in con-
densed matter, particularly in the energy range of up to a

few-hundred electron volts [36,37]. In this regime, so-called
nuclear stopping dominates in which the ions’ kinetic energy
is primarily transferred to the nuclei. The dynBEC could
quantify how much of this energy is subsequently absorbed by
excitation of electronic currents. Lastly, molecular dynamics
calculations within the adiabatic approximation but driven by
a laser pulse given by a vector potential A(t ) could utilize
the dynBEC for determining the contribution to the force on
each atom by the laser. The electric field is given by E(t ) =
−(1/c)dA/dt and the force on atom α would be modified
by Fα (t ) → Fα (t ) − Z∗

αE(t ). The choice of the matrix Z∗
α as

the effective charge which couples to the electric field arises
from Eq. (1). However, with the dynamical BEC, one could
match Z∗

α to the laser frequency, i.e., choose Z∗
α (ωlaser ) instead

of Z∗
α (0), which should be the better choice in this situation.
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