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Topological quantum state described by the global invariant has been extensively studied in theory and
experiment. In this Letter, we investigate the relationship between Zitterbewegung and the topology of systems
that reflects the properties of the local and whole energy bands, respectively. We generalize the usual two-band
effective Hamiltonian to characterize the topological phase transition of the spin-J topological insulator. By
studying Zitterbewegung dynamics before and after topological phase transition, we find that the direction
of quasiparticles’ oscillation can well reflect topological properties. Furthermore, we develop a quantitative
calculation formula for the topological invariant in the spin-J Chern insulator and give the selection rule of
the corresponding dynamics. Finally, we demonstrate that our theory is valid in different topological systems.
The topological invariant can be represented by local dynamical properties of the high-symmetry points in the
first Brillouin zone, which provides a measurement method from the dynamical perspective.
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Introduction. As a state of matter beyond the conventional
symmetry breaking paradigm in terms of the classification of
phases, the topological quantum state has long been a hot
topic in condensed matter physics [1]. Topological materi-
als, due to their robust edge mode, boast very good fault
tolerance as quantum computing devices [2–4]. In the past
decade, topological insulators, topological superconductors,
and topological semimetals have been experimentally realized
one after another [2,3,5]. In addition to solid materials, quan-
tum simulation has been currently applied in some relatively
pure and controllable artificial systems inclusive of photonic
crystal [6], superconducting qubits [7,8], ultracold atomic
gases [9–11], etc., to facilitate further study on the topological
quantum state.

The topology of a system is characterized by the topologi-
cal invariant, whose measurement is essential in experiments.
In condensed matter physics, the mainstream scheme for ob-
taining the topological invariant is indirect [12], because the
measurement of the wave function per se is far from easy
[2,3,13,14]. In artificial quantum systems (such as ultracold
atoms, trapped ions, photonic crystals, etc.), however, multi-
ple methods can be developed due to their high controllability.
The measurement method for the topological invariant varies
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in different dimensions. In one dimension (1D), the topolog-
ical invariant or Zak phase can be measured through Ramsey
interference [15] while, in 2D, the topological invariant can be
experimentally obtained by band tomography (such as Wilson
lines [16] and quench dynamics [17]), because Berry curva-
ture works well as a magnetic field causing the transverse drift
of quasiparticles and the Berry curvature itself is determined
by the eigenstate wave function of the corresponding band.
Recent reports have it that the system can be quenched into
different topological states through dynamical means so as to
obtain the topological properties of the system [18–20].

In this Letter, we uncover the link between Zitterbewe-
gung (ZB) [21] and topological phase transition and propose
a dynamical scheme to detect the topological invariant via
the quasiparticles’ motion behavior. Generally, it is demon-
strated that the mechanism behind the ZB phenomenon is
the interband interference, which is ubiquitous in multiband
systems [22]. Two-band and multiband topological insulators
are no exception and the topological phase transition in the
Chern insulator is usually characterized by the process of band
closing and reopening.

To reveal how the properties of ZB change during the
band inversion process, we first generalize the two-band
model, which can be used to characterize the band inver-
sion of the Chern insulator, to an arbitrary spin-J system
that depicts spin-1 Maxwell quasiparticles [23,24], spin-3/2
Rarita-Schwinger-Weyl quasiparticles [25–27], or even multi-
band systems with higher spin. Meanwhile, we find the
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selection rule for the spin-J system’s ZB effects, i.e., only
adjacent bands can induce ZB. In addition, due to the fact that
the global topological invariant defined in the first Brillouin
zone can always be characterized by local topological in-
dices of high-symmetry points (HSPs) [28], together with the
one-to-one correspondence between ZB dynamics and local
topological indices near HSPs proved in this Letter, we reach
the final conclusion that the whole topological characteristics
can be reflected by ZB dynamics. Therefore, it is univer-
sally applicable to obtain the topological invariant through
ZB dynamics for topological materials of different symmetric
classes [29].

As an illustration and application, we further discuss the
concrete ZB dynamics in the well-known 2D Kane-Mele
model [30] and 3D chiral topological insulators [31]. With
the advantage of our scheme, we can obtain the topological
properties of the whole system by simply calculating dynam-
ical behaviors of the quasiparticle near the HSPs. Note that
the amplitude of ZB is inversely proportional to the width
of the energy gap; therefore, the closer the parameters are to
the phase transition point, the easier the ZB effect is to be
observed and thus the more accurate the measurement results
are [20].

General theory. ZB originates from the interference
between different bands, whereas the topological phase tran-
sition is always marked by the band inversion. The two
seemingly “chalk-and-cheese” physical mechanisms, ZB and
topological phase transition, are actually intriguingly linked
with each other for both are bound up with the energy band
formula. The Hamiltonian of an arbitrary multiband system
can be written as H (p), while the corresponding position of
center of mass (PCM, which suggests ZB phenomenon) takes
the form [22]

r(t ) = r(0) + t
∑

m

VmQm + i
∑
m �=n

eiωmnt
Qm

∂H
∂p Qn

En − Em
, (1)

where the Hamiltonian is diagonalized as H = ∑
EmQm with

the projection operators Q. The second term is the usual
velocity operator, where Vm = ∂Em

∂p , and in the last term the
ZB frequencies are ωmn = Em − En. The projection operators
Qm, Qn (m �= n) in the last term indicate that ZB comes from
the band interference. From the expression, we notice that the
oscillatory term can be regarded as an aggregate of all pairs
of bands. Therefore, the multiband model can be reduced to a
two-band problem and the general ZB of the multiband model
can be straightforwardly obtained by including all the possible
two-band combinations.

For simplicity, we consider only the ZB term of a two-band
model and rewrite the expression as

ro(t ) = 1

ω

(
− i eiωt Qa

∂H

∂p
Qb + i e−iωt Qb

∂H

∂p
Qa

)
, (2)

where ω ≡ Ea − Eb. Due to the high frequency and small
amplitude, the ZB phenomenon of elementary particles is
difficult to observe experimentally. However, it can be studied
in artificial systems (e.g., trapped ion, optical crystal, and
ultracold gases) by means of quantum simulation. For a given
initial state |ψp(0)〉, the corresponding trajectory of PCM

reads

〈ro(t )〉 = 2A
ω

cos(ωt + θ ), (3)

where 〈−iQa
∂H
∂p Qb〉 ≡ A eiθ . Note that both A =

(Ax,Ay,Az ) and θ = (θx, θy, θz ) in the above expression are
vectors. The phase transition in topological insulators usually
concurs with the process of band closing and reopening,
which finally leads to band inversion near the degenerate
point. As to the expression of ZB, the projection operators
Qa and Qb stay perfectly intact during band inversion, while
the energy gap parameter ω alters not only the absolute value
but also its sign. After band inversion, the trajectory of the
quasiparticles with the same initial state can be expressed as

〈ro(t )〉 = −2A
ω

cos(ωt − θ ). (4)

In the above equation, the trajectory echoes the phase angle θ .
When θ = 0, the quasiparticle’s PCM will move in opposite
directions before and after the phase transition, marking a
significant change that can be used to characterize the topo-
logical phase transition. Note that we can always extract the
sign of the energy gap parameter ω for an arbitrary value
of cos θ , except θ = π/2. In the special case of θ = π/2,
the quasiparticle’s PCM can still reflect the topological phase
transition. Next, we will use the spin-J model to explain in
detail the generality of our theory.

Spin-J system. The topological classification has been well
established for noninteracting band-gapped systems, where
the systems’ phase transition from one to another corresponds
to a band-closing-and-reopening process, i.e., band inversion.
Logically one can distinguish these two phases by observing
whether the band inversion happened or not. Therefore, by
checking all the points where the band inversion may happen,
one can distinguish all the system’s phases [32]. We start with
the 2D Chern insulator, such as the Haldane’s graphene model
[33]. The low-energy description of Bloch Hamiltonians near
the relevant momentum point K/K′ generically takes the
Dirac form. Here we generalize the two-band insulator case
to a multiband system of the spin-J case, i.e.,

H = vx pxJx + vy pyJy + mJz, (5)

where J is the angular momentum operator, which satisfies
[Ji, Jj] = iεi jkJk , and m is the mass term proportional to the
width of the energy gap. As the m term changes from negative
to positive, the band inversion is taking place at p = 0 and
the system is undergoing a topological phase transition in the
meantime. Before we proceed analytically, it is necessary to
emphasize that the model is general. In addition to the 2D
Chern insulator, the model can also be applied to the 1D and
3D spin-J systems. For example, when we take vx = 0 or vy =
0, it describes a Su-Schrieffer-Heeger model [15] and when m
is replaced by vz pz, it describes the node in Weyl semimetal
[34,35].

In general, when we take the initial state |ψp(0)〉 with finite
momentum p, the ZB effect of the quasiparticle will decay
very fast. Experimentally, the state located at the avoided
crossing point is more suitable to be chosen as the initial
state for it has zero group velocity. Therefore, we consider
the initial state of p = 0, which is coincident with the locus
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of band inversion, and obtain the trajectory of ZB caused by
pairs of adjacent energy bands, i.e.,

〈xo(t )〉 =Ax

m
cos(mt + θ ),

〈yo(t )〉 =Ay

m
sin(mt + θ ),

(6)

where

Ax,yeiθ =〈ψ (0)|a〉〈b|ψ (0)〉
× −ivx,y

√
(J + 1)(a + b − 1) − ab,

(7)

with |b − a| = 1. From the above equation, we find that the
trajectory is actually like a circle drawn counterclockwise on
the xy plane. When band inversion occurs, i.e., m → −m, the
trajectory expression turns into

〈xo(t )〉 = − Ax

m
cos(mt − θ ),

〈yo(t )〉 = Ay

m
sin(mt − θ ),

(8)

which also circles a loop but in an opposite direction to that
before band inversion. This qualitative behavior is θ indepen-
dent, which allows ZB to well characterize the topological
phase transition. For the spin-J system, unlike the usual-
frequency ZB [22], we prove that only these adjacent bands
will induce the ZB effect. Let us name it “Selection rule of ZB,”
whose mathematical proof is shown in [32]. By setting the lin-
ear combination of eigenstates as the initial state, one can map
the inversion process. To be more specific, for the 2D Chern
insulator, different phases of the system can be characterized
by the topological Chern invariant. It has been proved that this
invariant can be extracted from the “topological charge” of the
Dirac point [36]. Simultaneously, the band inversion near the
Dirac point will change the topological charge and reverse the
direction of ZB, which establishes the connection between the
topological invariant and ZB dynamics.

Without loss of generality, we take the spin-1 Maxwell
quasiparticle system [23] as an example to study the relation-
ship between ZB and topological phase transition in a lattice
system. The corresponding Bloch Hamiltonian reads h(k) =
J · d(k), where d = [2th sin kx, 2th sin ky, 2th(M − cos kx −
cos ky)] and the matrices J are taken as

Jx =
⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠, Jy =

⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠,

Jz =
⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠. (9)

By adjusting the parameter M, the system undergoes a phase
transition. The band inversion occurs at the four HSPs k =
(0, 0), (0, π ), (π, 0), (π, π ) and around each point the effec-
tive Hamiltonian is in the form of Eq. (5). For the phase
transition point M = 2, band inversion occurs at k = 0 and
the corresponding effective Hamiltonian is

h(0,0)(p) = vx pxJx + vy pyJy + mJz, (10)

FIG. 1. Band inversion and corresponding reversal of ZB’s
direction.

where vx = vy = 2th and m = 2th(M − 2). For the initial
spinor |�〉 = (a, b, c) defined as

|�〉 = a|φ−〉 + b|φ0〉 + c|φ+〉, (11)

where |φ−〉 = 1√
2
(1,−i, 0)T , |φ0〉 = (0, 0, 1)T , and |φ+〉 =

1√
2
(1, i, 0)T are the eigenstates of Jz. Then, one can obtain

〈xo〉 = vx

|m|
√

R2 + I2 sin[|m|t + sgn(m)θ ],

〈yo〉 = −sgn(m)
vy

|m|
√

R2 + I2 cos[|m|t + sgn(m)θ ],
(12)

where sin θ = I/
√

R2 + I2, cos θ = R/
√

R2 + I2, I =√
2 Im[(a + c)b∗], and R = √

2 Re[(a − c)b∗]. We introduce
the index quantity ν = sgn(vxvym) to characterize the
direction of ZB, which is clockwise (counterclockwise) for
ν = −1 (ν = +1). A change in the sign of the mass term
concurs with the band inversion. Since the clockwise or
counterclockwise motion of the quasiparticle is a one-to-one
correspondence to band inversion, dynamical properties prove
a good indicator of different topological phases (see Fig. 1).
In addition to that, similar band inversions can also be found
at (0, π ), (π, 0), and (π, π ) during the phase transition.
Parallel to the case of the two-band system [37], the general
expression of the topological invariant for the spin-J system
is

ChJ
j = − j × [ν(0,0) + ν(π,π ) + ν(π,0) + ν(0,π )], (13)

where j = −J,−J + 1, . . . , J represents the corresponding
spin indices from the lowest to the highest band, which relates
the topological invariant to ZB dynamics. In Table I, we list
the relationship between ZB’s direction and the corresponding
Chern number under different phases in the spin-1 system.

TABLE I. Chern number and the direction of ZB characterized
by ν in different phases.

M M < −2 −2 < M < 0 0 < M < 2 M > 2
Ch 0 2 −2 0

ν(0,0) −1 −1 −1 +1
ν(π,π ) −1 +1 +1 +1
ν(0,π ) +1 +1 −1 −1
ν(π,0) +1 +1 −1 −1
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The mathematical proof is given in the Supplemental Material
[32]. For experimental purposes, it is natural to choose the
Gaussian distribution as the initial state to simulate the spatial
motion, namely,

|ψ (r, t = 0)〉 = 1√
πd

e− x2+y2

2d2 · |�〉, (14)

where d is the width of the wave packet and |�〉 is the initial
spinor. Considering the extreme situation when d approaches
infinity, the distribution of states in the momentum space will
concentrate at p = 0 and one can get Eq. (12). For the case of
finite width, the oscillation will decay and drift; and yet the
direction of ZB stays unaffected. It is also revealed from the
expression that if there is no middle component (when b = 0),
both I and R become zero and ZB disappears. This agrees
well with the ZB selection rule for arbitrary spin (spin-J)
systems [32]. Since what we consider here is the three-band
system of spin-1, the middle band is a must-have to ensure the
occurrence of ZB.

Discussion and summary. For noninteracting topologi-
cal insulators and superconductors, an effective classification
method has been developed based on the dimension and
symmetry [29]. The essence of the paradigm proposed in
this Letter lies in band inversion—a common phenomenon
in the topological phase transition, which makes our theory
workable in various topological systems. To illustrate this
point, let us consider two more typical classes of topological
materials.

First, we consider the 2D Kane-Mele model that hosts a
Z2 topological invariant in class AII [30]. On the one hand,
in the absence of the Rashba spin-orbit coupling interaction,
this model can be regarded as two decoupled Haldane Chern
insulators with opposite Chern numbers. In this case, the
phase diagram is exactly the same as that of the Haldane
model [33]. The phase characterization of the system will be
reduced to the above scenario of class A. On the other hand,
when Rashba spin-orbit coupling is introduced, the direction
of ZB stays unchanged before the phase transition occurs.
The effective Hamiltonian characterizing topological phase
transition and that without Rashba interaction are actually
topologically equivalent, i.e., ν = sgn(vxvym) remains the
same as before. Therefore, ZB dynamics based on the mod-
ified Hamiltonian can still well describe the topological phase
transition [32].

Finally, we discuss the 3D chiral topological insulators
whose Hamiltonian takes the form [31]

h(k) = sin kxλ4 + sin kyλ5 + sin kzλ6

+ (M − cos kx − cos ky − cos kz )λ7, (15)

where λi is the 3 × 3 SU(3) Gell-Mann matrix. The topology
of the system is protected by chiral symmetry and thus be-
longs to class AIII. It is worth noticing that for this three-level
model, the system characterized by the 3D winding number
w is also mathematically equal to the so-called DD invariant
constructed by the tensor gauge field [38]. Similar to the 2D
system, the topological phase transition is accompanied by
band inversion near the eight HSPs in the first Brillouin zone.
In the vicinity of these points, the effective Hamiltonian is

hk = vx pxλ4 + vy pyλ5 + vzkzλ6 + mλ7. (16)

To verify our theory, we calculate the trajectories of ZB before
and after the topological phase transition. The results show
that, unlike the 2D system, trajectories of ZB are related to
the initial state. The topological invariants satisfy

w = 1

2

∑
i

sgn(vxvyvz )isgn(m)i, (17)

where the summation over i corresponds to the eight HSPs.
So, we need to pinpoint the signs of the parameters vx, vy, vz,
and m to obtain the topological invariant. The initial state can
be defined as

|�〉 = a|φ−〉 + b|φ0〉 + c|φ+〉, (18)

where |φ0〉 = (1, 0, 0)T , |φ+〉 = 1√
2
(0, 1, i)T , and |φ−〉 =

1√
2
(0, 1,−i)T are the eigenstates of λ7. By taking the initial

state of c = 0, one can get

〈xo(t )〉 = −
√

2
vx

m
R2 cos(mt + θ2),

〈yo(t )〉 = −
√

2
vy

m
R2 sin(mt + θ2),

〈zo(t )〉 = 0,

(19)

where R2eiθ2 ≡ ab∗. In this case, one can extract the sign
of vxvym by observing ZB dynamics, which can determine
the topological invariant up to an overall sign [32]. Next,
we take the initial state of b = 0 and the ZB trajectory
turns into

〈xo(t )〉 = 〈yo(t )〉 = 0,

〈zo(t )〉 = −vz

m
R3 cos(2mt + θ3),

(20)

where R3eiθ3 ≡ ac∗. By combining Eqs. (19) and
(20), the corresponding topological invariants can be
obtained.

In summary, the link between ZB and topological invari-
ants in a general spin-J system has been established, and the
core of this link is that the band inversion during topological
phase transition will reverse the direction of ZB. Despite the
many variations in topology, band inversion constitutes the
only defining feature of topological insulators and topologi-
cal superconductors. So far, ZB has been realized in lots of
table-top setups such as cold atomic gases [39–42], photonic
crystal [43], optical waveguide array [44], twisted bilayer sys-
tems [45], superconducting circuit [46], circuit-QED setups
[47,48], and so on. Supported by the various experimental
platforms, the theory in this Letter can be broadly used in
studying topological materials.

Representative examples are given to illustrate the uni-
versality of the theory, inclusive of class A (Maxwell
quasiparticle), class AII (Kane-Mele model), and class AIII
(3D Chiral topological insulators), which all show the validity
of this theory. In particular, as for the Z2 invariant, there is cur-
rently no effective detection approach in experiments. Here,
our research of the Kane-Mele model suggests that Z2 invari-
ants can be measured through ZB dynamics. Moreover, this
dynamical method also provides a way to detect the 3D wind-
ing number and DD invariant from the macro perspective.
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Furthermore, considering the current progress in the quantum
simulation experiments [24,49–52], this method can also be
applied to the corresponding topological semimetallic phases,
such as 3D spin-1 Maxwell (spin-J) semimetals [23], Weyl
semimetal [53], 3D Dirac semimetals, 4D tensor semimetals
[54,55], etc.
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