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Machine learning interatomic potential for simulations of carbon at extreme conditions
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A spectral neighbor analysis (SNAP) machine learning interatomic potential (MLIP) has been developed for
simulations of carbon at extreme pressures (up to 5 TPa) and temperatures (up to 20 000 K). This was achieved
using a large database of experimentally relevant quantum molecular dynamics (QMD) data, training the SNAP
potential using a robust machine learning methodology, and performing extensive validation against QMD
and experimental data. The resultant carbon MLIP demonstrates unprecedented accuracy and transferability
in predicting the carbon phase diagram, melting curves of crystalline phases, and the shock Hugoniot, all within
3% of QMD. By achieving quantum accuracy and efficient implementation on leadership-class high-performance
computing systems, SNAP advances frontiers of classical MD simulations by enabling atomic-scale insights at
experimental time and length scales.
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Carbon at extreme pressures and temperatures is a topic
of great scientific interest for several disciplines including
planetary science [1–5] and inertial confinement fusion (ICF)
research [6–9]. Methane ice at megabar pressures and temper-
atures of thousands of kelvins is predicted to convert to solid
or liquid carbon in the cores of giant planets [2–4]. A success-
ful suppression of hydrodynamic instabilities seeded by solid
and liquid carbon phases appearing upon strong compression
of the outer diamond ablation shell of an ICF capsule [10] was
the key for achieving a record-breaking, near-threshold fusion
energy ignition at the National Ignition Facility [11].

The exploration of carbon’s behavior at extreme condi-
tions is challenging for both theory and experiment. Shock
and ramp compression experiments using powerful lasers
[12], pulsed power [13], and bright x-ray sources [14,15]
uncovered complicated mechanisms of inelastic deformations
[16–21], anomalous strength of diamond [18–22], unusual
melting [7,23–27], and liquid carbon properties [24,25], as
well as extreme metastability of diamond well beyond the
pressure-temperature range of its thermodynamic stability
[28]. Molecular dynamics (MD) simulations can provide a
fundamental understanding of these phenomena, but to be
of experimental relevance, it must accurately describe inter-
atomic interactions in a system consisting of a large number
of atoms.

Previous simulations of carbon at extreme conditions were
predominantly performed using quantum molecular dynamics
(QMD) based on density functional theory (DFT) [24,29–36].
Due to high computational cost, QMD simulations are limited
to several hundred atoms for up to tens of picoseconds, which
is insufficient for uncovering nonequilibrium processes at
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experimental timescales (ns) and length (µm) scales. In princi-
ple, these scales can be accessed by classical MD simulations
on massively parallel computers [37]. However, empirical
interatomic potentials developed for carbon at near ambient
conditions [38–42] singularly fail upon extension to high
pressures and temperatures [43,44], thus compromising the
predictive power of atomistic simulations.

The advent of machine learning interatomic potentials
(MLIPs) [45,46] opens up exceptional opportunities for
achieving a classical description of chemical bonding with
quantum accuracy [47]. Although numerous MLIPs have been
recently introduced and successfully applied to modeling
properties of materials at ambient conditions [45,46,48–52],
including carbon [53–56], their exceptional power in describ-
ing diverse and complex atomic environments at megabar
pressures and tens of thousand of kelvins has yet to be demon-
strated.

This Letter reports a significant advance in the devel-
opment of a quantum-accurate spectral neighbor analysis
potential (SNAP) for simulations of carbon at extreme
pressure-temperature (P-T ) conditions. This includes con-
struction of an experimentally relevant training database,
implementation of a robust SNAP machine learning train-
ing methodology, and extensive validation against QMD and
experimental data. The end result is a MLIP that delivers
extreme accuracy in simulating carbon over a remarkably
wide range of pressures (from 0 to 50 Mbar) and temperatures
(up to 20 000 K).

In general, MLIPs fingerprint a unique local atomic envi-
ronment around each atom by a set of descriptors. SNAP’s
descriptors are bispectrum components {Bi} of the local
neighbor density projected onto a basis of hyperspheri-
cal harmonics in four dimensions [48,49]. Other successful
MLIPs—neural network potentials (NNPs) [45,52], Gaussian
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FIG. 1. SNAP training database. (a) Pressure-temperature map of QMD and static DFT simulations included in the database, each
represented by a P-T point on carbon phase diagram sampling diamond (FC8), body-centered cubic (BC8), and simple cubic (SC) solid
and liquid phases (total number of structures - 636). (b) Pressure-temperature-density-energy/atom distribution.

approximation potential (GAP) [46], and the moment tensor
potential (MTP) [50]—employ mathematically different, but
physically similar descriptors. All of them, including SNAP,
can be mapped into a general atomic cluster expansion (ACE)
descriptor framework [51].

Herein, the total potential energy of the system of N atoms
is written as a sum of atomic energies Ei, which are quadratic
functions of the bispectrum coefficients Bi [49],

Etot({rN }) =
∑

i

E i, Ei = β· Bi+1

2
Bi·α· Bi. (1)

Machine learning techniques are used to determine the sym-
metric matrix α and the vector β, the unknown parameters of
SNAP, to reproduce the potential energy, atomic forces, and
stress tensor for each structure in the DFT training database.

SNAP displays a good balance between computational
cost and accuracy [57]. Both are controlled by SNAP
hyperparameters—the cutoff radius rcut and the half-integer
angular momentum J . The former specifies the number of
neighbor atoms participating in the fingerprinting of the
atomic environment around each atom i and the latter refers to
the dimensionality of the descriptor space, i.e., the number of
bispectrum descriptors {Bi}: (J + 1)(J + 3/2)(J + 2)/3 for
each atom i.

The SNAP development includes (i) construction of a
robust training database of first-principles QMD data, (ii) ma-
chine learning training, and (iii) extensive validation against
QMD and experiment. These three tightly connected steps
constitute a single development cycle. Several of such cy-
cles are executed to improve upon deficiencies observed in
previous iterations (see the development workflow in Sup-
plemental Fig. S2 [58]). For example, during the validation,
two-phase SNAP MD simulations produce melting lines of
several high-pressure carbon phases in a substantial disagree-
ment with QMD. The problem has been traced back to SNAP
inaccuracies in calculation of enthalpies of solid and liq-
uid phases along the melting line, which, according to the
Clausius-Clapeyron relation, define its slope dT/dP. There-
fore, separate liquid and solid phases were added to the QMD

training database to complement original combined two-phase
solid-liquid structures. This update resulted in substantial
improvements in SNAP accuracy upon execution of a new
training cycle.

One of the highlights of our MLIP development is the
dedicated construction of a SNAP training database of ex-
perimentally relevant QMD of large systems (by QMD
standards)—up to 1024 atoms. These are individual frames
(one to three frames per simulation) from QMD produc-
tion simulations of physical properties of carbon (melting
lines, hydrostatic and uniaxial isotherms, shock Hugoniot)
performed within a wide range of pressures (from 0 to 5 TPa),
temperatures (from 0 to 40 000 K), and densities (from 2.9 to
13.6 g/cm3). For example, MD frames for each (P, T ) point
along the melting lines of several crystalline carbon phases
were taken from a production two-phase QMD simulation
[59]. These complex cells contain both liquid and solid parts
separated by a realistic solid-liquid interface, which add an
additional complexity to the SNAP database. A series of
complimentary QMD simulations of liquid and solid phases
were also included in the database. The QMD data are supple-
mented by static DFT calculations of binding energy curves,
point and extended defects, and metastable carbon struc-
tures obtained from dedicated crystal structure searching [60].
Figure 1 displays the range of pressures, temperatures, and
energies covered by QMD simulations. The SNAP database,
consisting of 636 structures, samples 124 907 unique atomic
environments. Each structure of N atoms contributes 1 total
energy, 6 stress components, and 3N atomic forces resulting
in a total training complexity (the number of regression equa-
tions to fit) of 388 077. Higher temperatures (up to 40 000 K)
were employed during SNAP development to make sure it is
well behaved at very small interatomic distances occurring
in energetic collisions of the atoms with atomic velocities
from the tail of the Maxwell distribution even at temperatures
below 20 000 K. The SNAP accuracy in this temperature
interval between 20 000 and 40 000 K is not sufficient to at-
tempt meaningful MD simulations. Additional information on
database composition and its generation is provided in the
Supplemental Material [58].
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FIG. 2. Validation of SNAP against QMD. (a) Carbon phase diagram, including melting lines of diamond, BC8 and SC crystalline phases of
carbon at pressures up to 5000 GPa, and hydrostatic shock Hugoniot. (b) Radial distribution functions g(r) for diamond, BC8, and liquid phase
at the diamond-BC8-liquid triple point (840 GPa, 7510 K). (MD trajectories are averaged over a 20 ps time interval.) (c) Density difference
�ρ = ρs − ρl between solid (s) and liquid (l) phases (top panel) and average coordination number of carbon atoms (bottom panel) as a
function of pressure along the melting lines of diamond and BC8. �ρ = 0 corresponds to melting line maxima: diamond—at 500 GPa;
BC8—at 1300 GPa.

Once the database is constructed, the SNAP model for the
total potential energy, stress tensor components, and atomic
forces is trained using machine learning techniques to de-
termine SNAP parameters α and β through minimization
of an objective function—a sum of the normalized squared
differences between DFT and SNAP energies, stresses, and
atomic forces (Fig. S2) [58]. The training is performed in
a series of iterations. For a given set of weights, the SNAP
parameters α and β are determined through weighted linear
regression as implemented in the FitSNAP package [61]. The
weights are then optimized to minimize the objective function
using a genetic algorithm (GA) within the DAKOTA software
package [62]. At every step of GA minimization FitSNAP
is called with the current set of weights to determine new
α and β, which are then fed back to update the objective
function being minimized (Fig. S2) [58]. The iterations stop
when the GA minimization converges to a final set of weights.
In addition to group weights, the SNAP hyperparameters rcut

and J are optimized in an offset fashion to find the right bal-
ance between SNAP accuracy and computational efficiency
(Fig. S2 [58]). The final values for the SNAP hyperparameters
are rcut = 2.7 Å and J = 4. The resultant quality of SNAP
training is discussed in the Supplemental Material [58].

The critical part of SNAP potential development is a
thorough validation of SNAP MD results against QMD and
experimental data. Only one to three QMD frames per (P, T )
state were included in the SNAP training database. There-
fore, simulating these states with SNAP using much larger
simulation cells and performing thermodynamic averaging of
atomic trajectories containing tens of thousands of frames to
obtain stresses, densities, internal energies, as well as radial
distribution functions is considered as a rigorous validation
test against QMD. Further, these validation simulations sam-
ple a variety of pressure/temperature points not included in
the database but still within the SNAP’ s intended interval of
pressures (from 50 to 5000 GPa) and temperatures (from 0

FIG. 3. Carbon shock Hugoniot calculated by QMD and SNAP
and compared with experimental data. (a) Us-Up Hugoniot, and
(b) pressure-density Hugoniots. Points correspond to experimental
data.
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FIG. 4. (a) Comparison of diamond melting curves calculated by three methods: QMD two-phase (solid line), SNAP two-phase (dashed
line), and direct melting of 1-million-atom polycrystalline sample using SNAP (stars). (b) Time progression of polycrystalline sample melting
at 600 GPa and 7750 K. The sample is initially composed of crystalline diamond regions (blue) separated by grain boundaries (light blue).
Liquid regions (red) emerge at the grain boundaries, grow in size, and eventually consume the isolated diamond crystallites.

to 20 000 K). SNAP transferability is demonstrated by good
agreement with both QMD and experiment.

The important validation test is concerned with car-
bon phase diagram, including melting lines of several
high-pressure phases at pressures up to 5000 GPa [see
Fig. 2(a)]. A series of isobaric-isothermal NPT two-phase
MD simulations were run at a given pressure but varying tem-
perature to determine the P-T value of the phase coexistence
[59]. SNAP melting lines are in excellent agreement with
those from QMD, the average temperature error being ∼200 K
or 3% in a pressure interval from 0 to 5000 GPa. Figure 2(b)
displays SNAP and QMD radial distribution functions g(r) at
the diamond-BC8-liquid triple point: They are almost indis-
tinguishable from each other.

A remarkable property of carbon at extreme conditions
is the negative slope (dT/dP) of diamond and BC8 melting
lines at high pressures [25,30–33,36]. This is because liquid
carbon becomes denser than the corresponding solid phase
upon increase of pressure above ∼500 GPa for diamond and
∼1300 GPa for BC8 [see Fig. 2(c)]. This can be traced back
to a significant increase of carbon packing in the liquid as
carbon atom coordination changes from less than 4 to higher
values [see Fig. 2(d)]. SNAP accurately predicts this subtle
change in density upon an increase of pressure as well as
a corresponding pressure-dependent evolution of the average
coordination of carbon atoms [Fig. 2(d)], which is in an
excellent agreement with QMD. The latter is a result of a
“snap-on” agreement between QMD and SNAP radial distri-
bution functions for both diamond and BC8 over a large range
of pressures (Fig. S4 [58]).

Another validation test of great experimental importance is
the prediction of the carbon shock Hugoniot, which passes
through both solid and liquid parts of the phase diagram
[Fig. 2(a)]. The Hugoniot points are calculated in a hydro-
dynamic approximation by ignoring crystalline anisotropy in
a series of MD simulations at a given pressure P but varying
temperature T to satisfy the Hugoniot condition of conserva-

tion of mass, momentum, and energy: 1
2 (P + P0)(V − V0) =

(E − E0), where P, V , and E are the pressure, volume, and
internal energy at a given point on the Hugoniot, and P0,
V0, and E0 are those at ambient conditions of 0 GPa and
300 K. The Hugoniot in (P, T ) space is shown in Fig. 2(a), in
pressure-density (P-ρ) space in Fig. 3(b), and particle velocity
(Up)–shock velocity (Us) space in Fig. 3(a). The SNAP Hugo-
niots [red lines in Figs. 2(a) and 3] are in a very good agree-
ment with those from QMD [black lines in Figs 2(a) and 3].
Visible differences in temperature of the P-T Hugoniot at very
high temperatures [Fig. 2(a)] are due to electronic entropy ef-
fects, which are not captured by the temperature-independent
description of interatomic interactions [63].

Both SNAP and QMD Hugoniots are also in a very good
agreement with multiple experiments in a pressure range from
300 to 1500 GPa [18,20–22,24,26,27]. Some difference be-
tween SNAP/QMD and experiment at higher pressures is due
to experimental uncertainty in density, which is not measured
directly, but rather determined using an impedance matching
method [26,27]. Differences at low pressures between ex-
periment [18,21,22] and SNAP/QMD [Fig. 3(a)] are due to
crystalline anisotropy and strength effects, which are not well
described by a hydrodynamic approximation [21]. To make
a proper comparison with experiment in this split elastic-
inelastic shock wave regime, explicit large-scale SNAP MD
simulations of piston-driven shock waves are required, which
will be the focus of future work.

To demonstrate SNAP’s ability to attack problems that are
impossible to solve with QMD, we simulated melting of poly-
crystalline diamond at pressures between 50 and 1200 GPa
using a 1-million-atom sample (Fig. 4). For each pressure
point, a series of NPT simulations is performed to determine
the temperature at the onset of melting. In addition to val-
idating SNAP, this simulation also validates the two-phase
melting curve calculation. The presence of grain boundaries
suppresses superheating characteristic of single crystals: The
melting starts at the most weakly bonded defective regions
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of the sample, followed by the growth of liquid fraction at
the expense of crystalline grains, which gradually transform
to shrinking round crystallites embedded in the liquid carbon
(Fig. 4).

This Letter represents a major step towards solving the
extremely challenging but fundamentally important problem
of predictive atomic-scale simulations of carbon at extreme
pressure-temperature conditions at experimental timescales
and length scales. The quantum-accurate SNAP is a MLIP that
describes the properties of carbon at extreme pressures up to
5 TPa and temperatures up to 20 000 K, including the phase
diagram, melting curves of diamond, BC8, and simple cubic
phases of carbon and shock Hugoniots with unprecedented
accuracy within 3% of QMD results. Although the accurate
description of carbon at low pressures below 50 GPa is outside
of the scope of this Letter, the ambient pressure properties of
diamond are well described by SNAP, lattice constant, energy,
and elastic constants being in excellent agreement (within
1.5%) with those predicted by DFT (Table S2). The ground
state properties of graphene calculated by SNAP were less
accurate [58]. The development of accurate SNAP for ambient
carbon is a subject of our future work. SNAP’s linear scaling
with number of atoms, and its efficient implementation within

the LAMMPS MD simulation package [37] allows billion-atom
simulations on leadership-class high-performance computing
systems. By advancing the frontiers of classical MD simu-
lations, SNAP provides critical insights by uncovering the
fundamental atomic-scale mechanisms of the materials’ re-
sponse which are difficult or even impossible to observe in
experiment [64].
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