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Exact weak bosonic zero modes in a spin/fermion chain
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We study an exactly solvable one-dimensional spin- 1
2 model which can support weak zero modes in its ground-

state manifold. The spin chain has staggered XXZ-type and ZZ-type spin interaction on neighboring bonds and
is thus dubbed the (XXZ, Z) chain. The model is equivalent to an interacting fermionic chain by Jordan-Wigner
transformation. We study the phase diagram of the system and work out the conditions and properties of its weak
zero modes. In the fermion chain representation, these weak zero modes are given by even-order polynomials
of Majorana fermion operators and are thus bosonic. The fermionic chain Hamiltonian contains only fermion
hopping and interaction terms and may have potential realization in experiments.

DOI: 10.1103/PhysRevB.106.L161412

I. INTRODUCTION

The appearance of edge or defect zero modes is the key
indication of topological phases for which a complete classifi-
cation has been obtained in free fermionic systems [1]. Among
these zero modes the most fundamental is single Majorana
zero modes [2,3], for which a few superconducting toy models
were proposed, including the Kitaev p-wave superconducting
chain [4] and some composite models [5]. In free fermionic
systems, the zero modes are given by first-order fermionic op-
erators that commute with the Hamiltonian itself. According
to a classification by Alicea and Fendley [6], such operators
are strong zero modes. For real systems in which interactions
cannot be neglected, strong zero modes are difficult to find
and write down explicitly [7] and the results of topological
phases for free systems cannot apply directly [1]. In these
systems, more common types of zero modes are weak zero
modes, which are operators that commute with the Hamil-
tonian projected onto a subspace of the Hilbert space [6,8].
From a broader perspective, a weak zero mode is degeneracy
of some of the eigenstates of the Hamiltonian, instead of
all the eigenstates as for strong zero modes. Although weak
zero modes were studied in various systems including the
Majorana zero modes associated with vortices and edges in
the (bosonic) Kitaev-type chiral spin liquids [9–12] and some
one-dimensional systems [13,14], the general nature of such
degeneracy is still unclear; for example, it is interesting to ask
whether the statistics of weak zero modes in fermionic sys-
tems is necessarily fermionic and how the weak zero modes
are localized.

In this work we study an exactly solvable one-dimensional
spin- 1

2 chain which has an equivalent interacting fermion-
chain representation by Jordan-Wigner (JW) transformation
[15,16]. The model is solved exactly using another Jordan-
Wigner transformation in a rotated basis [17,18]. By exam-
ining its physical states, which are described by fermions
coupled to static Z2 variables, we show that ground-state
weak zero modes appear on the edges of the chain in some

phases of the model. Such weak zero modes can be exactly
written down in both the spin-chain and fermion-chain rep-
resentations. Moreover, the fermion-chain representation is a
simple interacting model; compared with previously studied
models for weak zero modes [13,14,19] in which sometimes
superconducting terms and fermion interaction terms coexist
in the Hamiltonian, the simplicity of our model facilitates
potential realizations in experiments. The weak zero modes
in the fermion chain are given by polynomials of Majorana
operators and thus represent a particle-hole type degeneracy
in certain subspaces of the physical Hilbert space [18]. De-
pending on the order of the polynomials, these weak zero
modes are not necessarily fermionic; in our case the weak zero
modes are bosonic since the polynomials contain only even-
order terms. Many previous proposals of exactly solvable
or quasi-exactly solvable one-dimensional (1D) interacting
models have fermionic zero modes [18–21]. On the contrary,
our results show that weak zero modes in fermionic systems
can be bosonic. As can be seen later, the construction of our
model can generalize to other models containing weak zero
modes.

II. THE MODEL AND ITS SOLUTION

To introduce the model, we start with a spin- 1
2 chain of

finite length, the spins are labeled by integer n which goes
from 1 to 2N (N is a large integer). The spins interact with
their nearest neighbors by a staggered XXZ and ZZ coupling,
one unit cell of the model consists of two sites (2n − 1, 2n).
The Hamiltonian of the spin chain is given by

H =
N∑

n=1

[
Jn

(
σ x

2n−1σ
x
2n + σ

y
2n−1σ

y
2n

) + Knσ
z
2n−1σ

z
2n

]

+
N−1∑
m=1

K̃mσ z
2mσ z

2m+1, (1)
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FIG. 1. The lattice of the (XXZ, Z) spin-chain model. The black
bonds indicate the ZZ spin coupling and the green bonds are the
XY spin coupling. For the fermionic representation of the model,
the black bonds indicate the fermion interaction terms and the green
bonds represent the fermion hopping terms.

in which Jn and Kn give the XXZ coupling strength on bonds
(2n − 1, 2n) and K̃m gives ZZ coupling strength on bonds
(2m, 2m + 1), as shown in Fig. 1. The model is thus referred
to as the (XXZ, Z) spin chain. It is easily seen that the spin
Hamiltonian (1) has conserved Ising bilinears in every unit
cell, namely, [σ z

2n−1σ
z
2n,H] = 0 for all n. These conserved

variables imply that the Hilbert space is divided into indepen-
dent Krylov subspaces, the number of which scales linearly
with the size of the system [22].

The spin chain model (1) can be transformed into a
fermionic chain by Jordan-Wigner transformation [15,16]. To
this end we introduce a fermion c†

i for every spin σ i and

require σ+
i = c†

i (−1)
∑i−1

j=1 c†
j c j as well as σ z

i = 2c†
i ci − 1, under

which the original spin model (1) becomes

H =
N∑

n=1

[2Jn(c†
2n−1c2n + c†

2nc2n−1)

+ Kn(2c†
2n−1c2n−1 − 1)(2c†

2nc2n − 1
)
]

+
N−1∑
m=1

K̃m(2c†
2mc2m − 1)(2c†

2m+1c2m+1 − 1). (2)

This is a simple interacting fermionic Hamiltonian; its kinetic
hopping terms vanish for every second bond (see Fig. 1) and
the fermions interact by their density fluctuations, possibly
with respect to a uniform positive charge background (of 1

2
per site). Experimentally, the fermionic model can possibly
be realized in Su-Schrieffer-Heeger systems [23] with Peierls
instability in which the translational symmetry is broken such
that fermion hopping can be neglected for every second bond,
although interaction between neighboring sites cannot be ne-
glected.

The spin chain Hamiltonian (1) and the fermionic Hamil-
tonian (2) form the two representations of the same model.
The two representations enjoy a one-to-one correspondence
between their Hilbert space and eigenstates, hence the phys-
ical properties such as degeneracies are identical. The model
(1) can be solved by another Jordan-Wigner transformation
in a rotated basis (x, y, z) → (y, z, x) [17,18]; to this end
we introduce another set of fermions di and define σ

y
i =

(di + d†
i )(−1)

∑i−1
j=1 d†

j d j , σ z
i = i(di − d†

i )(−1)
∑i−1

j=1 d†
j d j as well

as σ x
i = 2d†

i di − 1. It simplifies the problem to decouple the di

fermions into Majorana fermions ηα
i and η

β
i by d†

i = 1
2 (ηα

i +
iηβ

i ). In terms of the Majorana fermions the new Jordan-

FIG. 2. The model is solved by a rotated Jordan-Wigner trans-
formation. Majorana bilinears that commute with the Hamiltonian
are denoted by green dashed lines, which in turn form the static Z2

variables. The solution is a Majorana hopping model, connected by
orange and black lines, coupled with static Z2 variables.

Wigner transformation can be written as

σ x
i = −iηα

i η
β
i , σ

y
i = ηα

i

i−1∏
j=1

(
iηα

j η
β
j

)
,

σ z
i = η

β
i

i−1∏
j=1

(
iηα

j η
β
j

)
. (3)

Using the transformation (3), the original spin model (1) can
be written as

H =
N∑

n=1

[
Jn

(
iηα

2n−1η
β

2n

)(
iηβ

2n−1η
α
2n

) + Jniηβ

2n−1η
α
2n

− Kniηα
2n−1η

β

2n

] +
N−1∑
m=1

K̃m(−i)ηα
2mη

β

2m+1. (4)

In this Majorana Hamiltonian we notice that the Majorana
bilinears iηα

2n−1η
β

2n commute with the Hamiltonian; therefore,

a static Z2 variable τn = iηα
2n−1η

β

2n can be introduced for every
unit cell corresponding to the conserved Ising bond-operators
in the spin representation. The Majorana Hamiltonian is il-
lustrated in Fig. 2. With these definitions, the Hamiltonian is
finally written as

H =
N∑

n=1

[Jn(1 + τn)iηβ

2n−1η
α
2n − Knτn]

+
N−1∑
m=1

K̃m(−i)ηα
2mη

β

2m+1, (5)

which takes the form of a Majorana hopping model coupled
with static Z2 variables. To determine the physical eigenstates
of the model, one first takes a set of {τn}, under which the
Hamiltonian becomes a Majorana hopping model; fermion
eigenstates can then be worked out accordingly, and the phys-
ical eigenstates of the model take the form of |ψ〉E = |τn〉 ⊗
|ηα,β

E 〉{τ }. Every distribution of the Z2 variables and its corre-
sponding fermionic space can be understood as an invariant
sector (Krylov subspace) of the Hilbert space. All physical
eigenstates of the model can be worked out sector by sector.
The model can also be solved using the SO(3) Majorana rep-
resentation by introducing three Majorana fermions for each
spin, which is expected because of the equivalence between
Jordan-Wigner transformation and the SO(3) Majorana repre-
sentation [11,24–26].
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III. PHASE DIAGRAM

The model (4) is invariant under all the Jn and K̃n changing
signs, accompanied by η

β

2m+1 → −η
β

2m+1 for all m. In light
of this symmetry, to simplify further treatment of the Hamil-
tonian (5) we take all the parameters K̃m ≡ −1 and assume
that all Jn and Kn are constants, namely, Jn ≡ J and Kn ≡ K .
Among all the physical eigenstates of the model, we are most
interested in the ground state. To look for the ground state,
it is noteworthy that the solution of our model shares some
similarities with the Jordan-Wigner transformation solution
of the Kitaev honeycomb model [27,28]; there the static Z2

variables are located on one of the three types of bonds. Such
similarity allows us to borrow the results from the Kitaev
honeycomb model and make the assumption that the ground
state lies in the sectors in which all τn are equal [9,29]. In other
words, the ground state is searched for in two sectors {τn ≡ 1}
and {τn ≡ −1}. The sector that contains the ground state is
then referred to as the ground-state sector.

Under these assumptions the Hamiltonian (5) becomes

H =
N∑

n=1

[
J (1 + τ )iηβ

2n−1η
α
2n − Kτ

] +
N−1∑
m=1

iηα
2mη

β

2m+1. (6)

To find the ground-state energy, we pair up η
β

2n−1 and ηα
2n in

each unit cell to define a complex fermion f †
n = 1

2 (ηβ

2n−1 +
iηα

2n). Due to the translational invariance of the Hamilto-
nian (6), a Fourier transformation can be performed, f †

n =
1√
N

∑
k f †

k eikn. In momentum space, the Hamiltonian (6) is
given by

H = −NKτ +
∑

k

(
f †
k f−k

)
Ĥk

(
fk

f †
−k

)
, (7)

in which

Ĥk =
(

cos k − J (1 + τ ) −i sin k
i sin k J (1 + τ ) − cos k

)
. (8)

The eigenvalues of the matrix Ĥk are Ek =
±

√
1 + J2(1 + τ )2 − 2J (1 + τ ) cos k. As the number of

unit cells N → ∞, the ground-state energy density is given
by the integral

E0

N
= − 1

2π

∫ π

−π

dk
√

1 + 4J2 − 4J cos k − K (9)

for the τ ≡ 1 sector and

E0

N
= K − 1 (10)

for the τ ≡ −1 sector. To determine which sector has the
lowest ground-state energy one needs to compare these two
values for each J and K .

We now turn to discuss the possible zero modes in the
Majorana hopping model in every sector. To do so, it helps
to consider the chain as located on a closed circle. As can
be seen from the Hamiltonian (5) the edge corresponds to a
single broken K̃ bond. The ground-state sector can only have
edge zero modes since we assumed that it does not break
translational invariance. For the excited states sectors, the
situation varies according to the distribution of τn; for some of

the distributions the chain can have broken J–K bonds (when
τn = −1 on that bond), causing defects for the corresponding
Majorana hopping model. In these excited-state sectors, the
possible Majorana zero modes are complicated, but can still
be exactly written down. We have the following results on its
edge zero modes for the translationally invariant sector and
defect zero modes in the excited-states sectors.

(i) If the ground state of the model is in the sector
τn ≡ −1, then we have strictly localized Majorana zero modes
η

β

1 and ηα
2N on both edges of the chain. As can be seen in the

Hamiltonian (6), this case is effectively equivalent to J = 0.
We call this type of edge zero modes type-I zero modes and
such a phase is referred to as phase A. The ground state of the
model is degenerate in phase A.

(ii) If the ground state of the model is in the sector τn ≡
1, the Majorana hopping model from the Hamiltonian (6)
becomes a first-order model as defined in Ref. [5] and we
have two situations for its Majorana zero modes. (1) When
|J| < 1

2 , there are localized edge Majorana zero modes on
both ends whose wave function is exponentially decaying into
the system [5]. We refer to this kind of edge zero modes as
type-II zero modes and the phase as phase B. For excited
states in other sectors without translational invariance some
of the bonds have τn = −1, but no defect zero modes are
associated with these bonds. (2) When |J| > 1

2 , there is no
localized edge zero modes in the ground-state sector. How-
ever, localized defect zero modes exist around τ a

n = −1 bonds
in other excited-state sectors, provided that these defects are
well separated from each other. This phase is called phase C.
The ground state is not degenerate in phase C.

Unlike type-I zero modes, whose existence implies exact
degeneracy among the states within its sector, type-II zero
modes and other defect zero modes whose wave functions
are not strictly localized means that the states are only ap-
proximately degenerate. For all sectors, the split between
(potentially degenerate) energy levels, which exponentially
decays with the distances between these zero modes, can
only be taken as vanishing when the τn = −1 bonds are well
separated from each other. It is thus impossible to write down
a universal operator that commutes with the original Hamil-
tonian (5) and brings degeneracy in all sectors. Therefore
both type-I and type-II edge zero modes are weak zero modes
[6,8], which only imply degeneracy in certain subspaces (or
sectors) of the Hilbert space. After numerically evaluating
the ground-state energies in the two translationally invariant
sectors, we arrive at the phase diagram Fig. 3.

IV. WEAK BOSONIC ZERO MODES

To understand the nature of the two types of zero modes,
we consider a simple XXZ model of a two-spin system whose
Hamiltonian is H = J (σ x

1 σ x
2 + σ

y
1 σ

y
2 ) + Kσ z

1σ z
2 . It has two

degenerate eigenstates | ↑↑〉 and | ↓↓〉, with energy K ; the
other two eigenstates of the model are 1√

2
(| ↑↓〉 + | ↓↑〉) with

energy 2J − K , and 1√
2
(| ↑↓〉 − | ↓↑〉) with energy −2J − K .

The pair of degenerate states with energy K corresponds to
the type-I zero mode in our original model (1), which is
strictly localized in d-fermion language, but strictly nonlocal-
ized in spin language and c-fermion language. Moreover, the
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FIG. 3. Phase diagram of the model with respect to coupling J
and K . Phase A has type-I edge zero modes. Phase B has type-II
edge zero modes and phase C has no edge zero modes.

degenerate ground states of the original spin model are | ↑↑↑
· · · ↑〉 and | ↓↓↓ · · · ↓〉 in phase A because we have trans-
lations from Majorana fermions back to the spin operators
ηα

i = σ
y
i

∏i−1
j=1(−σ x

j ) and η
β
i = σ z

i

∏i−1
j=1(−σ x

j ). Specifically

for type-I Majorana zero modes in phase A we have η
β

1 → σ z
1

and ηα
2N → iσ z

2N

∏2N
j=1 σ x

j , which give the zero-mode opera-
tors in spin language. Although the product operator

∏
σ x

i
commutes with the spin Hamiltonian (1), this does not lead
to strong zero modes just like in the two-spin XXZ model.
As for type-II zero modes in phase B, we focus on the two
nondegenerate states in the two-spin model. Upon enlarging
the length of the spin chain, these two states evolve into a
spin-wave-like band of eigenstates and the type-II zero modes
exist in this band. The condition for the existence of the type-II
zero modes is exactly given by the topological condition of the
Kitaev chain [4,5,30], such a condition distinguishes phase B
and phase C.

To go to the c-fermion language for the fermionic repre-
sentation of the model (2), we first decouple the c fermion
into Majorana fermions, ci = 1

2 (γ α
i − iγ β

i ). The transforma-
tion between the two types of Majoranas can be obtained by
noting that σ z

i = iγ β
i γ α

i , as well as ηα
i = γ α

i γ
β
i

∏i
j=1(−σ x

j )

and η
β
i = iγ β

i γ α
i

∏i−1
j=1(−σ x

j ). In general the transformation
between η and γ Majorana fermions can be worked out. To
this end, we have ηα

n is a product of n γ Majorana fermions,
namely,

ηα
2m = −(i)mγ

β

1 γ α
2 · · · γ β

2m−1γ
β

2m,

ηα
2m+1 = (i)mγ α

1 γ
β

2 · · · γ β

2mγ
β

2m+1. (11)

In addition, ηβ
n is a product of n + 1 γ Majorana fermions

η
β

2m = −(i)mγ α
1 γ

β

2 · · · γ β

2m−2γ
α
2m−1γ

β

2mγ α
2m,

η
β

2m+1 = (i)m+1γ
β

1 γ α
2 · · · γ α

2mγ
β

2m+1γ
α
2m+1. (12)

Therefore, the type-I zero mode, which is a product of γ

Majorana fermions from all sites, is strictly nonlocalized.
The type-II zero modes whose wave function is exponentially
decaying into the system are given by ζ

β
L = ∑N

n=1 λ̃2n−1η
β

2n−1,
which is localized on the left end of the chain and ζ α

R =∑1
n=N λ̃′

2nη
α
2n, which is localized on the right end of the chain.

They are both translated into polynomials of γ Majorana
fermions [18]; they imply that the states of the projected
subset of the Hilbert space are paired up into degenerate
pairs—for every pair the fermion occupation of one state is
related to the other by the Majorana polynomial. In our model
the Majorana polynomials on both ends involve only even-
order terms of γ Majorana fermions, indicating that these zero
modes are bosonic in the c-fermion language. In other words,
the two degenerate states connected by the weak zero mode
have the same fermion parity. This is understandable because
the static Z2 variables τn are given by fermion parity in each
unit cell τn = −(−1)n2n−1+n2n in the c-fermion language, with
ni being the occupation number on site i; these static Z2 vari-
ables classify the subset of the Hilbert space, thus the weak
zero modes in each subset must commute with the τn operators
and fermion parity. Also notice that the polynomials involve
terms that are macroscopic order of γ Majorana fermions so
that the locality of the weak zero modes has some subtleties
[31].

V. CONCLUSION

To summarize, we studied an exactly solvable spin chain
which has a dual description of interacting fermions in one
dimension. The model possesses weak bosonic zero modes
in some sectors of the Hilbert space, which can potentially
be probed in photoabsorption experiments. Future studies
on this model can generalize the discussion beyond the
translational invariance assumption and consider the possi-
ble defect-induced zero modes. Moreover, influences of other
terms that bring the Hamiltonian away from the exactly solv-
able point are interesting to explore; in particular, adding
Zeeman terms (

∑
n hnσ

z
n ) in the original spin model (1) pre-

serves the conserved Ising bond-operators and thus is worth
considering. The duality transformation between Majorana
and bosonic polynomial zero modes is possible only for one-
dimensional systems thanks to the JW transformation between
bosonic and fermionic degrees of freedom. Nevertheless, the
results unveil some properties of weak zero modes in real
systems in which interactions are included; in particular, the
solution exemplifies that the weak zero modes in interacting
systems can be nonlocal and also bosonic despite being a
model of fermions. Looking forward, the structure of the
model can be used to construct other models possessing weak
zero modes. The first step is enlarging the Hilbert space by
bringing in extra static degrees of freedom, which are then
coupled to the original (free) topological model as tuning
parameters. In this way different phases of the original free
model can potentially be realized in the same model.
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