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Magnetoconductance oscillations in electron-hole hybridization gaps
and valley splittings in tetralayer graphene
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We investigate magnetotransport on Bernal-stacked tetralayer graphene whose band structure consists of two
massive subbands with different effective masses. Under a finite displacement field, we observe the valley
splitting of Landau levels (LLs) only in the light-mass subband, consistent with a tight-binding model. At low
density, we find unexpected magnetoconductance oscillations in bulk gaps which originate from a series of
hybridizations between electronlike and holelike LLs due to band inversion in tetralayer graphene. In contrast to
a trivial LL quantization gap, these inverted hybridization gaps can lead to a change in the number of edge states
which explains the observed oscillations.
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The electronic properties of Bernal-stacked tetralayer
graphene (4LG) have been shown to exhibit many intriguing
phenomena such as insulating states [1], interlayer interac-
tions [2], tunable Lifshitz transitions [3], helical edge states
[4], and unconventional satellite peaks [5]. Its band structure
features band inversion as a result of band overlap and hy-
bridization between the two bilayer-graphene-like (BLG-like)
subbands [6–8]. Bernal-stacked trilayer graphene (TLG) also
possesses a band overlap but it occurs at a narrow density
range which is hard to resolve experimentally. In addition, the
subbands in TLG only hybridize in the presence of a perpen-
dicular electric field, while those in 4LG always hybridize due
to the next-nearest interlayer hopping parameters [8].

The band inversion in 4LG provides a unique platform to
study the quantum Hall effect (QHE) in a regime in which
both electronlike and holelike states coexist. Previously, the
energy inversion of electronlike and holelike Landau levels
has been engineered by an electric field or both in-plane
and out-of-plane magnetic fields to form helical edge states
[4,9,10]. Some of the two-dimensional quantum wells also
host an inverted electron-hole system which, under a magnetic
field, reveals novel aspects of QHE [11,12] and the quantum
spin Hall effect [13–18].

In this Letter, we investigate the magnetotransport proper-
ties of 4LG encapsulated by hexagonal boron nitride (hBN).
The electronic band structure of 4LG can be characterized
by a set of hopping parameters γ0–γ5 [Fig. 1(a)] and an
energy imbalance between dimer and nondimer sites δ [8].
The low-energy band structure of 4LG, shown in Fig. 1(b),
comprises two BLG-like subbands with different effective
masses [8,19,20]. We denote the light-mass subband by b and
the heavy-mass subband by B. The presence of skewed lattice
sites hopping γ3 induces trigonal warping. The next-nearest
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interlayer hopping parameters γ2 and γ5 cause the b and B
subbands to overlap and hybridize at low energy as shown in
Fig. 1(b) [3,8]. The remaining hopping parameters γ4 and δ

generate electron-hole asymmetry in the band structure.
In our devices, we use a dry transfer technique to assemble

the heterostructures and etch them in a CHF3/O2 plasma.
Edge contacts are defined by electron beam lithography and
formed by sputtering 80-nm Mo [21]. The standard lock-in
technique is used to investigate the magnetotransport prop-
erties. All measurements are performed at 2.4 K unless stated
otherwise. Figure 1(c) shows an optical image and a schematic
diagram of a device.

We first examine two-terminal conductance g as a function
of backgate voltage VBG at magnetic field B = 0 [Fig. 1(d),
black line]. We find that the conductance curve exhibits mul-
tiple local minima, which are associated with band edges and
Lifshitz transitions near zero energy in the band structure of
4LG as shown in Fig. 1(b) [3,22]. At finite B, we observe
conductance oscillations in VBG due to the QHE [Fig. 1(d)].
Our conductance does not develop into well-defined plateaus
even at 7 T, likely due to a relatively high contact resistance
(∼1 k�) and geometry effect on two-terminal conductance
which leads to the distortion of the QH plateaus [23,24].
At high field, the conductance exhibits a single minimum to
which we associate the charge neutrality point (CNP) of the
sample. A near-zero gate voltage for the CNP indicates the
pristine quality of our samples.

To further investigate the magnetotransport properties of
the system, we measure g as a function of VBG and B
[Fig. 2(a)]. Charge carrier density n is determined from the
period of conductance oscillations at high B. The Landau
fan diagram displays rich features associated with LLs from
the b and B subbands. To see the oscillations more clearly,
we calculate dg/dn [Fig. 2(b)]. The dark lines correspond
to energy gaps with associated filling factors ν shown in the
figure. Multiple LL crossings are evident. For instance, the
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FIG. 1. (a) Crystal structure of 4LG. The purple dashed lines in-
dicate two hopping sites for γi parameters. (b) Band structure of 4LG
from the TB model. The heavy- and light-mass bands are labeled as
B (red) and b (blue), respectively. The lattice constant a is 0.246 nm.
(c) Left: An optical image of an encapsulated 4LG device. Scale bar,
2 μm. Right: Schematic diagram illustrating a cross-sectional view
of the 4LG device. (d) Two-terminal conductance as a function of
VBG at 0 (black), 3 (pink), and 7 T (green), respectively.

dark line for ν = 12, seen clearly at 7 T, disappears at about
5 T and reemerges again at 3 T. The absence of the dark line
for ν = 12 between 3 and 5 T is the result of the LL crossing.

To gain a better understanding of the Landau fan diagram,
we calculate energies of LLs as a function of B using the
tight-binding (TB) model [Fig. 2(c)]. In this plot, we assume
that the potential difference between layers is zero and use
γ0 = 3.1, γ1 = 0.39, γ2 = −0.022, γ3 = 0.315, γ4 = 0.12,
γ5 = 0.018, and δ = 0.020 eV. These TB parameters are de-
termined by matching the LL crossing positions from the
experiment at low density with those from the calculation
[25]. We note that our device has a single gate. As we induce
a higher carrier density via the backgate, 4LG is inevitably
subject to a stronger displacement field which induces a larger
potential difference between layers. Therefore, our simulation
gives a good agreement with data from low density at which
the potential difference is still small.

From the spectra, LLs of 4LG at high B can be viewed as
a combination of two sets of BLG-like LLs from the b and B
subbands [8,26]. At high energy, a LL energy is approximately
linear in B, as expected from bilayer nature of the subbands.
The energy spacing of the LLs from the light-mass band b
is larger than that of the heavy-mass band B because the
cyclotron frequency is inversely proportional to the effective
mass. The mixing between LLs due to γ2 and γ5 parameters
and the trigonal warping effect from the γ3 parameter leads
to hybridization gaps, more visible at low energy [8]. We
label each LL in Fig. 2(c) with two indices, indicating the
subband (B or b) and LL index n (n+ for electronlike and
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FIG. 2. (a) Conductance as a function of n and B. (b) dg/dn numerically calculated from data in (a). The numbers at the right border
indicate filling factors. (c) LL spectra in 4LG calculated from the TB model. The filling factors associated with some energy gaps are labeled.
The labels at the right border denote quantum states for each LL. At high field, LLs from the b and B subbands are in blue and red, respectively.
At low field, LLs from both subbands are in black due to LL hybridization. (d) Calculated density of states of 4LG as a function of n and B.
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FIG. 3. (a) LL energies of the bulk 4LG as a function of B with a
potential difference between adjacent layers of 16 meV. The black
and red lines are LLs for K and K ′, respectively. (b) Calculated
density of states of the LLs in (a) as a function of n and B.

n− for holelike LLs). For the zeroth index LL, we label them
as (b/B, 0) and (b/B,−1). These two LLs are degenerate in
bilayer graphene but the degeneracy is slightly lifted in 4LG
with a small energy gap of ∼2 meV at 7 T. The numbers
inside the LL energy gaps in Fig. 2(c) indicate values of ν

associated with the gaps. Each LL has fourfold spin and valley
degeneracy [8].

To compare our data with the calculation, we simulate the
density of states as a function of B and n from the LL spectra
in Fig. 2(c) to obtain the plot in Fig. 2(d). Here, we assume
a Lorentzian line shape for each LL with a broadening of
1.5 meV, estimated from a LL gap from the b subband at the
onset of the oscillations of 0.5 T [Fig. 2(b)]. The simulation
captures the main features of the experimental data in Fig. 2(b)
such as the positions of LL crossing at low density and a posi-
tion of the horizontal line in the electron side which originates
from the zeroth LL of the light-mass band.

However, some discrepancies exist between our data and
simulation. In our data, some LLs are twofold degenerate. For
example, in Fig. 2(b) at 6 T, we observe the filling factor
sequences of {8, 10, 12} and {24, 26, 32} which imply LLs
with degeneracies of 2 and 6. Comparing the positions of these
LLs with the LL spectra in Fig. 2(c), we conclude that each of
the fourfold degenerate (b, 0) and (b, 1+) split into two LLs
with twofold degeneracy while the LLs from the B subband
remain fourfold degenerate. The sixfold degeneracy observed
when filling factors change from 26 to 32 is the result of LL
crossing between the twofold degenerate LL from the splitting
of (b, 1+) and the fourfold degenerate (B, 5+).

In 4LG, a twofold degenerate LL can occur by applying a
displacement field to generate a potential difference between
layers which breaks inversion symmetry and lifts valley de-
generacy. To capture the effect of the potential difference on
LLs, we simulate LL spectra using a constant value of the
potential difference between adjacent layers of 16 meV and
the same set of hopping parameters used in Fig. 2(c). We note
that, in our measurement, the value of potential difference will
vary as we change density (see more details in the Supple-
mental Material [27]). The black and red lines in Fig. 3(a)
represent LLs from the K and K ′ valleys, respectively. The
valley splittings of the LLs from the B subband are much
smaller than LL broadening and therefore they continue to
appear fourfold degenerate in our measurement. However,
the splittings are much more pronounced for LLs from the

b subband, consistent with the data in which the LL splittings
are observed in the b subband only. Although we can explain
most observed features within a single-electron picture, we
cannot completely rule out interaction-induced LL splitting.
For example, the (b, 0) and (b,−1) are so close in energy
that they should experience a similar value of the potential
difference. However, we observe the splitting of (b, 0) but
not (b,−1) which may suggest that other symmetry-breaking
mechanisms are involved.

A more surprising discrepancy between our data and the
simulation occurs at zero filling factor. Figure 4(a) shows a
plot of dg/dn at low n and B while Fig. 4(b) displays g at
n = 0 as a function of B at various temperatures. We observe
oscillations in magnetoconductance clearly along the zero
density in all three devices we have measured (see data in the
Supplemental Material [27]). Typically, the conductance os-
cillations in QHE occur when the Fermi energy passes through
a LL. However, from the calculation of the LL spectra from
the TB model [Fig. 4(c), black lines], there is no LL crossing
inside ν = 0. As a result, the conductance should exhibit no
oscillation in B at ν = 0, contradicting our results.

To resolve this discrepancy, we examine the complex na-
ture of low-energy LL spectra. Due to the band inversion in
4LG at zero magnetic field [see Fig. 1(b)], hole states from
the b subband reside at higher energy than electron states
from the B subband for wave vectors around zero. As B
increases, the energies of holelike LLs decrease while those of
electronlike LLs increase. The opposite magnetic dependence
of LL energies leads to a series of crossings and anticrossings
which manifests as three adjacent LLs braided together at low
field [see Fig. 4(c), black lines]. These anticrossings, whose
energy gaps depend on γ2 and γ5 parameters, are the result of
hybridization between holelike LLs and electronlike LLs from
the b and B subbands, respectively. The braiding of three LLs
is a consequence of the trigonal warping effect from the γ3

parameter. The effect causes the anticrossings to occur when
the LL indices of the unperturbed LLs are the same or differ
by multiples of 3 [28–31].

To identify the underlying LLs that hybridize into the
braided LLs, we calculate LL spectra by setting the mixing
terms between the subbands to zero [8]. The result is displayed
in Fig. 4(c). The blue and red lines represent LLs of the b
and B subbands, respectively. Comparing the LLs with and
without the mixing terms, we find that the energy gap at ν = 0
originates from two different mechanisms with a crossover at
a critical field Bc1 of ∼2.1 T. For B > Bc1, the ν = 0 gap is
a trivial LL gap which is always present regardless of LL hy-
bridization. For B < Bc1, the ν = 0 gap emerges from a series
of hybridizations between holelike (b, i−) and electronlike
(B, i+) for i = 1, 2, . . ..

Let us focus on a ν = 0 gap at Bc1 arising from the hy-
bridization between (b, 1−) and (B, 1+). At B<

c1 < Bc1, the
hybridized LLs at higher energy (solid blue star) and lower
energy (solid red triangle) in Fig. 4(c) are mostly dominated
by holelike (b, 1−) and electronlike (B, 1+), respectively. As
we increase B beyond Bc1, the admixture of each hybridized
LL gradually changes and the situation becomes reversed.
Now, the higher-energy LL (open red triangle) evolves into
the electronlike (B, 1+) while the lower-energy LL (open blue
star) turns into the holelike (b, 1−). Therefore, as we increase
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FIG. 4. (a) Color map of dg/dn at low n and B. The integer numbers indicate filling factors of the dark diagonal lines. (b) Conductance
oscillations at n = 0 as a function of B at various temperatures. The temperature at which the oscillations disappear (∼20 K) is consistent with
the size of the ν = 0 gap. (c) The bulk LL spectra of 4LG (black lines). The blue and red lines are LL spectra of b and B subbands, respectively,
calculated without band hybridization. (d) Diagrams of LL edge states at B<

c1 and B>
c1, indicated by pink and orange lines in (c). We omit the

zeroth LLs (B, 0) and (B, −1) (two red horizontal lines).

B, the characteristic of the higher-energy LL switches from
an electronlike to holelike LL while that of the lower-energy
LL changes from a holelike to electronlike LL. As a result,
the edge states change their behavior significantly across a
hybridization gap.

Figure 4(d) illustrates the edge state diagrams at B<
c1 and

B>
c1, indicated by pink and orange lines in Fig. 4(c). Due to a

confining potential, the energy of an electronlike LL will bend
up near the edge while that of a holelike LL will bend down.
At B>

c1 [Fig. 4(d), right], an energy ordering of the LLs is a
conventional one in which the electronlike (B, 1+) has higher
energy than the holelike (b, 1−). In this case, the energies
of both LLs will bend away from each other near the edge.
Therefore, these two LLs do not contribute any edge state to
the system at ν = 0. However, at B<

c1, we have an inverted
energy ordering of the LLs in which the energy of holelike
(b, 1−) is higher than that of the electronlike (B, 1+) in the
bulk. Near the edge, their energies will bend toward each
other [down for (b, 1−) and up for (B, 1+)] [Fig. 4(d), left].
We therefore obtain two counterpropagating edge states even
though the filling factor is zero in the bulk. We note that these
counterpropagating edge states are likely not helical since they
can interact via mixing terms. As a result, we expect an energy
gap to open at the crossing.

As we lower B further, we encounter another hybridization
gap between (b, 2−) and (B, 2+) at Bc2 ∼ 1.2 T [Figs. 4(a)–
4(c)]. With the same argument as the Bc1 case, the number of
edge states will increase from 2 to 4 when B drops below Bc2

because two holelike (b, 1−) and (b, 2−) now sit at a higher
energy than two electronlike (B, 1+) and (B, 2+). In general,
as we move through the hybridization gap between (b, i−) and
(B, i+), the number of edge states changes from 2(i − 1) to
2i. We find that the positions of the conductance peaks at ν =
0 in Fig. 4(b) are in excellent agreement with the theoretical
positions of Bci in Fig. 4(c) which are magnetic fields at which
a slope is zero for a hybridized LL separating ν = 0 and 4. For
B > Bc1, the energy gap at ν = 0 turns into a trivial LL gap
and there is no further inversion of electronlike and holelike
LLs for LL indices |n| � 1. Therefore, the number of edge
states stays constant and we no longer observe any oscillation
[Fig. 4(b)]. Similarly, following the ν = 12 line in Fig. 4(a),
we observe magnetoconductance oscillations when B � 1.2 T
even though the ν = 12 gap remains finite in the bulk. We
find that this ν = 12 gap below 1.2 T arises from a series of
hybridization gaps between (b, i−) and [B, (i + 3)+] while
the gap above 1.2 T is a trivial LL gap.

We therefore conclude that the oscillations arise from the
change in the number of edge states in a hybridization gap
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between electronlike and holelike LLs. We emphasize that a
hybridization gap between LLs of the same type will not lead
to an oscillation because the number of edge states remains
unchanged [30,32]. Our results show that it is not sufficient
to predict Shubnikov–de Haas oscillations from Landau level
spectra only. One needs to consider if a gap is a trivial Landau
level gap or a hybridization gap between electronlike and
holelike LLs to obtain a complete picture of the oscillations.
We expect our result to be useful for understanding Landau
level spectra of other few-layer graphene systems because of
the band inversion in their band structures.

For helical edge modes, two-terminal conductance in the
hybridization gap regime along ν = 0 should appear as steps
with quantized values of 4Ne2/h where N is the number of
edge states and a factor of 4 comes from spin and valley
degeneracy [4,9,10]. For instance, when ν = 0 and Bc2 < B <

Bc1, we expect a conductance of 8e2/h from two counter-
propagating edge states from (b, 1−) and (B, 1+) but the
measured value is less than 2e2/h. A few mechanisms could
contribute to the observed low value of conductance. Since
the edge states in our system are not helical and they counter-
propagate on the same edge, these two states could mix and
tunnel to each other. As a result, they form one-dimensional
(1D) localized states and conductance is no longer quantized
at 4Ne2/h because the edge states do not have a perfect trans-
mission [33]. An interaction between the edge states could
induce a small gap at the Fermi energy, reducing conduc-
tance further. In addition, our conductance appears oscillatory

which is likely due to the geometry effect observed in a long
sample for two-terminal measurement [23,24].

In summary, we study the magnetotransport properties of
4LG. We observe LL crossings between the b and B sub-
bands. At finite displacement field, we find that the LLs in
the b subband become valley polarized while those in the B
subband remain valley degenerate, in agreement with the TB
calculation with a finite potential difference. At low n and B,
the band inversion gives rise to a series of bulk hybridization
gaps between electron- and holelike LLs. As a result, the
alternating characteristic of the hybridized LLs between the
electron and hole states leads to a change in the number
of edge states and manifests as magnetoconductance oscilla-
tions in our measurement. Finally, our proposed mechanism
for magnetoconductance oscillations should be applicable to
other Bernal-stacked multilayer graphenes since they also host
a similar band inversion [22,34].
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