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In non-Hermitian systems, the phenomenon that the bulk-band eigenstates are accumulated at the boundaries
of the systems under open boundary conditions is called the non-Hermitian skin effect (NHSE), which is one
of the most iconic and important features of a non-Hermitian system. In this work, we investigate the fate of
the NHSE in the presence of electric fields by analytically calculating the dynamical evolution of an initial bulk
state and numerically computing the spectral winding number and the distributions of eigenstates, as well as
the dynamical evolutions. We show abundant manipulation effects of dc and ac fields on the NHSE and that the
physical mechanism behind these effects is the interplay between the Stark localization, dynamic localization,
and the NHSE. In addition, the finite size analysis of the non-Hermitian system with a pure dc field shows the
phenomenon of size-dependent NHSE. We further propose a scheme to realize the discussed model based on an
electronic circuit. The results will help to deepen the understanding of the NHSE and its manipulation.

DOI: 10.1103/PhysRevB.106.L161402

Introduction. Hermiticity of Hamiltonian has been re-
garded as a fundamental requirement in standard quantum
mechanics, and it ensures the conservation of probability
and limits energy values to be real in isolated systems.
However, many systems, such as the nonequilibrium and
open systems with gain and loss, can be effectively de-
scribed by non-Hermitian Hamiltonians. Especially in recent
years, non-Hermitian physics has attracted widespread atten-
tion in both theory [1–16] and experiment [17–24]. Various
unique features of non-Hermitian systems without any Her-
mitian counterparts have been revealed, such as exceptional
points and rings [25–34], enriched topological classifica-
tions [35–40], and the non-Hermitian skin effect (NHSE)
[7,8,10,21,41–46]. NHSE, namely that a majority of eigen-
states are localized near the boundary under open boundary
conditions (OBC), is one of the most iconic properties of non-
Hermitian systems. It drastically reshapes the bulk-boundary
correspondence principle and motivates the establishment of
a generalized Brillouin zone [7–9]. The interplay between
the NHSE and other fundamental phenomena (e.g., localiza-
tion induced by external magnetic fields, defects, disorder,
and quasiperiodic potentials [12–15,46–50]) has also attracted
widespread attention recently. On the other hand, electric field
can induce the Stark localization or dynamical localization
and is also a frequently used fundamental method to ma-
nipulate other physical effects, since it is easily realized and
controlled. However, the effect of electric fields on NHSE was
not considered before.
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Now we focus on how to manipulate NHSE by using
electric fields. If the NHSE can be fully suppressed in
the modulation process, the non-Hermitian effect may be
eliminated, and the system may have the conservation of
probability and all the eigenvalues may become real, even
though the non-Hermitian term remains. Thus manipulating
NHSE is helpful for deepening our understanding of non-
Hermitian quantum mechanics and the differences between
Hermitian and non-Hermitian physics. Moreover, mastering
how to control NHSE, we will be able to obtain or remove it
on demand. Therefore, manipulating NHSE also has practical
significance. In this work, we want to address whether electric
fields can manipulate NHSE and, furthermore, if they can,
whether richer and more interesting physics and applications
will emerge in light of this.

Model and results. We consider a one dimensional non-
Hermitian system with nonreciprocal hopping under the
influence of electric fields, and the Hamiltonian is written as

Ĥ =
∑

n

(JL|n〉〈n + 1| + JR|n + 1〉〈n|) + E (t )a
∑

n

n|n〉〈n|,
(1)

where |n〉 is the Wannier state localized on the lattice site n,
JL(JR) represents the leftward (rightward) hopping amplitude,
a is the lattice constant, being set as 1 throughout this work,
and E (t ) = eξ (t ), with e and ξ (t ) being the particle’s charge
and external electric field, respectively.

We can analytically confirm the existence or disappear-
ance of NHSE by investigating the motion of a particle; this
is because the particle initially localized in the bulk should
move toward the boundary if the NHSE exists. We first sub-
stitute an arbitrary time-dependent quantum state |ψ (t )〉 =∑

m Cm(t )|m〉 into the Schrödinger equation i∂t |ψ (t )〉 =
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Ĥ (t )|ψ (t )〉 and obtain the equation of motion for the time-
dependent amplitudes Cm(t ):

i∂tCm(t ) = JLCm+1(t ) + JRCm−1(t ) + mE (t )Cm(t ). (2)

Here we set h̄ = 1. By solving Eq. (2), for arbitrary E (t ), we
can obtain the exact solutions:

Cm(t ) =
∑

n

(−1)m−nCn(0)e−iη(t )nJm−n

× (2
√

JLJR[U2(t ) + V2(t )])

[
JR

JL

iV (t ) − U (t )

iV (t ) + U (t )

] m−n
2

.

(3)

Here Jm−n(x) is the (m − n)th order Bessel function of
the first kind, U (t ) = ∫ t

0 cos[η(t ) − η(t ′)]dt ′ and V (t ) =∫ t
0 sin[η(t ) − η(t ′)]dt ′ with

η(t ) =
∫ t

0
E (t ′)dt ′. (4)

This solution is valid for arbitrary initial bulk state |ψ (0)〉 and
arbitrary E (t ), and the calculation details are in the Supple-
mental Material [51]. To simplify the expression, without loss
of generality, we consider a specific initial state that only oc-
cupies a single Wannier lattice site n0, namely |ψ (0)〉 = |n0〉,
and then the probability at any site m after evolution time t ,
ρm(t ) = |Cm(t )|2, takes [51]

ρm(t ) = J 2
m−n0

(2
√

JLJR[u2(t ) + v2(t )])

(
JR

JL

)m−n0

, (5)

with

u(t ) =
∫ t

0
dt ′ cos η(t ′), v(t ) =

∫ t

0
dt ′ sin η(t ′). (6)

In the absence of electric fields, i.e., E (t ) = 0, from Eq. (4)
and Eq. (6), we have u(t ) = t and v(t ) = 0, yielding ρm(t ) =
J 2

m−n0
(2t

√
JLJR)(JR/JL )m−n0 , where 2t

√
JLJR linearly in-

creases to infinity and thus Jm−n0 (2t
√

JLJR) tends to 0 [52]
[see Fig. 1(a)], such that ρm/ρm−1 ≈ JR/JL when t → ∞ [51].
Therefore, the system has right (left) boundary skin mode
when JR/JL > 1 (JR/JL < 1), which is consistent with previ-
ous results [7,8,10]. The following sections will discuss three
cases: (i) the pure dc field case, (ii) the pure ac field case, and
(iii) the dc-ac mixed field case.

Pure dc electric field case. We first discuss the fate of NHSE
in the presence of a pure dc electric field, i.e., E (t ) = E0.
From Eq. (4) and Eq. (6), we have u(t ) = sin(E0t )/E0 and
v(t ) = (1 − cos E0t )/E0, and then Eq. (5) gives the probabil-
ity

ρm(t ) = J 2
m−n0

(
4
√

JLJR

E0
sin

E0t

2

)(
JR

JL

)m−n0

. (7)

Note that sin(E0t∗/2) = 0 at the time points t∗ = 2πN/E0

with N = 0, 1, 2, . . .. By using the properties of the
Bessel function [52] Jm−n0 (0) = δm−n0,0 [see Fig. 1(a)] and
(JR/JL )m−n0 = 1 when m = n0, we have that ρm=n0 (t∗) will
oscillate back to 1 whatever the initial site n0 is and this
phenomenon is called Stark localization [53], which induces
that the particle initially localized at the bulk does not move
toward the boundary. Therefore, the effect of the interplay

FIG. 1. (a) Distributions of the zeroth, first, and second order
Bessel function. We can see two characteristics used in the text: the
amplitudes of oscillation decrease with increasing x and when x →
∞, Jm(x) → 0 for any m; J0(0) = 1 and Jm(0) = 0 when m 
= 0,
so we have Jm(0) = δm,0. (b) Localization-delocalization transition
characterized by winding number for finite lattices. The inset shows
transition dc field strength Ec

0 versus 1/L, given γ = 0.77 marked
as dashed line in its parent figure. The distributions of eigenstates
with (c) L = 10 and (d) L = 20, and other parameters are γ = 0.185
and E0 = 0.3 as marked by red star in (b). Dynamical evolution of
a electron started from the lattice center under (e) the weak dc field
with E0 = 0.005 and (f) the strong dc field with E0 = 0.5, and other
parameters are L = 160 and γ = 0.769.

between the Stark localization and NHSE is that even a small
dc field is sufficient to suppress the NHSE.

The analytical results can be further confirmed by numer-
ically calculating the winding number (WN). To define the
WN, we need to introduce the twist boundary condition here,
i.e., Ĥ (
) = Ĥ + JLei
|L〉〈1| + JRe−i
|1〉〈L|, where L is the
system size and 
 is the introduced phase factor, and then the
WN reads

w = 1

2π i

∫ 2π

0
∂
 ln det[Ĥ (
) − Ec]d
. (8)

w = 1 (w = 0) corresponds to the existence (nonexistence)
of NHSE under OBC with eigenvalue around Ec [6,42,43,45],
which is set to the algebra average of the spectrum in the
following calculation. For convenience, we set JL = J − γ /2
and JR = J + γ /2 with γ > 0 and J = 1 as the unit of energy.
Figure 1(b) shows the transition of the existence-nonexistence
of NHSE, obtained by calculating the WN, which changes
from 1 to 0 when the strength of dc field E0 increases cross
the transition line with fixed L from left to right. It can be
seen that the transition lines tend to E0 = 0 with increasing L,
which is consistent with the analytical result.
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The analytical expression of ρm(t ) can also tell us the finite
size effect, where interesting physics will emerge. Here, we
consider JR > JL, which makes the oscillation of the particle
favor the right-hand side of the initial position n0, and the
oscillation range is approximate to 4JR/|E0|x� [51], where x�

only depends on JL and JR. If the distance between the right-
side boundary and n0 is larger than 4JR/|E0|x�, the particle
will return back to n0 after a period of time, but if the distance
is less than 4JR/|E0|x�, the particle will arrive at the boundary
and then stay there ever since. Thus, for fixed size L, there
exist a critical electric field strength Ec

0 that describes the
transition of the existence-nonexistence of NHSE and satisfies
4JR/|Ec

0 |x� = L, giving Ec
0 ∝ 1/L, as shown in the inset of

Fig. 1(b). When the size exceeds a critical value, the number
of skin modes is about 4JR/|E0|x�, which is independent of
the size. It can be clearly seen by comparing Figs. 1(c) and
1(d), which show the distributions of eigenstates with different
sizes and the same other parameters, and having the same
number of skin modes. Thus, with fixing JL, JR, and E0, the
number of skin modes can be of the same order of magnitude
as the total eigenstate number for the system with small size
and the NHSE exists. When the size is large enough, the ratio
of the number of skin modes to the total eigenstate number
will be insignificant and the NHSE will disappear, suggesting
that the NHSE is size dependent, which is different from the
general NHSE. Moreover, we can increase the number of skin
modes by decreasing the electric field strength and, thus, we
can control the appearance or disappearance of NHSE for a
finite size system, as shown in Figs. 1(e) and 1(f), where the
system shows NHSE when E0 = 0.005, but when E0 = 0.5,
the NHSE disappear. The phenomenon of the size-dependent
NHSE should widely exist in the non-Hermitian systems with
defective, disordered, quasiperiodic, or Stark potentials, or
two coupled chains with dissimilar nonreciprocal hoppings
[46].

Pure ac electric field case. We then consider the monochro-
matic cosine shape ac electric field E (t ) = E1 cos(ωt ). It is a
typical Floquet driving system, with period T = 2π/ω. From
Eq. (4) and Eq. (6), we have u(t ) = ∫ t

0 dt ′ cos( E1
ω

sin ωt ′) and
v(t ) = ∫ t

0 dt ′ sin( E1
ω

sin ωt ′), and then Eq. (5) gives the proba-
bility in the limit t � T [51]:

ρm(t � T ) ≈ J 2
m−n0

[
2t

√
JLJRJ0

(
E1

ω

)](
JR

JL

)m−n0

. (9)

When J0(E1/ω) 
= 0, 2t
√

JLJRJ0(E1/ω) increases linearly
to infinity and thus Jm−n0 [2t

√
JLJRJ0(E1/ω)] tends to zero,

which is completely similar to the case without electric field,
suggesting that the NHSE is not affected by the ac field.
For the special ac field strength E1 and frequency ω that
satisfy J0(E1/ω) = 0, corresponding to the red round dots
in Fig. 2(a), due to Jm−n0 (0) = δm−n0,0, the particle initially
localized in the bulk will move around the initial position and
thus the NHSE will be suppressed, as shown in Fig. 2(b).
This localization phenomenon is called dynamic localization
[54–57], which is distinct from Anderson localization induced
by random disorder potential. For most cases, J0(E1/ω) 
= 0,
the particle will hop to the boundary eventually as demon-
strated in Fig. 2(c). To sum up, when only applying the ac
electric field to the system, the NHSE is not affected except for

FIG. 2. (a) Red round dots are zeros of zeroth order of the Bessel
function J0(E1/ω), which correspond to the condition of the emer-
gence of the dynamic localization under ac field driving. Dynamical
evolution of a particle initially localized at the lattice center with
(b) E1/ω = 2.405, which is the first zero point of J0(E1/ω) and
(c) E1/ω = 6.1. Here we set J = 1, γ = 0.73, and ω = 0.46.

these special parameters of E1 and ω that cause the dynamic
localization, suppressing the NHSE.

dc+ac electric field case. We finally consider the effect of
dc-ac mixed fields, i.e., E (t ) = E0 + E1 cos(ωt ), in manipu-
lating NHSE. By using Eq. (4) and Eq. (6), we can calculate
functions u(t ) and v(t ), whose expressions look fairly com-
plicated [51], and find that when E0/ω is not an integer, all
the terms in the expressions of u(t ) and v(t ) are bounded
oscillatory functions of time, meaning that the particle will
oscillate around the initial position. Therefore, the electric
fields break NHSE for noninteger E0/ω. When E0/ω is an
integer, the probability in the limit of long evolution time [51]
can be simplified to

ρm(t � T ) ≈ J 2
m−n0

[
2t

√
JLJRJ E0

ω

(
E1

ω

)](
JR

JL

)m−n0

. (10)

Similar to the discussions for Eq. (9), the disappearance or
existence of NHSE depends on whether E1/ω is one of the
zeros of the Bessel function JE0/ω. The pure dc field can
cause the Stark localization, which suppresses NHSE. Then
adding the ac field E1 cos(ωt ) with E0/ω being integers, the
particle can break through the localization barrier and move
through the chain accompanied by the photon absorption or
emission. Thus NHSE can exist only for integer E0/ω except
for the situations in which E1/ω are the zeros of JE0/ω, which
will induce the dynamic localization, as discussed above. The
effects of the dc-ac mixture fields on NHSE are summarized
in Fig. 3(a). The light green region between the red lines and
the dark green dots on the red lines respectively correspond
to the noninteger E0/ω and the zeros of JE0/ω with E0/ω

being integers, which will induce the Stark localization and
dynamic localization and lead to the disappearance of NHSE,
as shown in Figs. 3(b) and 3(c). The red lines correspond to
the integer E0/ω, which can break the bulk localization by
photon assisted hopping, and the particle initially localized in
the bulk will move toward the boundary, as shown in Fig. 3(d).

Electronic circuit’s realization. The non-Hermitian model
(1) can be simulated by a classical electric circuit as depicted
in Fig. 4, which consists of L LC circuit units. Based on the
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FIG. 3. (a) Schematic phase diagram about the existence or
nonexistence of NHSE under the mixed electric field driving. Red
lines represent the integer E0/ω. Dark green dots on the red lines
correspond to E1/ω being the zeros of JE0/ω, where dynamic local-
ization (DL) induced by the ac field occurs. The light green region
corresponds to the Stark localization (SL). The dynamical evolutions
of the electron initialized on the lattice center under simultaneous
driving of dc and ac fields with (b) E0/ω = 0.5 and E1/ω = 1.3,
(c) E0/ω = 1 and E1/ω = 3.832 corresponding to the first zero of
J1, and (d) E0/ω = 1 and E1/ω = 5.7. Here we fix J = 1, γ = 0.73,
and ω = 0.46.

Kirchhoff’s current law, we have

IR
n = IL

n + IB
n , (11)

where IB
n is the current flow through the nth unit and IL

n (IR
n ) is

the current from the (n − 1)th (nth) unit to the nth [(n + 1)th]
unit, and they satisfy

Ln
dIL

n

dt
= Vn − Vn−1, Ln+1

dIR
n

dt
= Vn+1 − Vn, (12)

ln
d

dt

[
IB
n − Cn

dVn

dt

]
= Vn, (13)

where Vn is the voltage on the node n. From Eqs. (11)–(13),
one can obtain

d2Vn

dt2
= Vn+1 − Vn

CnLn+1
+ Vn−1 − Vn

CnLn
− Vn

Cnln
. (14)

When choosing inductors with inductances Ln = L0g−n,
ln = Ln/( − anE0), and capacitors with capacitance

FIG. 4. Schematic of the LC electronic circuit.

Cn = C0gn, Eq. (14) becomes

(
1 + g +  + 1

ω2
0

d2

dt2

)
Vn = Vn−1 + gVn+1 + naE0Vn, (15)

where ω0 = 1/
√

C0L0. We make a transformation: Vn →
Vne±iωt with n = 1, 2, . . . , L and ω = ω0

√
(1 + g + ) − ER;

then Eq. (15) becomes ERVn = Vn−1 + gVn+1 + naE0Vn,
which describes the dc case of the model (1) with JL = 1 and
JR = g. By directly detecting the eigenvalues and eigenstates
through an elementary voltage measurement [21], one can
detect the manipulation effect of the dc field.

We note that our results can also apply to the manipula-
tion of the NHSE induced by the on-site dissipations. Recent
experiment [24] and theoretical proposals [58,59] suggest re-
alizing and detecting the NHSE in the dissipative ultracold
atom systems, where the gradient fields can be easily realized
[60–62]. Therefore, the control effect of the electric fields on
the NHSE can be detected in optical lattices. Furthermore,
this control effect can also be detected based on the photonic
quantum walk [19] and the sideband cooling setups in trapped
ion systems [63,64].

Summary and discussion. We have investigated the control
effect of electric fields on NHSE analytically and numerically.
For the pure dc field case, in the thermodynamic limit, a
weak Stark localization induced by the dc field is sufficient
to win the competition with NHSE, so a nonzero dc field
can suppress the NHSE. When the system size is finite, the
new interesting phenomenon of the size-dependent NHSE will
emerge, because the number of skin modes is size indepen-
dent when the size exceeds a critical value. For the pure ac
field case, only the special field strength E1 and frequency
ω that satisfy J0(E1/ω) = 0 can suppress the NHSE due to
the dynamic localization. For the mixed field case, if E0/ω

is not an integer, the NHSE will be suppressed by the Stark
localization induced by the dc field. For the integer E0/ω,
NHSE can exist, because the particle can move toward the
boundary by the photon absorption or emission except for the
special case with E1/ω being one of the zeros of JE0/ω, which
causes the dynamic localization.

The control effects of electric fields on the NHSE are abun-
dant and, moreover, electric fields can be easily applied to a
system. Thus the manipulation methods can be widely used in
experiments and the fabrication of new devices. For instance,
based on the phenomenon of the size-dependent NHSE and
the sensitivity of the NHSE versus the field strength and
frequency of ac fields near the special situations that satisfy
J0(E1/ω) = 0, by detecting the signals on the boundary of a
non-Hermitian system, one can carry out accurate measure-
ments of electric fields, which are important for many critical
applications in science and industry. As a second example, the
NHSE can be used to design some devices, such as directional
amplifiers [65–72] and light funnels [20]. The appearance or
disappearance of the directional amplification and the funnel-
ing effect can be manipulated by using dc or ac fields, such as
by changing the strength or frequency of an added ac field.
Thus one can design the switch of these devices by using
electric fields.
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