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Breakdown of heavy quasiparticles in a honeycomb Kondo lattice:
A quantum Monte Carlo study
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We show that for the half-filled Kondo lattice model on the honeycomb lattice a Kondo breakdown occurs at
small Kondo couplings Jk within the magnetically ordered phase. Our conclusions are based on auxiliary field
quantum Monte Carlo simulations of the so-called composite fermion spectral function. Within a U (1) gauge
theory formulation of the Kondo model, it becomes apparent that a Higgs mechanism dictates the weight of the
resonance in the spectral function. For the honeycomb lattice we observe that for small Jk the quasiparticle pole
gives way to incoherent spectral weight but it remains well defined for the square lattice. Our result provides
an explicit example where the magnetic transition and the breakdown of heavy quasiparticles are detached as
observed in Yb(Rh0.93Co0.07)2Si2 [S. Friedemann et al., Nat. Phys. 5, 465 (2009)].
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Strongly correlated many-body systems are characterized
by the emergence of new elementary excitations. This can
occur through the fractionalization of the electron within a
parton-type construction—the fractional quantum Hall effect
[1] or Luttinger liquids [2]—or through the formation of
a composite object. Examples of the latter range from the
understanding of single-hole dynamics in quantum antiferro-
magnets [3,4] to the emergence of the electron in Z2 lattice
gauge theories in which the electron is a bound state of an
orthogonal fermion and Z2 matter [5–7].

The Kondo effect is yet another example of the emergence
of a composite fermion carrying the quantum numbers of
the electron. Consider a spin-1/2 magnetic impurity embed-
ded in a Fermi liquid with a finite density of states at the
Fermi energy. In the presence of time reversal symmetry the
Kondo coupling between the impurity and Fermi liquid is
always relevant and leads to the emergence of a composite
fermion. It consists of the spin-1/2 and conduction electrons
and becomes itinerant, thereby releasing the ln(2) entropy.
If one replaces the metal by a Dirac liquid with a vanishing
density of states at the Fermi energy, the Kondo coupling is
irrelevant and one will generically observe a transition from an
unscreened to screened moment at a finite value of the Kondo
coupling [8,9]. This transition corresponds to the breakdown
of the aforementioned composite fermion [10,11]. Such phe-
nomena are not limited to the realm of impurity physics [12].
Neutron scattering experiments of metallic Yb2Pt2Pb [13]
suggest a Kondo breakdown phase of a one-dimensional spin
chain embedded in a three-dimensional metal. Furthermore,
numerical evidence of this state of matter has been observed
in models of spin chains on semimetals [14]. In dense systems
such as in YbRh2Si2 [15–17] or CeCoIn5 [18], the notion of
Kondo breakdown or orbital Mott selective transitions [19]
has deep implications since the composite fermions drop out
from the Luttinger count. For systems with an odd number
of localized spins per unit cell and no further spontaneous

symmetry breaking, this implies a violation of the Luttinger
sum rule. Owing to Oshikawa’s [20] work such a violation
can be understood if the spin system shows a topological de-
generacy similar to a spin liquid [21,22]. For an even number
of spins per unit cell, such topological constraints do not hold.
In this case, Kondo breakdown does not imply a violation of
Luttinger’s theorem.

Since the tight-binding model on the honeycomb lattice
provides a realization of Dirac electrons, one may ask the
question if and how the aforementioned Kondo breakdown
transition in the impurity limit [8,9] is carried over to the
dense case described by the half-filled Kondo lattice model.
In Ref. [23] it is argued that the Kondo coupling is marginal
in the weak-coupling limit, thereby opening the possibility of
Kondo breakdown transitions in magnetically ordered metal-
lic states. The central result of this Letter is summarized in
Fig. 1: Kondo breakdown indeed occurs within the magnetic
phase of the honeycomb lattice. In contrast, no breakdown is
observed on the square lattice.

U(1) gauge theory approach. Since the Kondo effect and
concomitant emergence of the composite fermion is not re-
lated to spontaneous symmetry breaking, some care has to be
taken in defining the onset of these phenomena. They become
particularly transparent within a U (1) gauge theory approach
to the Kondo lattice model [24–26]. The Kondo lattice model
(KLM) on the honeycomb lattice reads

ĤKLM =
∑
i, j

Ti, j ĉ
†
i ĉ j + Jk

2

∑
i

ĉ†
i σĉi · Ŝi, (1)

where ĉ†
i = (ĉ†

i,↑, ĉ†
i,↓) is a spinor where ĉ†

i,σ creates an elec-
tron in the Wannier state centered around lattice site i and
the z component of spin σ =↑,↓. Jk is the Kondo exchange
coupling between conduction electrons and spins s = 1/2, Ŝi,
with σ being a vector of Pauli spin matrices. The matrix Ti, j

accounts for nearest-neighbor hopping with amplitude −t .
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FIG. 1. Ground-state phase diagram of the half-filled Kondo lat-
tice model on the honeycomb and square lattices. On both lattices
we observe a magnetic order-disorder transition denoted by a red
circle and order parameter corresponding to 〈S〉. For the honeycomb
lattice (a) we observe a breakdown of the heavy quasiparticle in
the spin-density-wave (SDW) phase as indicated by the vanishing
residue Zψ

k of the pole at the � point in the composite fermion
Green’s function. For the square lattice (b) we observe only the order-
disorder transition since, down to our lowest value Jk/W = 0.025,
Zψ

k at the M = (π, π ) point remains finite. All the values of Zψ

k are
extrapolated to the thermodynamic limit [27]. We use the mean-field
notation 〈b〉 to track the magnitude of the residue.

We adopt an Abrikosov representation of the spin operator,

Ŝi = 1
2 f̂

†
i σ f̂ i with f̂

†
i = ( f̂ †

i,↑, f̂ †
i,↓) and constraint f̂

†
i f̂ i = 1.

To proceed we use the following rewriting of the Kondo term

− Jk
4 (V̂ †

i V̂i + V̂i V̂ †
i ) with V̂ †

i = ĉ†
i f̂ i . In constrained Hilbert

space, this rewriting is exact. To formulate the path integral,
we will work in unconstrained Hilbert space and impose it en-

ergetically with a Hubbard-U term: HU = U
∑

i( f̂
†
i f̂ i − 1)2.

Importantly, the fermion parity on the f orbitals is a constant
of motion such that it is very efficient to implement in nu-
merical simulations. We can decouple the Kondo (Hubbard)
term with a complex (real) field, bi(τ ), a0,i(τ ) to obtain the
following action in terms of Grassmann variables f i(τ ) and
ci(τ ),

S = Sc
0 +

∫ β

0
dτ

{ ∑
i

[
2

Jk
|bi(τ )|2 + ia0,i(τ ) + f †

i (τ )

× [∂τ − ia0,i(τ )] f i (τ ) + bi(τ )c†
i f i + bi(τ ) f †

i ci

]}
,

(2)

with Sc
0 = ∫ β

0 dτ
∑

i, j c†
i (τ )[∂τ δi, j + Ti, j]c j (τ ). The above

corresponds to the action in the limit U → ∞ where local
U (1) gauge invariance is apparent. In particular, the canonical
transformation f i(τ ) → f i(τ )eiχi (τ ) amounts to redefining the
fields a0,i(τ ) → a0,i(τ ) + ∂τχi(τ ) and bi(τ ) → bi(τ )e−iχi (τ ),
such that the partition function remains invariant. We are
now in a position to probe for various phases with gauge
invariant quantities. Magnetism, triggered by the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction, corresponds to a
spontaneous global SU(2) spin symmetry breaking and long-

ranged correlations of the order parameter Ŝi = 1
2 f̂

†
i σ f̂ i .

Clearly Ŝi carries no U (1) charge. To define the Kondo effect
we consider the fermion field

f̃ i(τ ) = eiϕi (τ ) f i(τ ), with eiϕi (τ ) = bi(τ )

|bi(τ )| . (3)

As argued in the Supplemental Material [27], f̃ i(τ ) has the
quantum numbers of a physical fermion: It carries no gauge
charge, has an electron charge e, and spin 1/2. The Kondo
effect corresponds to the emergence of this fermion at low
energies as signaled by a pole (resonance) in the dense case
(single impurity limit) in the corresponding spectral function

[28,29]. There is no symmetry that imposes 〈 f̃ i (τ ) f̃
†
j (τ

′)〉 to
vanish between two space-time points and the pole in the cor-
responding spectral function reflects this fact. Furthermore, if
the ground state turns out to be a Fermi liquid, the Luttinger
volume will have to account for the composite fermion.

The above can be understood in terms of a Higgs [30]
mechanism in which the phase fluctuations of ϕi(τ ) become
very slow such that ϕi(τ ) can be set to a constant. In this
case there is no distinction between f̃ i(τ ) and f i(τ ) or, in
other words, f i(τ ) has lost its gauge charge and has acquired
a unit electric charge. This Higgs mechanism is captured in
mean-field large-N approaches of the Kondo lattice where
Kondo screening corresponds to 〈bi(τ )〉 	= 0 [31,32].

The above definition of the fermion field f̃ depends ex-
plicitly on the gauge field that is not accessible in generic
numerical simulations (e.g., exact diagonalization). However,
reintroducing amplitude fluctuations of the b field, we have
f̃ i ∝ bi(τ ) f i(τ ) ∝ [ f †

i (τ )ci (τ )] f i(τ ). As shown in Ref. [33]
and in the large-N limit, the right-hand side of the latter
equation is nothing but the composite fermion field,

f̃ i ∝ ψi = Si · σci. (4)

We also note that 〈bib
†
i 〉 ∝ 〈V̂ †

i V̂i〉 ∝ 〈ĉ†
i σĉi · Ŝi〉 such that

the local spin correlations between the conduction electrons
and impurity spins correspond to the modulus of the bo-
son field. If this quantity remains finite in the considered
parameter regime, we will conclude that an adequate gauge
field-independent representation of f̃ i is given by the com-
posite fermion field ψi [34,35]. For impurity problems the

Green’s function of ψ̂
†
i corresponds to the T matrix [36] while

ψ̂
†
i itself corresponds to the Schrieffer-Wolff transformation of

the localized electron operator in the realm of the Anderson
model [28].

Method. For our simulations we use the projective (zero-
temperature) version of the algorithms for lattice fermions
(ALF) [37] implementation of the auxiliary field quantum
Monte Carlo (QMC) method [38–42]. For a proper compar-
ison between honeycomb and square lattices, we set hereafter
their respective tight-binding bandwidths W = 6t and W = 8t
as the energy units.

Results. We first focus on the quantum phase transition
between the magnetically ordered and disordered (Kondo)
insulators and locate the phase boundary by carrying out a
finite-size scaling analysis. As detailed in the Supplemental
Material [27], the best data collapse gives the critical value
Jc

k /W = 0.2227(3) and confirms the expected universality
class of the three-dimensional classical Heisenberg [O(3)]
model.
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FIG. 2. Composite fermion spectral function Aψ (k, ω) along
the �-K-M-� path in momentum space with � = (0, 0), K =
( 4π

3 , 0), and M = (π, π√
3

) on the L = 18 honeycomb KLM for rep-
resentative values of Jk/W corresponding to (a) Kondo, (b) and
(c) Kondo+SDW, and (d) SDW phases.

Next, we turn to the evolution of the momentum-
resolved spectral function of the composite fermion
Aψ (k, ω) = − 1

π
Im Gret

ψ (k, ω) with Gret
ψ (k, ω) =

−i
∫ ∞

0 dteiωt
∑

σ 〈{ψ̂k,σ (t ), ψ̂†
k,σ

(0)}〉. In Fig. 2(a) with
Jk/W = 0.333 deep in the Kondo phase, the emergent
composite fermions are clearly manifest as bright weakly
dispersive bands throughout the whole irreducible Brillouin
zone. These bands become less pronounced upon crossing
over to the magnetically ordered phase [see Figs. 2(b)
and 2(c)], while some incoherent spectral weight sets in
at high energies. In contrast, the spectrum in Fig. 2(d),
with Jk/W = 0.067 deep inside the magnetic phase, looks
different: The composite fermion bands have disappeared,
indicative of the breakdown of Kondo screening. If Kondo
screening is not present in the magnetically ordered phase, one
can adopt a large-S approximation. In leading order in S, the
spectral function Aψ (k, ω) will follow the conduction electron
spectral function Ac(k, ω), i.e., Aψ (k, ω) � S2Ac(k, ω) [33].
A comparison of Aψ (k, ω) in Fig. 2(d) with the corresponding
spectrum Ac(k, ω) included in the Supplemental Material
[27], confirms this expectation and allows one to recognize
in Aψ (k, ω) a pronounced image of the conduction electron
band consistent with the large-S limit.

In order to get further insight into the observed rearrange-
ment of spectral weight in Aψ (k, ω), we plot in Fig. 3(a)
the raw data of Gψ (k, τ ) at the � point at our smallest
Kondo coupling Jk/W = 0.067 for different system sizes L.
Generically, the existence of long-lived quasiparticles requires
that the Green’s function displays a free-particle behavior at
long imaginary times, G(k, τ )

τ→∞→ Zke−qp(k)τ , where Zk is
the quasiparticle residue of the doped hole at momentum k
and frequency ω = −qp. As is apparent, the L = 6 data
quickly converge to the exponential decay, which as shown
in Fig. 3(b), deceptively generates a low-energy pole, and
consequently a well-defined composite fermion band, in the
corresponding spectral function Aψ (k, ω). On the other hand,
upon increasing system size it becomes more difficult to track

FIG. 3. (a) Composite fermion Green’s function Gψ (k = �, τ )
at Jk/W = 0.067, and (b)–(d) the corresponding spectral function
Aψ (k, ω) on the honeycomb KLM with different sizes L.

the exponential form of Gψ (k = �, τ ) whose long-time tail
systematically flattens. As a consequence, while a faint sig-
nature of the composite fermion band can still be spotted in
Aψ (k, ω) for L = 9 [see Fig. 3(c)], the band has essentially
disappeared from the L = 12 spectrum in Fig. 3(d). At the
same time, the overall spectrum around the � point broadens
substantially and may plausibly be thought of as a continuum
that stems from the decay of the composite quasiparticle.
Thus, the data are suggestive of the absence of Kondo screen-
ing in the thermodynamic limit.

It is striking to compare the results in Fig. 3 with those
on the square lattice obtained at an even smaller value of
Jk/W = 0.025 (see Fig. 4). Irrespective of the system size
L, the composite fermion Green’s function Gψ (k, τ ) at the
M = (π, π ) point shows the same asymptotic behavior in
the long-time limit, which implies the continued existence
of the pole in the corresponding spectrum Aψ (k, ω) [see
Figs. 4(b)–4(d)]. As can be seen, Aψ (k, ω) shares aspects of

FIG. 4. (a) Composite fermion Green’s function Gψ (k = M, τ ),
where M = (π, π ), at Jk/W = 0.025, and (b)–(d) the corresponding
spectral function Aψ (k, ω) along the �-X -M-� path, where X =
(π, 0), on the square KLM with different sizes L.
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FIG. 5. (a) Single-particle gap qp(k) at the � and Dirac K points
and (b) the local spin-spin correlation function Scf as a function
of Jk/W on the honeycomb lattice. For comparison, we show in
(c) qp(k) at the M point and (d) Scf on the square lattice. Dashed
lines denote the respective magnetic order-disorder transitions. All
quantities are representative of the thermodynamic limit [27].

both the large-N approach (flat composite fermion bands) and
large-S limit, i.e., the image of the conduction electron band
shifted by the antiferromagnetic wave vector Q = (π, π ).
Taken together, these spectral features imply the coexistence
of coherent Kondo screening and long-range magnetic order.

To substantiate the vanishing of the composite fermion
band as a function of Jk/W , we extract the quasiparticle
residue Zψ

k at the � point by fitting the long-time tail of
Gψ (k = �, τ ) to the exponential form followed by the finite-
size scaling analysis [27]. For comparison, we have equally
analyzed the asymptotic behavior of Gψ (k, τ ) at the M point
on the square lattice and constructed the respective phase
diagrams compiled in Fig. 1.

Since increasing Jk promotes the Kondo effect, it ul-
timately drives the magnetic order-disorder transition that
occurs at Jc

k /W � 0.223 (honeycomb) and Jc
k /W � 0.181

(square) [43–45]. Thus, the strong-coupling region in Fig. 1 is
lattice independent and hosts a Kondo screened phase. In con-
trast, a weak-coupling part of the phase diagram turns out to
be nongeneric: While pinning down the precise scaling of Zψ

k
at the � point on the honeycomb lattice is a challenge, our data
show that it is a monotonically decreasing function of Jk/W
and vanishes slightly below Jk/W = 0.1. The vanishing quasi-
particle residue indicates that composite quasiparticles lose
their integrity. We interpret this as the destruction of Kondo
screening. This is in stark contrast to the square lattice where
composite fermions are found down to our smallest value
Jk/W = 0.025 as signaled by a finite quasiparticle residue Zψ

k
at the M point.

We also track the location and the size of the quasiparticle
gap. Given that at large Jk/W the quasiparticle gap is located
at the � point while the noninteracting model features gapless
Dirac excitations at the K point, one shall resolve a change
in the position of the minimal gap as a function of Jk/W .
The data in Fig. 5(a) extracted from the long-time behavior
of Gψ (k, τ ) at both k points confirm this expectation. As is

apparent, the change takes place on the magnetically ordered
side of Jc

k but far away from Kondo breakdown. Further, a
comparison of Figs. 5(a) and 5(c), the latter showing the
evolution of the quasiparticle gap at the M point on the square
lattice, reveals two common features: (i) the development of
the cusp preceding the magnetic order-disorder transition, and
(ii) a linear in Jk/W scaling of the gap in the weak-coupling
limit. It is a direct consequence of the Fermi-surface nesting-
driven magnetic order and can be captured within a mean-field
SDW framework [46,47].

Finally, as shown in Fig. 5(b) we do not resolve any signs
of the breakdown of Kondo screening in the local spin-spin
correlation function Scf = 2

3N

∑
i〈ĉ†

i σĉi · Ŝi〉 which remains
finite down to our lowest value of Jk/W , just as that measured
on the square lattice [see Fig. 5(d)]. This seemingly counter-
intuitive result becomes clear by noting that Scf measures the
amplitude of the boson field, |b|2. Hence, Fig. 5(b) implies that
the modulus of the boson field remains constant for all values
of the Kondo coupling and that Kondo breakdown occurs due
to phase fluctuations. The latter explains the failure of the
mean-field approaches to provide consistent results for both
lattices [27].

Summary and conclusions. We have investigated a Kondo
breakdown defined by the destruction of the composite
fermion in Eq. (3). In the realm of the Kondo lattice consid-
ered here, this amounts to the loss of a pole in the composite
fermion Green’s function. Our main result is that Kondo
breakdown occurs in the magnetic phase of the half-filled
KLM on the honeycomb lattice. This stands in stark contrast
to our results on the square lattice where down to the lowest
values of the Kondo coupling, we observe no breakdown
of the composite fermion. Clearly and within our numeri-
cal precision, we cannot exclude that the composite fermion
residue follows an essential singularity at small Jk/W for
the honeycomb geometry and a linear law for the square
lattice.

Our results show that the magnetic transition and Kondo
breakdown are detached as observed in Yb(Rh0.93Co0.07)2Si2

[48]. The observed Kondo breakdown corresponds to a mod-
ification of the excitation spectra, and does not necessarily
translate into a thermodynamic transition. This stands in
agreement with the Fradkin-Shenker [30] phase diagram
where confined and Higgs phases are adiabatically connected.
It would be of great interest to modify the KLM so as to
allow for a deconfined phase and probe the full richness of
the Fradkin-Shenker phase diagram as suggested in Ref. [26].
On the experimental side, we hope that our results will have
an impact on the studies aimed at exploring quantum impurity
problems in graphene in a dense situation [49–51].
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