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Development of long-range phase coherence on the Kondo lattice
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Despite many efforts, we still lack a clear picture of how heavy electrons emerge and develop on the Kondo
lattice. Here we introduce a key concept named the hybridization bond phase and propose a scenario based on
phase correlation to address this issue. The bond phase is a gauge-invariant quantity combining two on-site hy-
bridization fields mediated by intersite magnetic correlations. Its probabilistic distribution decays exponentially
with site distance, from which a characteristic length scale can be extracted to describe the spatial correlation
of Kondo hybridizations. Our calculations show that this correlation length grows logarithmically with lowering
temperature at large Kondo coupling, and reveals a precursor pseudogap state with short-range phase correlation
before long-range phase coherence is developed to form the Kondo insulating (or heavy electron) state at low
temperatures. This provides a potential microscopic explanation of the two-stage hybridization proposed by
recent pump-probe experiments and the logarithmic scaling in the phenomenological two-fluid model. Our work
offers a theoretical framework to describe the phase-related physics in Kondo lattice systems.
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Heavy fermion systems are featured with correlated phe-
nomena such as unconventional superconductivity, quantum
criticality, and non-Fermi liquid [1–4]. Underlying all these
exotic properties is the interplay of intersite magnetic cor-
relations and spin screening as described by the Kondo
lattice model [5–7]. It differs from single-impurity Kondo
physics in that the many-body spin-entangled state between
local moments and conduction electrons can extend and
propagate on the lattice as dispersive heavy electrons. But
how this state emerges, develops, and eventually extends in
space remains less understood despite many theoretical ef-
forts [8]. In particular, recent angle-resolved photoemission
spectroscopy (ARPES) experiments reported the onset of
hybridization well above the coherence temperature in trans-
port measurements [9,10]. Later, pump probe experiments
revealed a two-stage process for heavy electron development
on the lattice [11,12]. This two-stage scenario seems quite
universal [13], but still awaits a microscopic explanation. Its
theoretical formulation will necessarily deepen our under-
standing of the Kondo lattice physics.

Phase fluctuations play an indispensable role in modern
strongly correlated physics and have been extensively studied
in past decades. Notable examples include deconfined phases
in lattice gauge theories [14–16], phase-fluctuation scenarios
in high-Tc cuprates [17–20], and flux phases in quantum spin
liquids [21–23]. In Kondo lattice systems, phase fluctuations
appear when some slave particles or auxiliary fields are in-
troduced to describe local spins and their entanglement with
conduction electrons, but were often ignored in prevailing
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mean-field calculations, causing artificial finite-temperature
phase transitions [24–29]. Phase fluctuations can convert these
artificial transitions into a crossover [30,31], and may be a
key controlling the development of heavy electron state be-
yond usual mean-field or local approximations [32–41], but a
proper description is not yet available.

In this work, we address this issue by proposing a theoret-
ical framework to describe heavy electron emergence based
on phase coherence. We employ a recently proposed static
auxiliary field approach for Kondo systems [42] and introduce
a gauge-invariant bond phase to characterize spatial correla-
tion of the hybridization fields. This bond phase combines the
on-site hybridization fields and intersite magnetic correlation
fields between two spatially separated lattice sites, so its prob-
abilistic distribution tracks directly the spatial development of
the heavy electron state. Our calculations show a logarithmic
temperature dependence of its characteristic length scale and
reveal a precursor short-range phase-correlated pseudogap
state before the long-range phase coherence is developed to
form the Kondo insulating or heavy electron state at lower
temperatures. Our theory provides a general scheme to de-
scribe the phase coherence and other phase-related physics in
Kondo lattice systems.

For simplicity, we consider the two-dimensional Kondo-
Heisenberg model on a square lattice,

H = −t
∑

〈i j〉σ
(c†

iσ c jσ + H.c.) + JK

∑

i

si · Si + JH

∑

〈i j〉
Si · S j,

(1)
where t is the hopping integral of conduction electrons
between nearest-neighbor sites, si = ∑

aβ c†
iα

σαβ

2 ciβ is the con-
duction electron spin localized at ri, and Si denotes the local
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spins. JK and JH describe the Kondo and Heisenberg exchange
interactions. Under the Abrikosov pseudofermion represen-
tation Si = ∑

ηγ f †
iη

σηγ

2 fiγ , both terms can be decoupled
using the Hubbard-Stratonovich transformation: 2si · Si →∑

σ (Vic
†
iσ fiσ + H.c.) + |Vi|2 and 2Si · S j → ∑

σ (χi j f †
iσ f jσ +

H.c.) + |χi j |2, where Vi and χi j are two fluctuating auxiliary
fields describing the hybridization and intersite magnetic cor-
relation, respectively. This gives the action [43]

S =
∑

i,l

βJK|Vi,l |2
2

+
∑

〈i j〉,l

βJH|χi j,l |2
2

−
∑

i

βλi

+
∑

nmσ

	†
nσ (Onm − i ωnδnm)	mσ , (2)

where 	nσ = [c1σn, . . . , cN0σn, f1σn, . . . , fN0σn]T , N0 is the
number of lattice sites, and the subscripts l (n/m) denote
bosonic (fermionic) Matsubara frequency. λi is the Lagrange
multiplier for the constraint

∑
σ f †

iσ fiσ = 1 and takes a real
value after Wick rotation [22].

The above action is generally impossible to solve. To
proceed, we adopt a static approximation, Vi,n−m = Viδnm,
χi j,n−m = χi jδnm, such that Onm = Oδnm. This ignores tempo-
ral fluctuations of the auxiliary fields but takes full account of
their spatial fluctuations and statistical distribution [44–47].
The fermions can be integrated out, giving an effective action
only of the auxiliary fields:

Seff =
∑

i

βJK|Vi|2
2

+
∑

〈i j〉

βJH|χi j |2
2

−
∑

i

βλi

− 2
∑

n

ln det (O − i ωn). (3)

The matrix O has a block form O = [T c M
M† T f ], where T c

(T f ) is the N0 × N0 hopping matrix of conduction elec-
trons (pseudofermions), and Mi j = δi jJKVi/2 is a diagonal
matrix for their on-site hybridization. The summation over
Matsubara frequency can be evaluated using

∑
n ln det(O −

i ωn) = ∑
l ln(1 + e−βξl ), where ξl is the eigenvalues of O

and always real because O is Hermitian. The probabilistic
distribution of the auxiliary fields is then simply p(Vi, χi j ) =
Z−1 e−Seff , where Z is the partition function serving as the
normalization factor. It can be simulated using the Monte
Carlo and Metropolis algorithm on 3N0 complex random
variables without a sign problem [48–50]. This is different
from the (nonuniform) mean-field method where the auxiliary
variables take fixed values determined by the saddle-point
approximation. For simplicity, we set the half conduction
bandwidth to unity (t = 1/4), fix JH = 0.2, and consider only
the particle-hole symmetric model on a N0 = 8 × 8 lattice
where the Lagrangian multipliers are approximated by their
saddle-point value λi = 0 [51]. Other choices of parameters
or a larger lattice have been examined and the conclusions are
qualitatively unchanged.

For comparison, we first show the usual mean-field phase
diagram in Fig. 1(a), where the auxiliary fields are assumed
to be uniform and real: Vi = V i = V , χi j = χ i j = χ . The
solution can be obtained by minimizing the free energy

FIG. 1. (a) The mean-field phase diagram predicted under uni-
form approximation. The dashed line marks the temperature T =
0.005. (b) The amplitude probabilistic distribution p(|V |) for dif-
ferent JK at T = 0.005. (c) The slope K = d p(|V |)/d|V | at |V | =
0 showing three different regions. (d) Density plots of p(V )
on complex plane V = (V x,V y ) for four chosen values of JK

at T = 0.005.

F = Seff/β [43]. With decreasing temperature, we see a
second-order phase transition from χ = 0 to χ �= 0 at T =
JH/4, below which there is a weakly coupled state of conduc-
tion electrons and spin liquid [30]. Increasing JK drives the
system into a Kondo insulating state with nonzero V .

We may examine this mean-field picture by considering the
probabilistic distribution of the complex hybridization fields,
p(V ) ≡ p(Vi ), which is the same on all sites due to transla-
tional symmetry and can be evaluated using the Metropolis
algorithm for importance sampling of the effective action
Eq. (3) [43]. Figure 1(b) plots the marginal distribution of its
amplitude p(|V |) at a low temperature after integrating out
all other variables. The maximum of p(|V |) is seen to vary
nonmonotonically with increasing JK. As shown in Fig. 1(c),
we may identify three regions according to the slope K =
d p(|V |)/d|V | at |V | = 0. Figure 1(d) plots the distribution
p(V ) on the complex plane V = (V x,V y). As expected, the
data cluster around (0, 0) at small JK and turn into a ring at
large JK. The distribution is therefore dominated by the bare
fluctuation term βJK |V |2/2 in region I and the coupling with
conduction electrons in region III, while region II marks a
crossover in between.

The difference from the mean-field solution can be re-
vealed by studying phase fluctuations of the auxiliary fields.
Since the effective action [Eq. (3)] is invariant under the gauge
transformation Vi → Vi ei βi , χi j → e− i(βi−β j ), we may define
two gauge-invariant phases from

Fi ≡ χi jχ jkχklχli = |Fi| ei φi ,
(4)

Bi j ≡ Viχi jV j = |Bi j | ei θi j ,

where φi denotes the flux in a plaquette i jkl ∈ � and θi j

reflects the phase of the hybridization bond Bi j between
nearest-neighbor sites i j as illustrated in the insets of Fig. 2.
The bond phase θi j reflects the correlation of two on-site
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FIG. 2. Comparison of the probabilistic distribution of (a) the
flux p(φ) and (b) the bond phase p(θ ) for three typical values of
JK. The insets illustrate the definition of flux and bond phases.
(c) Schematic plots of the coupling between pseudofermions and
conduction electrons in three different low-temperature regions.

hybridization fields Vi and Vj mediated by their intersite
magnetic correlation χi j . It by definition contains spatial cor-
relation information and is a key quantity introduced in this
work to distinguish the Kondo lattice physics from the single-
impurity Kondo physics [52–55].

Figures 2(a) and 2(b) plot their probabilistic distributions
for three typical values of JK. Again, due to translational sym-
metry, we drop the site subscript and use p(φ) ≡ p(φi ) and
p(θ ) ≡ p(θi j ). For weak coupling JK = 0.1, the local spins
and conduction electrons are almost decoupled. The bond
phase p(θ ) distributes uniformly at all temperatures, while the
flux distribution p(φ) becomes peaked at φ = π below a cer-
tain temperature. The latter indicates a π -flux state [56–59],
which is a special feature of the pseudofermion representation
of the Heisenberg model on the two-dimensional lattice and
might be realized if the spin interaction is highly frustrated
or on an optical lattice. Our results are in accordance with
Lieb’s theorem [60], which states that the saddle point for
a half-filled band of fermions hopping on a planar lattice is
π per plaquette. This implies that our approach can capture
the correct saddle point beyond the ad hoc uniform mean-
field approximation. The π -flux state may not be stable in
general situations, giving rise to confined states such as an-
tiferromagnetic order or magnon excitations. For simplicity,
we ignore all these complications and take it as our starting
point in order to focus on the Kondo aspect of the model.
For an intermediate JK = 0.3, we still have π flux, but the
bond phase distribution becomes nonuniform at low tempera-
tures with a peak around θ = 0, indicating the onset of phase
correlation between nearest-neighbor hybridization fields. It
therefore marks a coexisting state of flux and hybridization

FIG. 3. The Shannon entropy of (a) the flux φ/π and (b) the bond
phase θ/π as functions of temperature for different values of JK. The
black dashed line marks the uniform limit ln 2. The insets are the
intensity plot of the Shannon entropy on the T -JK plane, showing
different behaviors of flux and bond phases at low temperatures. The
lines are a guide to the eye separating the diagram into different
tentative regions. (c) A schematic T -JK phase diagram constructed
based on the intensity plots, where Tθ marks a crossover between
uniform and nonuniform distribution of the bond phase, and Tφ(0)

(Tφ(π )) marks a crossover to the nonuniform flux distribution peaked
at φ = 0 (π ). (d) Comparison of the flux probabilistic distribution
p(φ) at φ = 0 and π as a function of the Kondo coupling at a very
low temperature T = 0.005.

correlation. For strong coupling JK = 0.6, the location of
maximal p(φ) changes from φ = π to φ = 0, indicating that
the π flux is completely suppressed and the system enters
the Kondo insulating (or heavy electron) state. Figure 2(c)
gives an illustration of all three low-temperature states. For
completeness, the probabilistic distributions of |Fi| and |Bi j |
are also given in the Supplemental Material [43].

The variation of the probabilistic distributions may be
reflected also in their Shannon entropy, defined as H (x) ≡
− ∫

p(x) ln p(x)dx for a continuous random variable x with
the probabilistic distribution p(x). The results are plotted
in Figs. 3(a) and 3(b). As expected, the Shannon entropies
for both φ/π and θ/π approach their uniform limit ln 2 at
high temperatures. Deviation from ln 2 defines a crossover
temperature scale for the onset of nonuniform probabilistic
distribution due to either flux or bond phase correlation. A
tentative phase diagram can then be constructed based on
the intensity plots in the insets and the amplitude analysis in
Fig. 1(c). As shown in Fig. 3(c), the dashed line Tθ marks
a crossover to the region with nonuniform p(θ ), while the
dash-dotted lines, Tφ(π ) and Tφ(0), mark the crossover to π - or
0-flux dominated regions, respectively. Note that these lines
are not phase transitions but only serve as a tentative guide to
the eye. Approaching zero temperature, as shown in Fig. 3(d),

L161114-3



JIAN-JUN DONG AND YI-FENG YANG PHYSICAL REVIEW B 106, L161114 (2022)

FIG. 4. The probabilistic distribution p(θR ) for a shortest path
between two end sites with R = (Rx, Ry ) in regions (a) II, (b) III,
and (c) IV. The distribution is always uniform in regions I and
V and is therefore not shown. (d) The probability p(θR = 0) as a
function of the path length R (≡ |Rx| + |Ry|) for different temper-
atures at JK = 0.6. The dashed line is the fit using A e−R/ξ +B. (e)
The extracted correlation length ξ as a function of temperature at
JK = 0.6. We find ξ follows a logarithmic temperature dependence
(dashed line) and is roughly one near Tφ(0). The conduction electron
density of states at ω = 0 (inset) shows that the Kondo insulating
(or indirect hybridization) gap opens roughly below the same tem-
perature, with a precursor pseudogap state at higher temperatures.
(f) Comparison of typical conduction electron density of states in
different regions of the phase diagram. The parameters are chosen as
T = 0.005, JK = 0.1 for region I; T = 0.005, JK = 0.35 for region
II; T = 0.005, JK = 0.6 for region III; T = 0.03, JK = 0.6 for region
IV; and T = 0.08, JK = 0.1 for region V.

the curves of p(φ) at φ = π and φ = 0 as a function of JK

cross each other exactly at the transition between regions II
and III, indicating that the flux phase φ distributes uniformly
and restores its full symmetry at this point. The phase diagram
is therefore divided tentatively into five regions: Region I is
dominated by π flux; region II is a crossover with coexisting
π flux and hybridization (bond phase) correlation; regions III
and IV are dominated mostly by hybridization; and region V
contains weakly coupled local spins and almost decoupled
conduction electrons. To exclude possible finite size effect,
we have performed calculations on a 24 × 24 lattice using the
traveling cluster approximation method [61], and the results
confirmed all five regions.

To clarify the hybridization properties in regions II–IV, we
extend the definition of the bond phase to

θR ≡ θi0i1 + θi1i2 + · · · + θiR−1iR mod 2π

= Im ln(Vi0χi0i1V i1Vi1χi1i2 · · · χiR−1iRV iR ), (5)

where i0i1i2...iR denotes a path of length R linking
two end sites at ri0 and riR ≡ ri0 + R. Since V jVj =
|Vj |2 do not contribute a phase, we have also θR =
Im log(Vi0χi0i1χi1i2 . . . χiR−1iRV iR ), which is a gauge-invariant
quantity describing phase correlation of the hybridization
fields on two end sites mediated by intersite magnetic cor-
relations along the path. Figures 4(a)–4(c) compare the

distribution p(θR) for different R in regions II, III, and IV,
respectively. We find it rapidly decays to uniform distribution
with increasing R in II and IV but remains peaked at θR = 0
in region III.

To quantify this decay, we plot in Fig. 4(d) the probability
p(θR = 0) at JK = 0.6 as a function of the length R for the
shortest path linking two sites and fit the curves with an
exponential function p(θR = 0) = A e−R/ξ +B (dashed lines).
This allows us to extract a characteristic correlation length ξ

which reflects an effective spatial extension of the influence of
the hybridization at one site to reach other sites on the Kondo
lattice. As shown in Fig. 4(e), ξ is less than 1 (in the unit of
lattice parameter) at high temperatures but increases logarith-
mically (dashed line) with lowering temperature. The latter
seems to be consistent with the phenomenological two-fluid
model [62–64]. Remarkably, the temperature where ξ ≈ 1
agrees roughly with Tφ(0), the crossover between regions III
and IV estimated from the Shannon entropy. Thus, region
IV (and II) represents a state where the phase correlation is
developed only on short range between nearest-neighbor sites,
while in region III the hybridization fields start to extend their
influence in space and build a long-range phase coherence on
the lattice.

A direct consequence of the phase correlation may be
found on the conduction electron density of states ρ(ω) cal-
culated using Eq. (2). A twisted boundary condition c†

j →
c†

j ei ψ·r j was used to reduce the finite size effect and obtain
a smooth curve [65,66]. The results are presented in Fig. 4(f)
after being averaged over 20 × 20 twisted boundary configu-
rations of ψ = (ψx, ψy) with both ψx and ψy regularly spaced
in [0, 2π√

N0
). We find that the conduction electron spectra are

barely affected in regions I and V, while a pseudogap is devel-
oped in regions II and IV where the hybridization bond phase
is short-range correlated. This is associated with the ARPES
band bending due to the opening of a direct hybridization
gap [9]. Only in region III, we see a fully opened (indirect
hybridization) gap with a small remaining spectral weight
around ω ≈ 0 due to Lorentzian broadening (δ = 0.01) used
in the calculations. The full gap opening temperature is in
rough accordance with the growth of ξ in the bond phase
distribution, as compared in the inset of Fig. 4(e) for JK = 0.6.
Thus, the heavy electron emergence or Kondo insulating state
is closely related to the development of long-range phase
coherence of hybridization fields mediated by intersite mag-
netic correlations, suggesting the importance of our defined
bond phase in describing heavy fermion physics beyond the
usual mean-field picture and local approximations. The dis-
tinction of short- and long-range phase correlations provides
a potential microscopic explanation of the two-stage scenario
for the pump-probe experiment [11,13] and lays a theoretical
basis for resolving the conflict between ARPES and transport
data [9].

To summarize, we propose a scheme to study the hy-
bridization physics of Kondo lattice systems based on static
auxiliary field approximation. A gauge-invariant hybridiza-
tion bond phase is introduced to investigate the spatial phase
correlation of the hybridization fields. Its probabilistic distri-
bution allows us to define a characteristic length scale which
diverges logarithmically with lowering temperature. A pre-
cursor pseudogap state with short-range phase correlation is
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revealed, before the Kondo insulating (or heavy electron) state
emerges when a long-range phase coherence starts to develop.
This provides a possible microscopic support of the two-stage
hybridization scenario suggested by recent experiments. Our
work proposes a framework based on spatial phase correlation
beyond conventional mean-field and local pictures, and offers
a useful tool to explore phase-related physics in Kondo lattice
systems.
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