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Stark many-body localized (SMBL) systems have been shown both numerically and experimentally to have
Bloch many-body oscillations, quantum many-body scars, and fragmentation in the large field tilt limit, but these
observations have not been fundamentally understood. We explain and analytically prove all these observations
by rigorously perturbatively showing the existence of certain algebraic structures that are exponentially stable
in time. In particular, we show that many-body Bloch oscillations persist even at infinite temperature for
exponentially long times using a type of dynamical algebra which we refer to as dynamical 1-bits and provide
a bound on the tilt strength for this nonergodic transition. We numerically confirm our results by studying the
prototypical Stark MBL model of a tilted XXZ spin chain. Our work explains why thermalization was observed
in a recent two-dimensional tilted experiment. As dynamical 1-bits represent stable, localized, and quantum
coherent excitations, our work opens possibilities for quantum information processing in Stark MBL systems

even at high temperature.

DOI: 10.1103/PhysRevB.106.L161111

Introduction. One of the seminal results of condensed
matter physics was Anderson’s discovery of localization of
free electrons on a lattice [1]. Later it was shown that this
localization can possibly persist even when the repulsive
interactions between electrons cannot be neglected—a phe-
nomenon dubbed many-body localization (MBL) [2].

One of the main results in MBL is its explanation in terms
of exponentially localized intensive conservation laws called
I-bits [3,4]. The existence of these conservation laws blocks
the flow of quantum information through the system. MBL
has been numerically argued to lead to logarithmic entangle-
ment growth [5-8] and subdifussive transport [9-14] among
other phenomena. Notably, MBL systems should be perfect
insulators at any temperature. They have been the subject of
huge study in recent decades (e.g., see the review [2]).

However, the existence of disordered MBL has been
somewhat controversial [15] despite certain exact [16] and
renormalization group [17] results being offered. Rigorous re-
sults in many-body localization are therefore very important.

Only very recently has another related form of MBL
without disorder been demonstrated both theoretically and
experimentally [18-21]. This Stark MBL (SMBL) occurs due
to an external gradient field being added to an otherwise
translationally invariant system. Related to well-known Bloch
oscillations of noninteracting electrons, SMBL demonstrates
similar oscillations of various many-body observables in both
numerics and experiments (e.g., Refs. [19,22-24]). Likewise,
recently both Hilbert space fragmentation [23,25] and quan-
tum many-body scars [26] have been numerically observed
in these models. Fragmentation means that the Hamiltonian
of the systems contains an exponential number of invari-
ant subspaces [27-31] while quantum many-body scars are
eigenstates that are equally spaced in energy and have low
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entanglement. Quantum many-body scars are known to imply
oscillations from special initial states [32-38].

In contrast to the aforementioned Bloch oscillations in
SMBL, disordered MBL systems do relax to stationary (time
independent) states, albeit with a memory of their initial con-
dition given by the 1-bits [2,39]. This stationarity of disordered
MBL is in particular known to be present when expectation
values of observables are averaged across disorder [40,41].
This is puzzling because both forms of localization have an
otherwise similar phenomenology [18].

In this Letter we rigorously prove that SMBL models have
perturbatively approximate dynamical 1-bits that are expo-
nentially stable in time and are quasilocalized similarly to
I-bits explaining all the aforementioned numerical observa-
tions. The decay rate of the dynamical I-bits is given by the
strength of the field gradient. These algebraic structures are
distinct from both standard 1-bits of disordered MBL and
extensive dynamical symmetries [42]. We show a related type
of emergent algebraic structure of the model that implies
many-body Bloch oscillations even on the level of correlation
functions at high temperatures for exponentially long times
provided that a series converges giving a lower bound for the
tilt field strength, implying the existence of a phase transition.
The correlation functions persistently oscillate at frequencies
given by the dynamical 1-bits. We focus on the prototypical
example of interacting electrons in an electric field gradient.
We numerically confirm our theory by studying the infinite-
temperature correlation function and construct the dynamical
I-bits. These dynamical 1-bits explain the existence of quan-
tum scars and fragmentation in SMBL—both are shown to be
consequences of the dynamical 1-bits. Importantly, dynamical
I-bits are quantum coherent and stable by construction and
allow for storing qubits of information. Our work thus opens

©2022 American Physical Society
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the possibility of quantum information storage and processing
in SMBL systems.

Model. We will focus on the following paradigmatic SMBL
Hamiltonian,

~
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where L is the system size, J is the hopping amplitude,
A is the interaction strength (anisotropy), and €, is the ex-
ternal magnetic field at site r. This model of SMBL is
equivalent to the fermionic model used in Ref. [22], i.e., an
interacting Wannier-Stark chain [43—45]. The noninteracting
Wannier-Stark chain is well known to feature Bloch oscil-
lations [46—48]. Similarly, in Ref. [18], the field used was

given by €, = Wr — %2 and it was shown that the inclusion
of the quadratic component gave rise to a phase with MBL
characteristics. It has also been shown that having a linear
magnetic field €, = Wr also gives rise to an MBL-like phase
beyond a critical tilt W, ~ 2.2 in clean systems [20,23]. We
are interested in these oscillations and so we study a linear
magnetic field for the rest of this Letter. However, we remark
on the inclusion of a small quadratic potential in the Supple-
mental Material [49]. As we will see, the exact form of the
potential is not relevant for the qualitative conclusions.

Dynamical I-bits. As discussed previously, the key differ-
ence in SMBL is the observation of persistent many-body
Bloch oscillations. To capture these, we look to the recently
introduced concept of dynamical symmetries [42]. These are
defined to be extensive or local spectrum generating algebras
[50] of H, i.e., operators A satisfying the relation [51]

[H,A] = wA, 2)

where o # 0 is the frequency of A.

In this Letter, we extend the notion of dynamical symmetry
to include dynamical I-bits—these are operators satisfying (2)
which are similar to 1-bits in MBL in the sense that they are
quasilocalized (rather than strictly localized [52]).

Now suppose that our system is initially (at t = —00)
in thermal equilibrium and then locally perturbed suddenly
at t = 0. This means that the perturbation takes the form
3(t)B where B giving the new Hamiltonian H' = H + §(¢)B.
According to standard results from linear response the-
ory, the resulting deviation of the expectation value of an
operator Q at later times from its equilibrium value is
given by (Q(1))pen — (Q) = —i([Q(t), BI), where (Q(1)) per =
(eM'1Qe= ™'ty 1If (AQ) # 0, (AB) # 0 for some dynamical
symmetry A (2), then (Q(7))peq Will oscillate forever with
frequency w [53]. More specifically, a Mazur lower bound on
the amplitude of the oscillations exists [54].

We will focus on the infinite-temperature case for which
the relevant function from linear response theory to consider
is the so-called fluctuation function given by

Fop(t) = 5({Q(1), BY) = (Q(t)B). (€)
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FIG. 1. Plot of the infinite-temperature autocorrelation function
in (3) for various choices of local operators. Here, we consider three
examples. The parameters used are L =16, W =3, J=A=1.In
each case, we take the sudden perturbation at # = 0 to be B = 57 ».
The three choices of operators Q are SZ’/Z (green), S5 /271S2'/2 (red),
and S ,,,S/ ), (blue).

The above form is valid when Q(0) and B are traceless and this
is precisely the case which interests us. We now numerically
compute the autocorrelation function in (3) for our model
Hamiltonian (1) for a few pairs of operators using density
matrix renormalization group (DMRG) [55] (Fig. 1). Two
cases show persistent many-body Bloch oscillations.

There is also one case where we observe no significant
oscillations (the blue curve, which is almost flat). In this case,
the time evolved operator acts on sites further away from
the perturbation site. Thus, the memory of the perturbation
is highly localized. These observations agree in general with
how we expect dynamical I-bits would behave in autocorre-
lation functions, even though the oscillations are not of fixed
amplitude. This leads us to theorize that the SMBL Hamilto-
nian possesses dynamical 1-bits and that the operators in the
plot which show oscillations have some finite overlap with
them in the sense of Ref. [53]. What follows is the main result
of this Letter, where we prove that H has exponentially stable
dynamical 1-bits, at least in the large tilt case.

Exponentially stable dynamical I-bits in SMBL. We be-
gin by noting that our Hamiltonian can be written in the
form H = Hxx + Hzz +M, where Hxx =J ) (5SS, +
Sy8) 1), Hzz =AY (S:S%, ), and M =W )" rS?. Clearly,
the eigenspectrum of M is comprised of the values
(W, 2w, ...,WL(L + 1)/2}. We now assume that W is large.
It directly follows from the work of Abanin e al. [56] (see
also Ref. [57]) that there exists a quasilocal unitary operator
Y close to the identity such that

(O([)) — eiY(lA)-‘rM-‘rV)YvOe—iY(ﬁ+M+V)yTt @)

holds for any local operator O, where [D,M] =0 and
[M, V] # 0. The error in neglecting V is small in W up to
exponentially long times ¢* oc exp W (the reader is referred
to Ref. [56] for a more precise formulation of this state-
ment along with a rigorous proof). In other words, up to
exponentially long times, time evolution is governed by the

effective Hamiltonian given by H' = Heg + O(V{,—;) =YHY".
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Inspired by Ref. [58], in the Supplemental Material [49] by
constructing Y, we show a rather simple form for Heg (cf.
Refs. [28,59)),

2
Hegr = Z (WrS: + ASISE,) + 4J—W(Si -$).
It is important to note that the reason the approaches [56,57]
are applicable in SMBL, as opposed to disordered MBL, is
because the energy of the tilt is equally separated in SMBL,
unlike the energy of the disordered field.
It is now easy to check that for 2 < r < L — 1, the four
operators given by

Ai(r) =S} —45%_|SFSe

r+1°
Arr)=S;48" = 8/S74,

As(r) = S +28° | SF + 28782, 4457\ SFS

r+1°
Ay(r) =85 —28° ST —28F8 | +45°_ 5S¢ (6)

r+1°

are exact strictly local dynamical 1-bits of Hg with corre-
sponding frequencies

wr=wr=Wr, wo3=Wr+A, ws=Wr—A. ()

In the original physical basis the actual dynamical 1-bits are
A j(ry=YA j(r)YT, but since Y is quasilocal, this gives a set of
quasilocal dynamical I-bits up to for the original Hamiltonian,
up to subleading corrections.

Note that dynamical I-bits imply regular I-bits by
the simple identity [H, [Aj(r),A;(r)]] =0, where Q;(r) =
[A;(r), Aj?(r)] is an exponentially localized 1-bit. Unlike disor-
dered MBL, dephasing here is not possible because, unlike the
1-bits of disordered MBL, only four fundamental frequencies
contribute to Stark dynamical 1-bits, rather than a continuum
in disordered MBL [39].

More importantly, we show that [49] V is exponentially
small, which implies that the dynamics is dictated up to
exponentially long times by Her = D + M. This implies ex-
ponentially long persistent oscillations in wide classes of
observables for both the autocorrelation functions and for
quenches from generic initial states. We now introduce an
extended dynamical symmetry condition generalizing (2), i.e.,
an operator A’ = YTAY such that

IM,A1=vA", [D,M]=0 (8)

for some v with Hegy = D + M. Then we have using [ﬁ, M] =
0,

Alt) = Ye'Dt oMyt Ry piMt p=iDry ¥ _ ivt ,iflt § —iHt )

where H = YDYT. As Y is quasilocal and close to the iden-
tity and D is local, H is pseudolocal [60]. Using this and
the Mazur bound [61] in the Supplemental Material [49] we
show that for generic local operators A, we have persistent
oscillations at frequency v both for generic quenches and for
autocorrelation functions.

Numerical construction of the dynamical [-bits. Even
though we have shown the existence of dynamical 1-bits for
the full Hamiltonian, we have not found them explicitly since
we do not know the operator Y. Our aim in this section is to
numerically find these dynamical 1-bits. To do this, we note
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FIG. 2. Results of the numerics on the dynamical I-bit candidate
7. The parameters used throughout are / =A =1 and W =10
together with a total time 7' = 350 to simulate the limit 7 — oo
and time step dt = 0.005 for the integral in (10). The same time
step is also used to calculate the autocorrelation function. (a) Plots
demonstrating locality of the operator . The system size used is L =
30. The seed operators considered are A,(L/2) (blue) and A4(L/2)
(red). The probabilities give a measure of how much of t lives
on each site. As we can see, almost all of the operator is always
concentrated on the central five sites, and the shape of the plot is
not affected by the system size. (b) A plot showing the variation
of the error e = w with tilt strength W. We can see a high
error for smaller values of W, where we naturally expect a lot of
entanglement and thus larger errors due to truncation in DMRG.
(c) Plot of the infinite-temperature autocorrelation function (inset)
Fyp from (3) with A = 7 , and B = 7, and its Fourier transform for
L = 20. The seed operator used was A4(L/2). The single spike in the
Fourier transform confirms that t is indeed a dynamical I-bit.

that Y is close to the identity, and so the exact dynamical
1-bits of H/;; are still highly relevant, and that the frequencies
are unchanged. So we generalize the approaches of Ref. [62]
developed for conservation laws and we look at the operator
given by

1 [T 4
7 = lim —/ dt e U ()OU (1), (10)
-T

T—o0

where w # 0 is a real number, U (t) = e "' is the time evolu-
tion operator, and O is some strictly local operator. It can be
shown that this satisfies the relation [H, 7] = wt regardless
of O [49]. However, we require T to also be (quasi)localized
to be considered a dynamical 1-bit and this is not necessarily
satisfied for arbitrary local seed operators O.

By our previous arguments, we will use O = A;(r) as the
seed operators, along with their corresponding frequencies,
and time evolve them to determine their locality in Fig. 2(a).

These results make it clear that 7 is quasilocal for these
choices of seed operator, which agrees with our hypothesis.
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Thus we have numerically found quasilocal dynamical 1-bits
of the full Hamiltonian H. We also study how the error be-
haves when we change W in Fig. 2(b) and we can see that it
decays with increasing W, as expected.

Furthermore, we can look at the autocorrelation function
given by (3), with local operator A = t and perturbation
B = §j ,, similar to what we did before. This is plotted in the
inset of Fig. 2(c), where we can see clear, uniform oscillations
at one frequency, which show that we have now found an
accurate dynamical 1-bit. The dynamical 1-bit thus explains the
existence of oscillations in Fig. 1 at the appropriate frequency.
This is confirmed by the Fourier transform in Fig. 2(c) and it
demonstrates that the frequency of the oscillations is indeed
the corresponding w (which is 99 in this case). Moreover, we
see that the operators which caused the nonuniform oscilla-
tions in Fig. 1 do in fact overlap with the operators A; as
conjectured previously. Furthermore, their support is indeed
quasilocalized and close to the original dynamical 1-bits as
expected by the quasilocality of Y.

Quantum many-body scars and fragmentation. Quantum
many-body scars [32-38,63,64] are (at least) an extensive
number of eigenstates that have low entanglement. They im-
ply oscillations from special initial states. These states have
recently been numerically identified in Stark MBL models
[26]. Our analytically proven dynamical I-bits directly im-
ply quantum scars [34,35,65,66] (see also the Supplemental
Material of Ref. [42] for an earlier proof implying scarring
and that includes dissipation). In our case, the existence of
scars follows from the fact that dynamical 1-bit when acting
on the (product) ground state |0) will create eigenstates with
low entanglement that are equally separated in energy, e.g.,

H<HA<,-(ri)|O)> =d(j)wj<l_[14j(ri)|0)>, (11
{ri}

{ri}

where [H,A;(r;)] = wjA;(r;), and d(j) is the number of
Aj(r;) that appear in the product. We set H |0) = 0 for sim-
plicity. The entanglement of the state is guaranteed to be low
due to the localized structure of A ;(r;).

We note that dynamical I-bits imply quantum scars, but not
the other way around. More specifically, models with quantum
many-body scars have oscillations only for very special initial
states, whereas dynamical 1-bits imply oscillations generically
and even at infinite temperature as shown here.

Fragmentation follows immediately from the dynamical
1-bits by the arguments presented in Ref. [67]. This is like-
wise consistent with the results of Ref. [25]. In fact this
means that Stark MBL fragmentation is not true fragmenta-
tion [27,28,68], but rather local fragmentation as defined by
Ref. [67].

Conclusion. In this Letter we developed a theoretical ex-
planation of SMBL and explained the origin of persistent
oscillations which have been previously numerically and ex-
perimentally observed in SMBL [18,20,22,24]. To achieve

this we have shown the existence of dynamical 1-bits, which
should be contrasted with the standard 1-bits of disordered
MBL [4]. We then proved that in the large tilt case, the SMBL
Hamiltonian can be reduced to an effective Hamiltonian up
to exponentially long times using a theorem from Ref. [2] and
further showed the existence of an exact and complete dynam-
ical I-bit basis of this effective Hamiltonian up to subleading
corrections. We likewise have proven that generic observables
oscillate for exponentially long times by introducing a type
of extended dynamical symmetry algebra. Thereafter, we nu-
merically constructed dynamical 1-bits of the full Hamiltonian
with excellent accuracy. A similar effective Hamiltonian was
obtained in a very recent work (up to a rotating wave basis
transform) in Ref. [59] where transport was studied (cf. also
Ref. [28]). However, here we focused on oscillations, scars,
and fragmentation, as well as found the complete 1-bit basis.
We have proven that dynamical 1-bits imply persistent oscil-
lations in the autocorrelation function for exponentially long
times, even at infinite temperature, quantum many-body scars,
and Hilbert space fragmentation, as well as 1-bits. The fact
that the dynamical 1-bits of SMBL have only four fundamental
frequencies explains why SMBL has many-body Bloch oscil-
lations, unlike disordered MBL [39]. Even though the XXZ
model we studied is distinct from the tilted Fermi-Hubbard
models with scars and fragmentation, our results indicate that
these models likewise have dynamical 1-bits. Note that dy-
namical 1-bits immediately imply many-body flat bands [69]
in the tilted XXZ spin chain [52]. Our approach relies on the
tilt being single body and therefore a tilt with two-body terms
is expected to thermalize, which is fully consistent with the
two-dimensional (2D) experiment of Ref. [70]. Moreover, we
predict that putting a two-body tilt in both directions will not
cause an absence of thermalization, in contrast to the proposal
in Ref. [70].

Our work opens many avenues for future work. In future
work we will study in Stark MBL models possible realizations
of time crystals in both driven (discrete) [71-80] (cf. also
Ref. [81]) and dissipative models [42,82-95], synchronization
[96-98], and other possible kinds of nonstationary dynam-
ics [99-101,101-112]. Likewise, connection with large-tilt
and large interactions limits in 1D models will be explored
[113-115]. Most intriguing, however, is the fact that a dy-
namical 1-bit is local coherent excitation that can store a qubit.
This hints that Stark MBL systems could have the potential
for robust quantum information storage and processing.
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