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Exotic thermal transitions with spontaneous symmetry breaking
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We show that exotic spontaneous symmetry breaking appears in thermal topological phases by perturbing the
exact solutions of quantum rotor models coupled to the three-dimensional toric code. The exotic Ising and XY
transitions are shown to be in the same universality class, in drastic contrast to the conventional Wilson-Fisher
classes without topological orders. Our results indicate that topological orders must be included to pin down the
universality classes of thermal transitions in addition to order parameter symmetry and spatial dimension. We
evaluate all the critical exponents and find that the exotic universality class is more stable under the couplings to
acoustic phonons and disorder. Applying our results to experiments, we provide a plausible scenario in puzzlings
of strongly correlated systems, including the absence of a specific heat anomaly in doped RbFe2As2.
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Introduction. The phenomenological Landau theory is one
of the most successful theories in physics that explain phase
transitions by introducing the concept of the order parameter
[1,2]. Including fluctuations of order parameters, the univer-
sality classes of continuous phase transitions are discovered
with the development of renormalization group analysis, so-
called Wilson-Fisher (WF) classes [3,4]. The conventional
wisdom that the WF classes are solely determined by order
parameter symmetry and spatial dimension is established.

Striking and perplexing phenomena are reported even in
recent experiments of thermal transitions of high-temperature
superconducting materials. The Ising nematicity in layered
cuprates, doped YBa2Cu3O7 and HgBa2CuO4, shows a pe-
culiar superlinear onset [5–10]. In doped RbFe2As2, the
diagonal Ising nematicity without an anomaly in heat ca-
pacity is observed [11–14]. Conventional WF classes are
inapplicable to these experiments, calling for a new theoretical
framework. Possibilities of exotic transitions have been sug-
gested by using the ideas of topology, fractionalization, and
deconfinement [15–23].

In this Letter, we demonstrate the existence of exotic
thermal transitions by investigating spontaneous symmetry
breaking transitions in thermal phases with topological orders.
Instead of using conventional thermal gauge theories [24–27],
we analyze the quantum rotors coupled to qubits of the toric
code in three spatial dimensions (3D) [28–30] to explore ex-
otic thermal transitions. Striking characteristics of the exotic
thermal transitions are uncovered. The Ising and XY transi-
tions are in the same universality class, in drastic contrast to
the WF classes. All critical exponents are evaluated, and their
differences from the ones of the WF classes are emphasized.

Our approach has the following advantages. First, there
is no imposed gauge invariance in our models and thus no
subtlety associated with the origin of the gauge invariance
in thermal phases. In fact, we discuss the effects of gauge
noninvariant interactions and show their irrelevance to the

*egmoon@kaist.ac.kr

existence of the exotic universality classes. Second, we utilize
the exact solutions of the models and employ a controlled
perturbative analysis. Clear-cut conclusions of the existence
and properties of exotic thermal transitions are obtained. Cou-
plings to other physical degrees of freedom, such as acoustic
phonons or Fermi surfaces, are determined unambiguously,
and the stabilities of the thermal transitions are studied. Third,
our quantum models naturally provide the relations between
the thermal phase transitions and corresponding quantum
phase transitions, providing a bird’s-eye view of quantum and
thermal transitions.

Stability of the WF classes. We revisit the WF universality
classes of thermal phase transitions by considering quantum
rotor models. To be specific, let us consider the O(2) quan-
tum rotor model on a cubic lattice with the conventional hat
notation for quantum operators,

ĤR =
∑

j

Vθ

2
n̂2

j − tθ
∑
〈i, j〉

cos(θ̂i − θ̂ j ),

where an angle operator θ̂ j and its conjugate number operator
n̂ j with the commutation relation [eiθ̂ j , n̂ j] = eiθ̂ j are intro-
duced. The Hilbert space is a tensor product of local Hilbert
spaces,

HR =
∏

j

⊗H j, H j = {|n j〉 | n j ∈ Z},

with n̂ j |n j〉 = n j |n j〉. The integer condition of n j is associated
with the compactification |θ j〉 = |θ j + 2π〉. The model enjoys
a U (1) symmetry whose action is Û (α) = ∏

j eiαn̂ j with a real
value α. The symmetry is spontaneously broken by varying
with Vθ /tθ . The symmetric phase is adiabatically connected to
the ground state at tθ = 0, |sym〉 = ∏

j |n j = 0〉, and the sym-
metry broken phase is adiabatically connected to the ground
state at Vθ = 0,

|θ0〉 =
∏

j

|θ j = θ0〉, 〈θ0|eiθ̂ j |θ0〉/〈θ0|θ0〉 = eiθ0 ,
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for θ0 ∈ (0, 2π ). Finite temperature T drives a thermal phase
transition of U (1) symmetry breaking. One direct way to
construct the corresponding Landau functional is to introduce
a complex order parameter ψ j = eiθ j and perform a coarse
graining, which gives

ZR = Trθ (e−ĤR/T ) → ZR �
∫

Dψ e−FR (ψ ),

FR[ψ] =
∫

x

(
|∇ψ (x)|2 + r|ψ (x)|2 + λ

4
|ψ (x)|4

)
.

Here, ψ (x) is the coarse-grained field and the integration
is over a 3D space. Hereafter, we omit the obvious space
dependence of the order parameters. This Landau functional
describes the WF-XY universality class in 3D and the coeffi-
cients (r, λ) are functions of (Vθ , tθ , T ) in addition to a lattice
spacing.

It is well known that the WF-XY class is unstable under
the Ising potential VI = −u

∑
j cos(θ j )2, and the presence of

a nonzero u breaks the U (1) symmetry down to the Ising one
whose order parameter becomes a real variable, φ j = cos(θ j ).
The Ising potential has the form VI = −u

∑
j φ

2
j , and the

Landau functional of the Ising order parameter becomes

FI [φ] =
∫

x

(
1

2
(∇φ)2 + r

2
(φ)2 + λ

4
(φ)4

)
.

Next, let us investigate how the theory of the order param-
eter is affected by fermions. The most drastic effects come
with the presence of a Fermi surface, so we consider a model
Hamiltonian H = HI + Hf + HY and

Hf = −t f

∑
〈i, j〉

c†
i c j − μ

∑
j

c†
j c j, HY = −g

∑
j

φ jc
†
j M̂c j,

where M̂ is a vertex operator of the Yukawa coupling. Af-
ter integrating out the electrons, one can easily show that
the Ginzburg-Landau coefficient is modified by electrons,
u → u + �(μ, t f ). The absence of singularities from elec-
trons indicates that the same criticality theory with modified
interaction terms describes phase transitions [see Supplemen-
tal Material (SM) [31]]. We note that all thermal universality
classes are stable under coupling to Fermi surfaces due to
thermal fluctuations regardless of the particular choice of
symmetry, including the WF-Ising/XY class.

The stability of the WF classes under acoustic
phonons/disorder also has been well understood in previous
studies [32–35]. Introducing a phenomenological coupling
through a strain tensor, the Larkin-Pikin condition is
suggested by the lowest-order renormalization group analysis,
showing that the Ising (XY) universality becomes unstable
(stable) in 3D, respectively. By employing the so-called
Harris criterion, one can achieve the same stability behavior
under disorder, as in the phonon case. The Ising universality
may become either a first-order transition or a different
universality class such as the mean-field class.

The model. We couple quantum rotors to qubits σ̂
x,y,z
l at

links of a 3D cubic lattice with a periodic boundary condition.
The total Hilbert space becomes the tensor product of the ones

FIG. 1. (a) Interaction terms of ĤX . One of the star operators
Â j and three of the plaquette operators B̂p∗ of the 3D toric code
are denoted with red and blue links, respectively. (b) Schematic
phase diagram. Two transitions (Tc, T∗) correspond to a symmetry
breaking and deconfinement. The DC-Ising/XY is different from the
conventional WF-Ising/XY, whose critical exponents are in Table II.

of quantum rotors and qubits,

Htot = HR ⊗ HQ, HQ =
∏

l

⊗{|σ z
l = ±1〉}.

The model Hamiltonian is

ĤX = −J
∑
〈i, j〉

σ̂ z
i j cos

(
θ̂i

2
− θ̂ j

2

)
−

∑
j

ei2π n̂ j Â j −
∑

p∗
B̂p∗ ,

(1)

where the star and plaquette operators, Â j = (
∏

l∈ j σ̂
x
l ),

B̂p∗ = (
∏

l∈p∗ σ̂ z
l ) of the 3D toric code are introduced as

shown in Fig. 1(a). The index l and j are for a link and a
site, respectively. We note that the original 3D toric code has
a thermal phase transition at T 0

∗ = 1.313, which describes a
deconfinement-confinement transition [29].

A few remarks are as follows. The U (1) symmetry of ĤX

is the same as the one in ĤR. The factor ei2π n̂ j associated
with the star operator is an identity operator due to the integer
condition of n j , still, its presence is useful to check symmetry
apparently. Also, the model is exactly solvable because all the
terms of ĤX commute with each other, which is related to the
local Z2 transformation generated by ei2π n̂ j Â j . The effects of
other interactions which break the exact solvability and local
Z2 transformation are discussed below.

One ground state with a quantum number θ0 is

|θ̃0〉 = P̂G

(
|θ0〉 ⊗

∏
l

|σ z
l = 1〉

)
,

P̂G ≡
∏

j

(
1 + ei2π n̂ j Â j

2

)
.

Here, P̂G is a projection operator onto the states with A j = 1
for all j. We stress that the order parameter is the expectation
value of an operator eiθ̂ j , not eiθ̂ j/2, as manifested by

〈θ̃0|eiθ̂ j |θ̃0〉
〈θ̃0|θ̃0〉

= eiθ0 ,
〈θ̃0|eiθ̂ j/2|θ̃0〉

〈θ̃0|θ̃0〉
= 0. (2)

The ground state with a quantum number θ0 is unique with-
out any degeneracy. For example, we consider the spin-flip
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TABLE I. Excitations and their excitation energies of ĤX . The
vortex and flux configurations of the rotor and qubit on the lattice are
illustrated in Fig. S3 [31]. Three different length scales, system size
(Lx), vortex size (Rx), and lattice spacing (a), are used.

Excitation Energy cost

A pair of fluxes 8 + 2J
2π vortex [ π

4 log( Rx
a ) + Rx

a ]J Lx
a

2π vortex + fluxes [ π

4 log( Rx
a )J + 4] Lx

a
4π vortex [π log( Rx

a )]J Lx
a

Phase fluctuation J[1 − cos(
α j

2 )]

operator along the crystal plane Lxy of the dual lattice perpen-
dicular to the z direction, V̂xy = ∏

l∈Lxy
σ̂ x

l (see Fig. S2 [31]).
While it connects homologically different ground states in the
pure 3D toric code, the operator action in our model gives the
energy,

〈θ̃0|V̂xyĤX V̂xy|θ̃0〉
〈θ̃0|θ̃0〉

= EG + 2JL2
x ,

lifting the degeneracy completely. Here, EG is for the ground
state energy without any spin-flip operator.

The wave functions and excitation energies are summa-
rized in Tables I and S1 (See SM [31]), and a few remarks
are as follows. First, the primary topological defect is a 4π

vortex line, not a 2π vortex line [36]. Note that the bound
state of a 2π vortex line and a flux line has lower energy, but
it is still qualitatively bigger than the energy of a 4π vortex
line. Second, the energy hierarchy manifests. Only phase fluc-
tuations and the 4π vortex live at low-energy Hilbert space.
Hereafter, we consider the case with J, T � T 0

∗ , which allows
us to focus on the zero-flux sector.

Exotic transitions associated with topological orders. In the
zero-flux sector, the effective Hamiltonian is

Ĥeff = P̂0ĤX P̂0 → −J
∑
〈i, j〉

cos

(
θ̂i

2
− θ̂ j

2

)
,

where the projection operator onto the zero-flux Hilbert space,
P̂0, is introduced. The right- hand side of the arrow is obtained
with the configuration of the zero flux, σ z

l = 1. We remark that
the range of the angle variables is θ j ∈ (0, 2π ), originating
from HR, not the doubled one (0, 4π ).

The form of the effective Hamiltonian indicates that 2π

vortex lines are removed from the zero-flux Hilbert space.
Thus, the zero-flux Hilbert space can be given by

P̂0[Htot] = H0πv
⊗ H4πv

⊗ H8πv
⊗ · · · ,

where H4nπv
is for the Hilbert space with 4nπ vortex lines.

Then, the corresponding partition function is

Zeff ≡ Trθ [e−Ĥeff /T ] = Z0πv
Z4πv

· · · ,

where the subscripts are to specify the topological defects.
Then, the remaining step is standard. A topological phase
transition associated with 4π vortex lines appears in Z4πv

,
whose critical temperature is estimated by comparing the en-
ergy and entropy of the topological defect, and we find the
critical temperature Tc ∼ J .

We stress that the trace of Zeff is over {|θ̃0〉} not over the
conventional states {|θ0〉}, and there is no ambiguity of the

TABLE II. Critical exponents of the thermal universality classes
associated with Ising and XY symmetries in three spatial dimensions.
Using the two critical exponents ν and β, we find the other exponents
with the scaling relations νd = 2 − α, α + 2β + γ = 2, γ = ν(2 −
η), and β(δ + 1) = νd with d = 3. For comparison, the universality
class of the toric code, which is the same as the one of the 3D Ising
model, is tabulated and its stability is discussed in SM [31]. As there
is no order parameter in thermal topological transitions, any physical
quantities out of the correlation functions of the order parameters
are ill defined (Denoted as X). Only the specific heat is universally
defined without relying on correlation functions, which show definite
singular behaviors.

Universality class α β γ ν η δ

WF-Ising 0.11 0.33 1.24 0.63 0.036 4.79
WF-XY −0.015 0.35 1.32 0.67 0.038 4.78
Toric code [39,40] 0.11 X X X X X
DC-Ising/XY −0.015 0.83 0.35 0.67 1.47 1.43

thermal average condition 〈eiθ̂ j/2〉T = 0. It is also important
to note that the partition function becomes asymptotically
exact in the limit J, T � T 0

∗ , and the phase transition appears
varying with J/T .

The coarse-grained Landau functional is obtained by intro-
ducing the complex variable ψ j = eiθ j/2,

FDC[ψ] =
∫

x

(
|∇ψ |2 + r|ψ |2 + λ

4
|ψ |4

)
.

The universality class of FDC[ψ] is different from the one
of FR[ψ] even though they have the same form because the
variable ψ j is not an order parameter. Instead, a secondary
operator of the variable, ψ2

j , is an order parameter as shown
in Eq. (2). To determine the universality class, one may study
how the coupling with toric code J in Eq. (1) is renormalized
to understand the interplay physics between the symmetry
order parameter and the topological order. We here adopt
the analogous strategy of the nice work by Haldane, where
the renormalization scheme of the sine-Gorden model in two
spatial dimensions is used [37]. Then, we employ thorough
investigations by Vicari and collaborators to numerically an-
alyze the model in three spatial dimensions and determine all
critical exponents [38].

The correlation length critical exponent with ξ ∼ (Tc −
T )−νDC is estimated as νDC = 0.67, and the order parameter
scaling dimension with 〈(ψ )2 + (ψ†)2〉T ∼ (Tc − T )βDC is es-
timated by the scaling dimension of the secondary operator,
βDC = 0.83. With the two independent critical exponents, all
other critical exponents are obtained by the scaling relations,
which are summarized in Table II.

Let us consider the Ising potential described by ψ j ,

VI = −u
∑

j

cos(θ j )
2 = −u

∑
j

[
ψ2

j + (ψ†
j )2

]2
,

and add
∫

x[ψ2 + (ψ†)2]2 to FDC(ψ ) up to coupling constant
renormalization. The scaling dimension of u is estimated
numerically and shown to be negative [38]. Thus, the Ising
potential is irrelevant at Tc, and the universality class and the
critical exponents are the same in both cases with the Ising
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FIG. 2. Proposed phase diagram of Ba1−xRbxFe2As2 with dop-
ing concentration x and temperature T . Tnem (Tnem′ ) is a critical
temperature of B1g (B2g) nematicity. Our deconfined thermal transi-
tion scenario predicts the existence of a thermal topological transition
at T∗ much larger than Tc. The absence of a specific heat anomaly is
observed at x � 1, which may be better explained by αDC-Ising < 0
than αWF-Ising > 0.

and XY symmetries. The universality class of the critical point
is dubbed deconfined Ising/XY (DC-Ising/XY) class. We
emphasize that the irrelevance of Z2 anisotropy gives a direct
route to see the interplay physics between the topological
order and Ising order parameter, which is mainly discussed
in the next section.

Based on our analysis, we provide a schematic phase
diagram in Fig. 1(b), expecting that the phase diagram is
asymptotically exact if T 0

∗ is much bigger than the other
energy scales. Generalization to different symmetry groups
is straightforward. For example, we compare our results with
previous literature uncovering Heisenberg symmetry with
thermal gauge theories in SM [26,27,31].

Applications to experiments. Our theoretical proposal is
relevant to the experiments on strongly correlated systems, in-
cluding iron-based superconductors. One important example
is an exotic nematic transition observed in doped RbFe2As2

compounds [13,14]. The recent experiments have found two
Ising nematicities with different irreducible representations
(B1g, B2g) in Ba1−xRbxFe2As2, whose schematic phase dia-
gram is illustrated in Fig. 2. Remarkably, the temperature
dependence of specific heat of the B1g nematicity exhibits no
discernible anomaly, in sharp contrast to that of B2g nematic-
ity. The origin of the B1g nematic order has been considered
in several theoretical works [41,42], but there are still puz-
zlings in the experiments such as the absence of specific heat
anomaly.

Based on the deconfined thermal transitions, we predict the
scaling relation of the nematic susceptibility χnem[hnem, T ] in
an extension of the previous experiments,

χnem[hnem, T ]

χnem[hnem, Tref ]
= C1

|T − Tnem|γDC
F

[
C2hnem

(Tnem − T )βDCδDC

]
,

with an external field hnem and a dimensionless scaling func-
tion F . Two dimensionful parameters (C1,C2) depend on the
reference temperature Tref as well as the microscopic details.
The nematic susceptibility without knowing the critical tem-

perature Tnem was already reported in a previous work [13],
while Tnem was recently uncovered by a Mössbauer experi-
ment in Ref. [14].

The scenario provides the following additional predictions.
First, there is an additional thermal transition at T = O(T∗)
whose scale is much higher than the onset temperature of the
B1g nematicity. The energy scale of T∗ is expected to depend
on microscopic interactions such as the Coulomb interaction
and Hund coupling. Specific heat measurements at higher
temperatures would be useful to estimate the scale of T∗.
Second, the milder singularity of the specific heat jump in the
B1g nematicity may be a manifestation of the negative value
of αDC-Ising = −0.015. We show the absence of the specific
heat jump never occurs in the WF classes, even with fermionic
excitations (see SM [31]). The presence of other degrees
of freedom, such as phonons, would make the anomaly of
the specific heat invisible in experiments. Third, the negative
value of αDC-Ising further indicates that the DC-Ising class is
much more stable under disorder and acoustic phonon cou-
plings than the Ising class based on the Harris criterion [43]
and the Larkin-Pikin criterion [32]. Thus, the deconfined uni-
versality class for thermal transitions can bypass decoherence
issues in lattice vibrations or disorder, which makes it more
reliable to be found experimentally. Fourth, the exponent of
the susceptibility (order parameter onset) γDC-Ising (βDC-Ising) is
much smaller (larger) than the WF universality classes, which
should be tested in experiments.

Discussion and conclusion. Our analysis with the exactly
solvable model of ĤX allows us to include additional micro-
scopic quantum interactions such as Vθ

2

∑
j n̂2

j or hz
∑

l σ̂ z
l .

Note that such inclusions are tricky in the conventional effec-
tive thermal gauge theories in the sense that precise couplings
are not directly determined. Performing perturbative calcu-
lations with the other interactions, we check that that the
charging effect term with Vθ induces quantum fluctuations of
the rotors, similar to the conventional Bose-Hubbard model.
Also, the local gauge invariance breaking term with hz is
shown to be irrelevant for hz � J (see SM [31]). Thus, we
argue that the exotic thermal transitions are intact under the
other interactions which break the exact solvability and local
Z2 transformation.

We also remark on the subtlety of quantum-classical (QC)
mapping in our model. Employing the conventional QC cor-
respondence, our thermal DC-XY universality class could be
mapped to the quantum-XY∗ universality class in two spa-
tial dimensions [44–46]. The reported critical exponent of
the quantum-XY∗ class, ηXY∗ = 1.49, is quite similar to the
one of our deconfined thermal transitions, which is a strong
indication of holding the QC correspondence [44]. However,
the QC mapping no longer holds once order parameters couple
to fermions with Fermi surfaces. This is because the singu-
larities from the Fermi surfaces are suppressed by thermal
fluctuations, in the case of deconfined thermal transitions,
while the Fermi surfaces in quantum systems destabilize an
order parameter, as in the pioneering work, the so-called
Hertz-Millis theory [47,48]. Therefore, the QC correspon-
dence between our DC-Ising/XY and quantum-XY∗ becomes
elusive in metallic systems.

In conclusion, we show the existence of exotic thermal
transitions with spontaneous symmetry breaking from topo-
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logical orders. All critical exponents of the exotic universality
classes are evaluated, and differences from the conventional
mean-field and WF classes are emphasized. We provide
smoking-gun experiments to test the exotic thermal transitions
in plausible connections with doped Ba1−xRbxFe2As2.
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