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Defect-induced electronic smectic state at the surface of nematic materials
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Due to the intertwining between electronic nematic and elastic degrees of freedom, lattice defects and
structural inhomogeneities commonly found in crystals can have a significant impact on the electronic properties
of nematic materials. Here, we show that defects commonly present at the surface of crystals generally shift
the wave vector of the nematic instability to a nonzero value, resulting in an incommensurate electronic smectic
phase. Such a smectic state onsets above the bulk nematic transition temperature and is localized near the surface
of the sample. We argue that this effect may explain not only recent observations of a modulated nematic phase
in iron-based superconductors, but also several previous puzzling experiments that reported signatures consistent
with nematic order before the onset of a bulk structural distortion.
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Electronic nematicity has been observed in a wide range
of systems, including high-Tc superconductors [1–3], heavy-
fermion materials [4–6], topological superconductors [7,8],
cold atoms [9], and twisted moiré devices [10,11]. Among
those, iron-based superconductors (FeSC) have provided
unique insight into this quantum electronic state due to the
nearly universal and unambiguous presence of nematic or-
der and nematic fluctuations in their phase diagrams [3,12–
16]. Despite significant progress, essential questions remain
unresolved, related not only to the microscopic mechanisms
of nematicity, but also to its general phenomenology [17].
For instance, since the early studies of FeSC, various probes
in nominally unstrained samples have reported signatures
consistent with nematicity above the nematic transition tem-
perature Tnem established by thermodynamic probes [18–29].
More recently, experiments have found evidence for a spa-
tially modulated nematic phase, i.e., an electronic smectic
phase [30–33].

The probes used in many of these experiments are par-
ticularly sensitive to the surface, e.g., angle-resolved photoe-
mission spectroscopy (ARPES) [25–27], scanning tunneling
microscopy (STM) [21,30–32], spatially resolved photomod-
ulation [19], and photoemission electron microscopy (PEEM)
[33]. Moreover, the onset of these interesting phenomena
does not usually show typical phase-transition signatures in
thermodynamic quantities, such as specific heat [34] and ela-
storesistance [3]. This suggests that both effects—nematic
manifestations above Tnem and modulated nematic order—
may signal a surface nematic transition at higher temperatures
than the bulk one [19], reminiscent of the so-called extraor-
dinary transition [35]. The key question is whether a surface
nematic transition is particular to some FeSC compounds or
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a more general phenomenological property of nematic com-
pounds.

While a purely electronic mechanism was previously in-
voked to explain surface nematicity [23], in this Letter we
focus on the role of the elastic degrees of freedom. The
nematoelastic coupling g is known to significantly impact
the nematic state, particularly in FeSC [15,16,36–41]. For
instance, coupling to elastic fluctuations (acoustic phonons)
renders the nematic transition mean-field-like [40,42–45],
whereas intrinsic random strain fosters behaviors associated
with the random-field Ising model [46–48]. Here, we show
that defects commonly found in the surfaces of crystals, such
as steps separating terrace domains, promote an electronic
smectic state localized near the surface and that onsets at a
temperature Tsmc > Tnem (see Fig. 1). The smectic state sur-
vives down to a temperature Tsmc-nem, which decreases as the
sample thickness is reduced, at which point a homogeneous
nematic phase takes over. Our results establish a little explored
facet of electronic nematic phases in elastic media, which we
argue can explain the intriguing observation of Ref. [33] of a
mesoscopic nematic wave in FeSC.

To understand why defects induce a surface transition,
note that elastic fluctuations increase the nematic transition
temperature Tnem from its bare purely electronic value T (0)

nem.
In a clean system, some of the elastic modes are expected
to be frozen near the surface, resulting in T (surface)

nem < Tnem

[49]. However, the fact that the exposed surface is more
disordered than the bulk changes this picture dramatically.
To see this, consider a random distribution of defects, such
as vacancies and dislocations, on the surface of a crystal
whose bulk is clean. Defects locally induce large strains that
decay slowly with distance [50]. Since they are concentrated
at the surface, they rapidly screen each other as one moves
deeper into the bulk. However, near the surface, they do not
screen efficiently, causing not only an enhancement of Tnem

at the surface, but also creating a “speckle” pattern in the ne-
matic fluctuation spectrum, with a typical spot size set by the
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FIG. 1. Schematic illustration of the surface smectic state, shown
here as a modulated nematic order parameter that quickly decays
in the bulk of the sample (gray). Red (blue) regions denote a B1g

nematic order parameter that selects the x (y) axis of a tetragonal
crystal. The inset illustrates the dipolar forces induced by a surface
step. It also presents a cross section of the sample (gray) with aligned
steps of random heights/strengths oriented parallel to the y axis

algebraic strain correlations rather than by the defect density.
This disorder-induced pattern imposes a preferred wavelength
for the condensation of the nematic order parameter, driving
the formation of an electronic smectic state.

To derive these results, we solve a Ginzburg-Landau model
of a generic nematic order parameter coupled to elastic strain
induced by simple types of surface quenched disorder, such as
steps and anisotropic point defects. We find that the defect dis-
tribution induces a nonlocal effective potential for the nematic
order parameter. After averaging over defect realizations, the
minimum of the resulting nematic free energy appears at
a higher temperature Tsmc = Tnem + �Tsmc (with �Tsmc > 0)
and at a nonzero wave vector qsmc, resulting in an electronic
smectic phase. In terms of the disorder strength σ 2, we find

qsmc ∝ g2σ 2, �Tsmc ∝ q2
smc. (1)

The smectic order parameter is inhomogeneous and localized
at the surface, decaying exponentially into the bulk with a
penetration depth ∝1/qsmc. Eventually, below Tsmc-nem, which
is lower than the bulk nematic transition temperature Tnem, the
smectic solution becomes unfavorable and the uniform q = 0
nematic state is established throughout the sample.

Surface step disorder and induced strain. To elucidate our
results, we consider an Ising-nematic order parameter η that
breaks the equivalence between the x and y directions of a
crystal (i.e., it transforms as the B1g irreducible representation
of the tetragonal group). In the presence of strain, the nematic
action is given by

S =
∫

r

[(
r0

T − Tnem

2T (0)
nem

)
η2

r + bμ

2
(∂μηr)2 − gε

B1g
r ηr + uη

4
η4

r

]
,

(2)
where repeated indices are implicitly summed; bx = by = b‖
and bz are the nematic stiffness coefficients; uη > 0 is the

quartic coefficient; r0 is of the order of the Fermi energy
(action has dimensions of energy); εB1g ≡ (εxx − εyy)/

√
2 is

the B1g shear strain, which acts as a conjugate field to the
nematic order parameter; and T (0)

nem, Tnem are the nematic tran-
sition temperatures without and with the enhancement from
elastic fluctuations. For a clean unstrained crystal, ε

B1g
r is only

present as a fluctuating field whose properties are determined
by the crystal’s elastic constants. However, for a crystal with
quenched disorder, a static slowly decaying strain ε

B1g
r is

generated by the various types of defects. In both cases, an
effective nematic potential emerges in the action due to either
thermal fluctuations or average over disorder configurations.
While the former scenario has been widely studied [42–45],
the latter has received much less attention [51,52].

A crystal with an exposed surface can be modeled by an
isotropic elastic half space (z � 0) with Young’s modulus E
and Poisson ratio ν. Each type of surface defect generates
a characteristic dipolar local force, which in turn can be
used to calculate ε

B1g
r via standard methods [53–59]. Here,

we consider idealized infinite step defects parallel to the y
axis, as shown in Fig. 1 [we consider point defects in the
Supplemental Material (SM) [60]]. A single step at x = x′ is
parametrized by the force density fμ = hμ[∂xδ(x − x′)]δ(z),
where δ(z) is the Dirac delta function, the force hμ character-
izes the strength of the defect, and μ = x, z. For simplicity,
we consider steps that create forces along the z axis only,
i.e., hx = 0 and hz �= 0. The lattice displacement created by a
single step is given by uμ = hν∂xGμν (x − x′, z), where Gμν is
the Green’s function for an infinite line force along the y axis
in half space [50]. The B1g strain ε

B1g

r−r′ generated by a single
defect is [50]

ε
B1g

r−r′ = −4(1 + ν)hz√
2πE

[
(ν − 1)δx3z + (ν + 1)δx z3

(δx2 + z2)3

]
, (3)

where δx = x − x′. A distribution of such steps at ran-
dom positions x = x j and with random strength hz, j results

in the net B1g strain ε
B1g
r = ∑

j h j∂
2
x Gxz(x − x′, z − 0) ≡∑

j h j ε̄
B1g

r−r j
. The nematic action (2) for the finite crystal with

dimensions Lx = Ly = L‖ and Lz = L � L‖ becomes

S = L‖
∫ L‖

2

− L‖
2

dx
∫ L

0
dz

[(
r0

T −Tnem

2T (0)
nem

)
η2

x,z+
b‖
2

(∂xηx,z )2

+ b

2
(∂zηx,z )2 + uη

4
η4

x,z − g
∫ L‖

2

− L‖
2

dx′ρx′ ε̄
B1g

x−x′,zηx,z

]
, (4)

where we defined ρx = ∑
j h jδ(x − x j ).

Effective nematic potential and smectic state. For a
random distribution of steps, 〈hjh j′ 〉 = σ 2δ j, j′ , the step
density ρx follows a Gaussian distribution with variance
σ 2(Nstep/L‖)(a‖/Lξ ), where Nstep is the number of steps, a‖
is the in-plane lattice constant, and Lξ is a length scale
larger than a‖ but smaller than the nematic correlation length.
Integrating out the step density in Eq. (4) (equivalent to
the standard procedure of averaging over quenched disorder
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FIG. 2. (a) Spatial profile of the nematic order parameter ηx,z for three representative temperatures, obtained from the numerical solution
of the saddle-point equation (9). For T > Tsmc, the nematic order parameter is effectively zero everywhere. As temperature is lowered towards
Tsmc-nem < T < Tsmc, ηx,z displays a sinusoidal x dependence characterized by a single smectic wave vector qsmc [(b)]. Below the bulk nematic
transition T < Tsmc-nem, a uniform nematic state emerges with zero wave vector [(c)]. The enhancement of ηx,z at the corners is an artifact of
the boundary conditions. The profile of the nematic order parameter ηqx ,z in Fourier space is shown in (b) (for Tsmc-nem < T < Tsmc) and (c) (for
T < Tsmc-nem). The parameters used are (in arbitrary units) r0 = 1, b = 0.5, b‖ = 0.25, ν = 0.495, L‖ = 44, L = 9, (gσ )2β/2 = 1, and uη = 5.
In (b) and (c), the nematic fields were normalized.

[61–67]) generates a new quadratic term in the nematic action,

Sd = L2
‖

∫ L

0
dz dz′ ∑

qx

Vqx,z,z′η∗
qx,zηqx,z′ , (5)

with an effective potential experienced by the nematic order
parameter

Vqx,z,z′ = − (gσ )2β

2
e−|qx |(|z|+|z′|)

× q2
x [|qx||z| + 2ν − 1][|qx||z′| + 2ν − 1]. (6)

Here, β = [(1 + ν)/(
√

2E )]2Nstep(Lξ /a‖) and ηqx,z =
(1/L‖)

∫
x ηx,ze−iqxx. The potential Vqx,z,z′ is nonlocal,

depending on both z and z′. Moreover, it vanishes
quadratically as qx → 0 and exponentially as z, z′ → ∞
or qx → ∞. Thus, the potential has a negative-valued
minimum at a nonzero qx and is significant only near the
surface. These features are a consequence of the algebraic
decay of the strain fields generated by defects, rather than the
type of defects (see SM [60]).

While the defect-generated potential in Eq. (6) is mini-
mized by qx �= 0, the nematic stiffness term b‖q2

x in Eq. (4)
favors a uniform qx = 0 state. This competition causes the
nematic instability to take place at a nonzero wave vector
qx, resulting in an electronic smectic state. This effect is re-
stricted to the vicinity of the surface due to the exponential
suppression of Vqx,z,z′ with |z|. This can be more clearly seen
by an approximate analytical solution of the problem. Re-
expressing Vqx,z,z′ in terms of z̄ = (z + z′)/2 and δz = z − z′,
Vqx,z̄,δz is peaked at z̄ ∼ 1/|qx| and δz = 0. Assuming that ηqx,z

varies slowly near the surface over a depth Ls ∼ 1/|qx|, before
eventually decaying exponentially away from the surface, the
action (5) becomes

Sd = L2
‖

∫ L

z̄=0

∫ Ls
2

δz=− Ls
2

∑
qx

Vqx,z̄,δz|ηqx,0|2,

≈ − L2
‖Ls

∑
qx

(gσ )2β
[(

ν − 1
2

)2 + ν2
]

2
|qx||ηqx,0|2. (7)

In the regime of vanishing z-component stiffness b → 0,
the quadratic part of the action (4), S(2), is given by

S(2) ≈ L2
‖Ls

∑
qx

[(
r0

T − Tnem

2T (0)
nem

)
+ b‖q2

x

2

]
|ηqx,0|2. (8)

Minimizing the full action Sd + S(2) with respect to qx

gives a finite smectic wave vector qsmc = (gσ )2β[(ν − 1
2 )2 +

ν2]/2b‖ and an enhanced smectic transition temperature
Tsmc = Tnem + (T (0)

nem/r0)b‖q2
smc, consistent with Eq. (1). The

actual spatial profile of ηx,z and the precise qsmc and Tsmc

can be obtained by solving the saddle-point equation in real
space, [

r0
T − Tnem

T (0)
nem

− b∂2
z − b‖∂2

x

]
ηx,z + uηη

3
x,z

+ 1

L‖

∫ L

0
dz′

∫ L‖
2

− L‖
2

dx′ Vx−x′,z,z′ηx′,z′ = 0, (9)

where Vδx,z,z′ is the inverse Fourier transform of Vqx,z,z′ (see
SM [60]), whose asymptotic behavior is

Vδx,z,z′ ∼
{−(z + z′)−3, |δx| � z, z′,

+(z + z′)(δx)−4, |δx| � z, z′.
(10)

Therefore, as a function of δx/(z + z′), Vδx,z,z′ has a negative
central trough at δx = 0, crosses zero at δx ∼ z + z′, and then
remains positive as it decays algebraically. The sign change in
real space means that the effective potential favors an oscilla-
tory ηx solution.

The numerical solution of Eq. (9), shown in Fig. 2(a),
confirms the main results of our analytical approximation.
The specific choice of the quartic term in the nematic ac-
tion (4) stabilizes a single smectic wave vector over the
entire temperature range Tsmc-nem < T < Tsmc, as it acts as
a repulsive biquadratic interaction uη|ηqx |2|ηq′

x �=qx |2 between
states with different wave vectors. Consequently, only the
smectic wave vector corresponding to the highest critical
temperature develops. For the same reason, in a fully three-
dimensional (3D) crystal with L � 1/qsmc, the uniform bulk
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FIG. 3. (a) Temperature dependence of the uniform nematic (red,
approximated by ηqx=0,z=L) and surface smectic (blue, approximated
by ηqx=qsmc≈0.57,z=0) order parameters, numerically obtained by solv-
ing Eq. (9) (same parameters as Fig. 2). (b) Phase diagram as a
function of the effective disorder strength (gσ )2β

2 and the reduced
temperature. The smectic critical temperature (blue circles), found
to vary quadratically with (gσ )2β

2 , was obtained from the linearized
saddle-point equation (9) in momentum space (see SM [60]). Due
to the finite sample thickness, the bulk nematic phase onsets at
T = Tsmc-nem < Tnem.

nematic phase is preferred for T < Tnem, as its free-energy
gain scales extensively with the system size. However, for
smaller values of L comparable to 1/qsmc, the smectic free
energy can compete with the bulk nematic one. Consequently,
the smectic-nematic transition is pushed to a lower tempera-
ture Tsmc-nem < Tnem, which decreases with decreasing sample
thickness. Figures 2(b) and 2(c) show the corresponding pro-
file of ηqx,z in momentum space, highlighting the change in
wave vector above and below Tsmc-nem.

The temperature dependence of the uniform nematic and
smectic order parameters is shown in Fig. 3(a). The contin-
uous onset of surface smectic order is evident, eventually
dropping discontinuously to zero, concomitant to the onset
of uniform nematic order. Figure 3(b) shows the numerically
obtained phase diagram as a function of increasing defect
disorder strength σ 2.

Discussion. The mechanism unveiled in this Letter for the
emergence of a surface electronic smectic state above the
onset of bulk electronic nematicity is rather general, as it
relies solely on the existence of defects commonly observed at
crystal surfaces. While here we focused on steps, other defects
with nonzero dipolar elastic moments are expected to promote
a similar behavior, since they also generate algebraically de-
caying strain fields that are poorly screened at the surface (see
SM [60]) [68,69]. Our result unearths yet another aspect of
the rich phenomenology of electronic nematicity caused by
the coupling to the elastic degrees of freedom.

The impact of the effect we found on a given nematic
system depends on the disorder strength σ and on the ne-
matoelastic coupling g, as shown in the phase diagram of
Fig. 3(b). FeSC stand out as compounds with strongly coupled
nematic and elastic degrees of freedom, as manifested by,
e.g., the large orthorhombic distortion seen in the nematic
phase [70]. In contrast, in other tetragonal correlated systems
that display nematic tendencies, such as Hg-based cuprates
[71] and heavy-fermion systems [5,6], a lattice distortion
is difficult to be resolved experimentally. The potentially
large period 2π/qsmc of the smectic state may explain why
certain surface-sensitive probes, such as ARPES and STM,
observe signatures consistent with nematic order above the
temperature where a bulk orthorhombic distortion onsets.
Among the various experimental findings that have indi-
cated the existence of a smectic phase in FeSC [30–33], the
PEEM data reported in Ref. [33] provide the most straight-
forward platform to perform comparisons with our theory
and extract relevant physical estimates. That work found a
sinusoidal modulation of the nematic order parameter with a
long and material-dependent period. Moreover, when Fourier-
transformed to momentum space (see SM [60]), the PEEM
data, available in Ref. [72], displays a distinctive speckle
pattern corresponding to a spot of size qsmc, reminiscent
of our theoretically calculated nematic potential Vqx,z,z′ . As
shown in detail in the SM [60], combining the experimental
results of Ref. [33] with our theoretical model, we find two
interesting results: (i) The size of a typical region of par-
allel stripes, observed in that work, is small enough that a
homogeneous nematic phase may not be stabilized at Tnem.
(ii) The characteristic energy scale per defect is of the or-
der Ed ∼ 100 μeV. This scale is much smaller than both
the Fermi energy and the bulk nematic orbital order en-
ergy splitting observed in FeSe. These results highlight that
the smectic order is not the result of a particular defect
distribution with fine-tuned disorder strength, but of the sub-
tle effects of the long-range strain generated by the defect
distribution.
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