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Highly entangled states are the key to the realization of quantum information processing. We theoretically
investigate magnon-magnon entanglement in a compensated ferrimagnet. We show that the steady-state magnon-
magnon entanglement largely enhances in the vicinity of angular momentum compensation point (TA) when
magnons are coupled with photons in a cavity. The origin of this enhancement is that the ground state of
ferrimagnet can be close to the Einstein-Podolsky-Rosen state near TA. This feature is unique to ferrimagnets
with different Landé g factors between sublattices and makes the magnon entanglement of ferrimagnets higher
than that of ferromagnets and antiferromagnets. Our result will invigorate research on quantum information
processing based on magnon-magnon entanglement.
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Introduction. Quantum information processing (QIP) [1,2]
describes the manipulation of quantum information, utilizing
the quantum nature of system. Representative subdisciplines
of QIP include (quantum–) computing, cryptography, tele-
portation, and simulation [2,3], which provide innovative
strategies to overcome classical limitations of each research
field. As quantum entanglement is the vital resource to per-
form various quantum tasks [3–5], high entanglement is the
key to the realization of QIP.

For continuous-variable quantum information [4–6], en-
tanglement can be generated through squeezing [4,5] as was
investigated in optics [2], optomechanics [7], and atomic
ensembles [8]. Recent studies reveal that magnons also
have notable entanglement through the squeezing [9–15].
Moreover, the entanglement between magnons and other
quasiparticles (i.e., magnon-photon [16–18], magnon-phonon
[19], and magnon-superconducting qubit [20,21]) are of cur-
rent interest. These studies open a field named quantum
magnonics [22–26] that utilizes magnetic systems as a plat-
form for QIP. In particular, two-mode squeezed states of
magnon in antiferromagnets (AFMs) attract attention [11,14]
because squeezed magnon states inherently arise due to an-
tiferromagnetic exchange coupling in equilibrium. Moreover,
large exchange coupling of AFMs [27–29] gives rise to large
squeezing effect and associated high magnon-magnon entan-
glement [11]. However, the squeeze parameter r, a measure of
the amount of squeezing, and the associated magnon-magnon
entanglement of AFMs are fundamentally limited by the
magnetic anisotropy [11] that is always present in magnetic
materials.

The ideal Einstein-Podolsky-Rosen (EPR) state [30] is a
state that is perfectly correlated and maximally entangled,
but unphysical as it has infinite energy [5]. The EPR state
corresponds to infinite squeezing (r → ∞), resulting in in-
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finite entanglement. Although the EPR state is unachievable
in reality, it is of crucial importance to find a system where
the ground state approaches the EPR state as close as possible
because the ground-state entanglement, which is defined in
the absence of dissipation and noise, provides a guideline of
the maximal steady-state entanglement allowed in the system
in the presence of dissipation and noise.

In this Letter, we show that the magnon ground state of
antiferromagnetically coupled ferrimagnets (FIMs) near the
angular momentum compensation point TA approaches the
EPR state by the Zeeman coupling. This feature is unique to
FIMs where the Landé g factors are different between two
sublattices and thus is absent in AFMs where the Landé g fac-
tors are the same. At TA, the different Landé g factors of FIM
result in zero net angular momentum [i.e., δs = sb − sa = 0
where sa(sb) is the angular momentum at the sublattice a(b)]
but finite magnetic moment, which allows for antiferromag-
netic spin dynamics due to δs = 0 with finite Zeeman coupling
due to nonzero net magnetic moment [31–34]. This Zee-
man coupling cancels the magnetic anisotropy effect, which
is detrimental for the entanglement by limiting r, and re-
alizes the magnon ground state close to the EPR state. As
a result, with magnon-photon coupling [35–48], the steady-
state magnon-magnon entanglement enhances near TA. The
enhanced entanglement near TA is maintained regardless of
bath temperature. Importantly, FIMs near TA exhibits higher
magnon entanglement than AFMs and ferromagnets (FMs).

Ground-State Magnon Entanglement Enhanced by Ap-
proaching the EPR State. We consider a collinear FIM
consisting of two sublattices a and b. The Hamiltonian of FIM
is [49]

Ĥ = 2J
∑
l,m

Ŝl · Ŝm −
∑

l

h̄γa(B0 + BK,a) · Ŝl

−
∑

m

h̄γb(B0 + BK,b) · Ŝm, (1)
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where J > 0 is the exchange constant, Ŝl (m) is the spin on site
l (m) of sublattice a(b), B0 is the external magnetic field along
the z axis, BK is the uniaxial anisotropy field along the z axis,
and γ = gLμB/h̄ is the gyromagnetic ratio with the Landé
g factor gL and the Bohr magneton μB. The subscript a(b)
represents the sublattice a(b).

Using the Holstein-Primakoff (HP) transformation [50],
we convert the spin operators Ŝl (m) to the bosonic annihilation
âl (b̂m) and creation operators â†

l (b̂†
m). For the uniform mode

(i.e., wavevector = 0), the Hamiltonian is rewritten as

Ĥ = A1(â†â + b̂†b̂) + A2(â†â − b̂†b̂) + A3(â†b̂† + âb̂), (2)

with

A1 = 1

2

[
h̄γaBa − h̄γbBb +

(√
Sa

Sb
+

√
Sb

Sa

)
Jab

0

]
,

A2 = 1

2

[
h̄γaBa + h̄γbBb −

(√
Sa

Sb
−

√
Sb

Sa

)
Jab

0

]
,

A3 = Jab
0 ,

where Si is the magnitude of spin vector, Ba = B0 + 2Ku/γasa

(Bb = B0 − 2Ku/γbsb) is the sum of the external field and the
anisotropy field at sublattice a(b), Ku > 0 is the anisotropy
energy density, s = h̄S/d3 is the spin density, d is the lattice
constant, Jab

0 = 2
√

SaSbJz is the effective exchange, and z is
the coordination number.

The Hamiltonian [Eq. (2)] is diagonalized via the Bo-
goliubov transformation [51,52] with two Bogoliubov modes
α̂ = uâ + vb̂† and β̂ = ub̂ + vâ†, where α̂ and β̂ preserve
the bosonic commutation relations. This Bogoliubov trans-
formation can be rephrased with the two-mode squeezing
operator Ŝ(r) = exp(râb̂ − râ†b̂†) [11,52] as Ŝ(r)âŜ†(r) = α̂,
Ŝ(r)b̂Ŝ†(r) = β̂. Accordingly, u and v are defined with the
squeeze parameter (r > 0) as u ≡ cosh(r/2), v ≡ sinh(r/2).
Then, the Hamiltonian is transformed to

Ĥ = ωαα̂†α̂ + ωββ̂†β̂, (3)

where ωα = A2 +
√

A2
1 − A2

3 and ωβ = −A2 +
√

A2
1 − A2

3 are
the eigenvalues of the squeezed magnon modes of FIMs. One
can reproduce the eigenvalues of the squeezed magnon modes
of AFM by setting sa = sb and γa = γb.

The ground state of FIM is a two-mode squeezed vacuum
state as in AFM [11], given as

|α̂†α̂ = 0, β̂†β̂ = 0〉sq = Ŝ(r)|0, 0〉, (4)

where |0, 0〉sq is a two-mode squeezed vacuum state and |0, 0〉
is a double vacuum state. From the above Bogolilubov trans-
formation, we find r for FIM as

r = tanh−1ζ , (5)

where

ζ = A3

A1
= 2Jab

0

h̄γaBa − h̄γbBb +
(√

Sa
Sb

+
√

Sb
Sa

)
Jab

0

= 2J
√

SaSbz

KuV
(
S−1

a + S−1
b

) + J (Sa + Sb)z − δγ h̄B0/2
. (6)

Here δγ = γb − γa = (gL,b − gL,a)μB/h̄ > 0 is the difference
of the gyromagnetic ratios between two sublattices and V =
d3 is the unit volume. The ground-state entanglement E (g)

N of
FIM is calculated using the logarithmic negativity [6] in the
absence of dissipation and noise. For a two-mode squeezed
state, E (g)

N is simply given as 2r [14]. Therefore, Eq. (6)
describes how E (g)

N of FIM varies with material properties and
external field B0.

The EPR state corresponds to r = ∞ that is equivalent to
ζ = 1. From Eq. (6), we obtain the EPR field BEPR that makes
ζ = 1:

BEPR = 1

δγ

[
2
(
st −

√
s2

t − δ2
s

)
JzV

h̄2 + 8Kust

s2
t − δ2

s

]
, (7)

where st = sb + sa is the sum of the spin density.
Equations (6) and (7) show a critical role of δγ in E (g)

N .
Only with δγ �= 0 (i.e., gL,a �= gL,b), E (g)

N is tunable with B0

and, more importantly, BEPR is finite. For AFMs (δγ = 0
and δs = 0), E (g)

N does not depend on B0 and BEPR(∝ Ku/δγ )
is infinite due to the combined effect of nonzero magnetic
anisotropy and zero δγ so that one cannot approach the EPR
state. Accordingly, E (g)

N of AFM is relatively small. As far as
the EPR state is concerned, FIMs with δγ = 0 are qualitatively
same as AFMs. In contrast, the Zeeman coupling takes effect
for FIMs with δγ �= 0 so that BEPR is finite and the EPR
state can be approached by applying B0. We note that BEPR

is minimized at TA (i.e., δs = 0) [see Eq. (7)] because it is
independent of the exchange J , which is much larger than the
anisotropy Ku. As a result, EPR state can be approached with
an experimentally accessible magnetic field at TA. We note that
a recent study investigated the magnon entanglement in FIMs
with δγ = 0 [15] so that it is irrelevant to the EPR state and
the entanglement is relatively small.

In reality, the EPR state is unachievable because it is
unphysical. In FIMs, the spin-flop transition [53], which is
nearly 90o rotation of the sublattice moments due to B0, pre-
vents one from realizing the exact EPR state. In our model,
B0 corresponding to ωβ = 0 gives the spin-flop field BSF

[Supplementary Note 1 (SN-1) in the Supplemental Materials
[54] (see also Refs. [55–61] therein)]. In the limit of small
anisotropy compared to exchange (i.e., h̄2Ku/s2

t JV z ≡ η 	
1), BSF is approximated as

BSF = 8Ku

γtδs + δγ st

(
1 − η

2s2
t (γt st + δγ δs)2(

s2
t − δ2

s

)
(γtδs + δγ st )2

)
, (8)

where γt = γa + γb. Equation (8) shows that at TA where
BEPR minimizes, the spin-flop field becomes BSF = BEPR(1 −
2ηγ 2

t /δ2
γ ). Given η 	 1, BSF approaches BEPR at TA unless

δγ 	 γt .
Figure 1(a) shows E (g)

N (= 2r) as a function of B0 for an
AFM and a FIM with δγ �= 0. E (g)

N of AFM (grey line) does
not vary with B0 because δγ = 0. On the other hand, E (g)

N of
FIM (black line) increases with B0 and goes to the infinity at
B0 = BEPR. Note that E (g)

N of FIM consists of solid and dotted
lines. The only solid line is meaningful because the dotted line
corresponds to the field ranges where the spin-flop transition
occurs. As the linear approximation of the HP transformation
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FIG. 1. (a) E (g)
N of an AFM (grey line, γb/γa = 1.0) and a FIM

(black line, γb/γa = 1.1) as a function of B0. (b) Dispersions of two
Bogoliubov modes (α and β; ωα < ωβ ) as a function of B0/BEPR for
FIM. ω0 is the frequency of α mode at B0 = 0. (c) BSF/BEPR as a
function of δs for different values of γb/γa. (d) Maximum E (g)

N as
a function of δs for different values of γb/γa. Other parmameters:
δs = 0 for (a) and (b), s = 5.3 × 10−5J s/m3, Aex (= JSaSb/d ) = 5 ×
10−12 J/m, z = 6, d = 4 × 10−10 m, γa = 1.76 × 1011rad/(secT),
and Ku = 4 × 103J/m3. Parameters for FIMs are based on Ref. [62].

is valid for B0 < BSF, the enhanced E (g)
N by approaching the

EPR state is valid only for B0 < BSF.
As E (g)

N of FIM diverges at B0 = BEPR and B0 is limited by
BSF, the maximally enhanced E (g)

N is achieved for a condition
that BSF approaches BEPR as close as possible. This condition
is realized in the vicinity of TA: As shown in Fig. 1(c), BSF is
close to BEPR in the vicinity of TA. As a result, E (g)

N maximizes
in the vicinity of TA as well [Fig. 1(d)].

Steady-State Magnon Entanglement in a Cavity. As dissipa-
tion and noise are always present, the entanglement that can
be probed in an experiment is the steady-state entanglement
E (s)

N , not the ground-state entanglement E (g)
N . In this section,

we show that approaching the EPR state of FIMs with δγ �= 0
enhances E (s)

N of magnons when magnons are coupled with
photons. To this end, we calculate E (s)

N of magnons without
and with photon in the presence of dissipation and noise.

We introduce the dissipation term κa(b), which quanti-
fies the interaction between the magnon mode â(b̂) and the
environment [14]. We assume that the dissipation rates of
two modes are the same (κa = κb = κm). We also consider
the noise from the environment, ân and b̂n. Adopting the
fluctuation-dissipation theorem [63], the quantum Langevin
equations govern how the quantum state evolves with time:

dâ

dt
= −(κm + iωa)â − iA3b̂† +

√
2κmân

db̂

dt
= −(κm + iωb)b̂ − iA3â† +

√
2κmb̂n, (9)

FIG. 2. E (g)
N and E (s)

N as a fucntion of B0 for (a) AFM, (b) FIM1
with γb/γa = 1, and (c) FIM2 with γb/γa = 1.5. (d) Maximum E (s)

N

of FIM2 with γb/γa = 1.5 as a funciton of δs. For (a) and (c) δs =
0, s = 5.3 × 10−5J sec/m3. For (b) δs = 2.1 × 10−6J sec/m3, s =
4.6 × 10−5J sec/m3. For (d) s = −3.4 × δs + 5.3 × 10−5J sec/m3.
Common parameters: gac = 3 × 10−5A3, κm = 0.33gac, and κc =
10gac. Other parmameters are the same with those in Fig. 1.

where ωa (= A1 + A2) and ωb (= A1 − A2) are eigenvalues
of the modes â and b̂, respectively. Interacting with noisy
environments, the ground state given in Eq. (4) eventually
becomes a steady Gaussian state.

Based on the covariance matrix using the Lyapunov equa-
tion [7,14], E (s)

N without photon is given as (SN-2 [54])

E (s)
N = max

⎡
⎣0,

1

2
ln

⎛
⎝1 +

A3(A3 + 2
√

A2
1 + κ2

m)

A2
1 + κ2

m

⎞
⎠

⎤
⎦. (10)

Figure 2 shows E (g)
N (black lines) and E (s)

N without photon
(purple lines) as a function of B0 for (a) AFM, (b) FIM1 with
δγ = 0, and (c) FIM2 with δγ �= 0. For all cases, E (s)

N without
photon is close to 0.69 [≈ ln(2)] regardless of B0. This means
that the noise and dissipation reduce E (s)

N when there is no
photon in the system. In particular, the important feature of
FIM2, i.e., a rapid increase of E (g)

N by approaching the EPR
state, disappears for E (s)

N without photon.
In order to recover this important feature, we consider the

coupling between squeezed magnons with circularly polarized
microwave photons as the magnon-photon coupling enhances
the entanglement between magnons [14,15]. Due to the an-
gular momentum conservation, circularly polarized photons
have a beam-splitter-type interaction with one magnon mode
and a parametric type interaction with the other magnon
mode (SN-3 [54]). Through the beam-splitter-type interac-
tion, photons cool down one magnon mode toward its ground
state [Eq. (4)], thereby recovering the feature of E (g)

N for that
magnon mode, i.e., the enhanced magnon entanglement by ap-
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proaching the EPR state. Consequently, this feature is partially
recovered for E (s)

N with photon, as shown below.
The Hamiltonian of photon coupled magnon system where

b̂(â) magnon mode for the beam-splitter (parametric) type
interaction is written as (SN-3 [54])

Ĥm−p = ωaâ†â + ωbb̂†b̂ + gab(â†b̂† + âb̂)

+ωcĉ†ĉ + gac(â†ĉ† + âĉ) + gbc(b̂†ĉ + b̂ĉ†), (11)

of which Bogoliubov transformed form is

H̃m−p = ωαα̂†α̂ + ωββ̂†β̂ + ωcĉ†ĉ

+ gαc(α̂†ĉ† + α̂ĉ) + gβc(β̂†ĉ + β̂ ĉ†), (12)

where ĉ (ĉ†) is the annihilation (creation) operator for photons,
ωc is the photon frequency, and g j ( j = ab, ac, bc, αc, βc)
is the coupling strength between two modes represented by
subindices [14]. Here gbc/gac is (γb/γa)

√
Sb/Sa [37].

The quantum Langevin equations for the three-mode sys-
tem are:

dâ

dt
=−(κm + iωa)â − iA3b̂† − igacĉ† +

√
2κmân, (13)

db̂

dt
=−(κm + iωb)b̂ − iA3â† − igbcĉ +

√
2κmb̂n,

dĉ

dt
=−(κc + iωc)ĉ − igacâ† − igbcb̂ +

√
2κcĉn,

where κc is the dissipation rate of the photon mode. Numeri-
cally solving the Lyapunov equation based on Eq. (13) gives
E (s)

N between magnon modes of the photon coupled system
(SN-4 [54]). Note that we check the stability of the steady
state using the Routh-Hurwitz criterion [64].

Figure 2 shows E (s)
N with photon at various photon frequen-

cies (red, blue, green, and light-blue lines) as a function of
B0 for (a) AFM, (b) FIM1 with δγ = 0, and (c) FIM2 with
δγ �= 0. For all cases, E (s)

N with photon is larger than E (s)
N with-

out photon because the magnon-photon coupling cools down
one magnon mode. The important observation is that only for
(c) FIM2 with δγ �= 0, E (s)

N with photon increases when B0

approaches BEPR, whereas for (a) AFM and (b) FIM1, E (s)
N

with photon is independent of B0. This result confirms that
the enhanced E (g)

N by approaching the EPR state is partially
recovered in E (s)

N with photon for FIMs with δγ �= 0.
Although this recovery is not perfect due to dissipation

and noise, the enhancement of E (s)
N is substantial. As shown

above, BSF is close to BEPR near TA [Fig. 1(c)]. Therefore,
it is expected that applying B0 ≈ BSF results in a maximal
enhancement of E (s)

N with photon near TA. To check this ex-

pectation, we calculate the maximum E (s)
N with photon, which

is obtained at B0 ≈ BSF, as a function of δs. Figure 2(d) shows
that E (s)

N with photon maximizes in the vicinity of TA.
Discussion. In this Letter, we theoretically show that the

magnon ground state of a compensated FIM can be close to
the EPR state. This feature maximizes both ground-state and
steady-state magnon-magnon entanglements near TA. Conse-
quently, FIMs near TA exhibit higher magnon entanglement
than FMs and AFMs (SN-5 [54]). This conclusion is obtained
with three assumptions: zero bath temperature, a fixed photon
decay rate (κc), and the same dissipation rates for two magnon
modes (κa = κb). In the Supplementary Material (SN-6 and
SN-7) [54], we show that the conclusion is valid even with
relaxing these assumptions, evidencing that our result is a
general phenomenon.

For an experimental realization of our prediction, FIMs
must satisfy two conditions (SN-8 [54]): First, net magnetic
moment is finite while net angular momentum nearly van-
ishes. This condition is satisfied for rare earth (RE)-transition
metal (TM) FIMs because of the different Landé g fac-
tors between the RE and TM elements [32,65]. RE-doped
ferrimagnetic insulators (i.e., Bi-doped Y3Fe5O12) also ap-
proximately satisfy this condition [66]. The second condition
is that TA must be kept around 1 K because the magnon
entanglement vanishes at high temperature. This second con-
dition can be satisfied by controlling the relative composition
between the RE and TM elements. For such FIMs, the mea-
surements of spin noise [67] or spin current noise [9] could
experimentally probe our prediction (SN-9 [54]).

Our result suggests that FIMs with δγ �= 0 could serve as
a material platform for generating high and tunable entangle-
ment in hybrid quantum systems [68] for QIP. As magnons
correspond to continuous-variable quantum information as
photons do, any quantum applications that have been demon-
strated with photons can in principle be done with magnons.
Given that quantum magnonics is an emerging field, there
are many unexplored theoretical and experimental tasks for
quantum magnonics. However, it does not mean that quantum
magnonics could only mimic quantum optics. In addition to
the large squeeze parameter of FIMs that we report here,
an important difference of squeezed state of magnon from
squeezed state of light is its equilibrium nature, i.e., the
magnon squeezing results from energy minimization [24].
The equilibrium nature of squeezed magnon may yield quali-
tative differences from the nonequilibrium squeezing physics
of light [24], which remains unexplored and thus demands
further investigation.
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